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Abstract  In this paper, we aim to establish the specific foundations in modeling the physical phenomena. For this purpose, 
we discuss a representation of information theory for the optimal design of the model. We introduce a metric called 
comparative uncertainty by which a priori discrepancy between the chosen model and the observed material object is verified. 
Moreover, we show that the information quantity inherent in the model can be calculated and how it proscribes the required 
number of variables which should be taken into account. It is thus concluded that in most physically relevant cases (micro- 
and macro-physics), the comparative uncertainty can be realized by field tests or computer simulations within the prearranged 
variation of the main recorded variable. The fundamentally novel concept of the introduced uncertainty can be widely used 
and is universally valid. We introduce examples of the proposed approach as applied to Heisenberg's uncertainty relation, 
heat and mass transfer equations, and measurements of the fine structure constant. 
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1. Introduction 
This paper represents our attempt towards establishing the 

universal metric of the uncertainty value of micro- and 
macro-physics mathematical models by the application of 
information theory.  

The very act of a measurement process already implies  
an existence of the formulated physical-mathematical  
model describing the phenomenon under investigation. 
Measurement theory focuses on the measurement process of 
experimentally determining the value of a quantity with the 
help of special technical means called measuring instruments 
[1]. It covers only aspects of the measuring procedure and 
data analysis of the observed or researched variable after 
formulating the mathematical model. So, the issue of 
uncertainty that exists before the beginning of the 
experiment or computer simulation and arising as a result of 
the limited number of variables recorded in the mathematical 
model is generally ignored in measurement theory.  

In the scientific community the prevailing view is the 
more precise the instrument used for the model development, 
the more accurate the results, and the measurement 
uncertainty is also lower. Basically, in our everyday world  
it is possible to reduce the uncertainty in the determination  
of the studied process to a minimum.  This, in turn, causes a  
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widely held opinion that the usage of supercomputers, a huge 
number of simulations and large scale mathematical 
modeling can allow us to reach a high degree of accuracy of 
the model describing the observed material system [2-4]. For 
example, a standard input file of Energyplus as published by 
the US Department of Energy as a beta-testing of a 
whole-building simulation engine to describe a building has 
about 3,000 inputs. Its preliminary calculated uncertainty of, 
for example, room temperature, is very hard to estimate, 
because it strongly depends on the accuracy of the modeling 
inputs. Without measured data to compare and calibrate, 
energy simulation results can easily be 50–200% of the 
actual building energy use. For this reason it is not possible 
to validate a model and its results, but only to increase the 
level of confidence that is placed in them [5]. 

In contrast to the above-mentioned opinion, human 
intuition and experience suggests the simple, at first glance, 
truth. For a small number of variables, the researcher gets a 
very rough picture of the process being studied. In turn, the 
huge number of accounted variables can allow deep and 
thorough understanding of the structure of the phenomenon. 
However, with this apparent attractiveness, each variable 
brings its own uncertainty into the integrated (theoretical or 
experimental) uncertainty of the model or experiment. In 
addition, the complexity and cost of computer simulations 
and field tests increases enormously. Therefore, some 
optimal or rational number of variables that is specific to 
each of the studied processes must be considered in order to 
evaluate the physical-mathematical model. This work seeks 
to develop a fundamentally novel method to characterize the 
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model firstborn uncertainty (model discrepancy [6]) 
connected only with the finite number of recorded variables. 
Of course, in addition to this uncertainty, the overall 
measurement inaccuracy includes the posterior uncertainties 
related to the internal structure of the model and its 
subsequent computerization: inaccurate input data, 
inaccurate physical assumptions, the limited accuracy of the 
solution of integral-differential equations, etc. Detailed 
definitions of many different sources of these uncertainties 
are outlined in the literature [1, 6-8].  

The introduced novel analysis is intended to help 
physicists and designers to determine the most simple and 
reliable way to select a model with the optimal number of 
recorded variables calculated according to the minimum 
achievable value of the model uncertainty. 

The present approach begins with the analysis of several 
publications related to usage of the concepts of "information 
quantity" and “entropy” for real applications in physics and 
engineering (Chapter 2), followed by the formulation of a 
system of dimensional variables, from which a modeler 
chooses variables in order to describe the researched process. 
Such a system must meet a certain set of axioms that form an 
Abelian group. This in turn allows the author to employ the 
approach for the calculation of the total number of 
dimensionless criteria in the existing International System of 
Units introduced in section 3.1. Mathematically, the exact 
expression for the calculation of the model’s uncertainty 
with a limited number of variables obtained by counting the 
quantity of information contained in the model is introduced 
in section 3.2. Application of the method to three problems 
widely different in their physical nature is presented in 
Chapter 4. A discussion regarding limits of the approach 
results and its advantages are formulated in Chapter 5. 
Conclusions are discussed in Chapter 6. 

2. Preliminaries  
Modeling is an information process in which information 

about the state and behavior of the observed object is 
obtained by the developed model. This information is the 
main subject of interest of modeling theory. During the 
modeling process, the information increases, while the 
information entropy decreases due to increased knowledge 
about the object [9]. The extent of knowledge A of the 
observed object may be expressed in the form 

A = 1 – H/Hmax,                 (1) 

where H is the information entropy of the object and Hmax is 
its maximum value where the amount of knowledge can 
become A (0, 1). The impossibility of reaching the boundary 
values A=0 and A=1 is contained within the modeling 
theorems. These boundaries express ideal states.  

It follows from the above, a priori and a posteriori 
information of the object must be known. The amount of the 
model information quantity Z can be determined from the 
difference between initial H1 and H2 residual entropy 

Z = H1 – H2,                   (2) 
In this paper, the task of defining a model's uncertainty is 

considered and analyzed from an information measure-based 
perspective. In this case, entropy is used as a measure of 
uncertainty, and depends only on amount and the probability 
distribution of variables taken into account by the conscious 
observer for the development of a model. 

One of the first innovative works connecting information 
theory and measurement theory must be considered [10]. In 
this book Brillouin related the concept of entropy with the 
uncertainty of the physical experiment results in order to 
determine the accuracy of the experiment. 

Despite numerous scientific publications that the author is 
aware of related to the possibility of using the concept of 
"amount of information" and "entropy" in conducting field 
experiments and computer modeling, examples of the 
practical use of information theory with concrete numerical 
calculations in physics and engineering are few. In the 
context of this paper, a number of articles should be noted. 

The first is [11] in which Akaike Information Criterion 
(AIC) has been proposed. It is a metric of the relative quality 
of a statistical model for a chosen set of data. If one has a 
collection of models for the data, AIC estimates the quality 
of each model, relative to each of the other models. AIC is 
founded on the concept of entropy in information theory: it 
offers a relative estimate of the information lost when a given 
model is used to represent the process that generates the data. 
AIC can be conceived of as a theoretical tool for empirical 
modeling. When we wish to determine calculated values to 
represent theoretical data of an experiment, a researcher 
should usually choose the model with the smallest AIC. 
Unfortunately, AIC does not determine the quality of a 
model in an absolute sense. If all the candidate models fit 
poorly, AIC will not give any indication of this. Although 
AIC can be used for concrete practical cases, its application 
is quite different to the approach proposed here. 

In [12] there has been calculated an upper limit, called the 
Bekenstein bound, of the  quantity of information contained 
within a given framed object which has the maximum 
amount of information required to perfectly describe a given 
physical system. It was implied that the quantity of 
information of a physical system must be finite if the space 
of the object and its energy are finite. In informational terms, 
this bound is given by 

ϒ ≤ (2·π·R·E)/ (ħ·c·ln2),             (3) 
where ϒ is the information expressed in the number of bits 
contained in the quantum states of the chosen object sphere. 
The ln2 factor comes from defining the information as the 
natural logarithm of the number of quantum states; R is the 
radius of an object sphere that can enclose the given system, 
E is the total mass-energy including any rest masses, ħ is the 
reduced Planck constant, and c is the speed of light. The 
results are purely theoretical in nature, although it is possible, 
judging by the numerous references to this article, that one 
may find applications of the proposed formula in medicine or 
biology.  

https://en.wikipedia.org/wiki/Statistical_model
http://en.wikipedia.org/wiki/Information
http://en.wikipedia.org/wiki/Bit
http://en.wikipedia.org/wiki/Natural_logarithm
http://en.wikipedia.org/wiki/Logarithm
http://en.wikipedia.org/wiki/Radius
http://en.wikipedia.org/wiki/Sphere
http://en.wikipedia.org/wiki/Mass%E2%80%93energy_equivalence
http://en.wikipedia.org/wiki/Invariant_mass
http://en.wikipedia.org/wiki/Planck_constant%23Reduced_Planck_constant
http://en.wikipedia.org/wiki/Speed_of_light
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A study of quantum gates has been developed [13]. The 
author considered these gates as physical devices which are 
characterized by the existence of random uncertainty. 
Reliability of quantum gates was investigated from the 
perspective of information complexity. In turn, the 
complexity of the gate’s operation was determined by the 
difference between the entropies of the variables 
characterizing the initial and final states. The study has stated 
that the gate operation may be associated with unlimited 
entropy, implying the impossibility of realization of the 
quantum gates function under certain conditions. The 
relevance of this study comes from its conceptual approach 
of use of variables, as a specific metric for calculation of 
information quantity changing between input and output of 
the apparatus model. 

The information theory-based principles have been 
investigated in relation to uncertainty of mathematical 
models of water-based systems [14]. In this research, the 
mismatch between physically-based models and 
observations has been minimized by the use of intelligent 
data-driven models and methods of information theory. The 
real successes were achieved in developing forecast models 
for the Rhine and Meuse rivers in the Netherlands. In 
addition to the possibility of forecasting the uncertainties and 
accuracy of model predictions, the application of 
information theory principles indicates that, alongside 
appropriate analysis techniques, patterns in model 
uncertainties can be used as indicators to make further 
improvements to physically-based computational models. At 
the same time, there have been no attempts to apply these 
methodologies to results to other physical or engineering 
tasks.  

The design information entropy was introduced as a state 
that reflects both complexity and refinement [15]. The author 
argued that it can be useful as some measure of design 
efficacy and design quality. The method has been applied to 
the conceptual design of an unmanned aircraft, going 
through concept generation, concept selection, and 
parameter optimization. For the purposes of this study it is 
important to note that introducing the design information 
entropy as a state can be used as a quantitative description for 
various aspects in the design process, both with regards to 
structural information of architecture and connectivity, as 
well as for parameter values, both discrete and continuous. 

In [16] there has been conducted a systematic review of 
major physical applications of information theory to physical 
systems, its methods in various subfields of physics, and 
examples of how specific disciplines adapt this tool. In the 
context of the proposed approach for practical purposes in 
experimental and theoretical physics and engineering, the 
physics of computation, acoustics, climate physics, and 
chemistry have been mentioned. However, no surveys, 
reviews, research studies were found with respect to apply 
information theory for calculating an uncertainty of models 
of the phenomenon or technological process.  

The approach that uses the tools of estimation theory to 
fuse together information from multi-fidelity analysis, 

resulting in a Bayesian-based approach to mitigating risk in 
complex design has been proposed [6]. Maximum entropy 
characterizations of model discrepancies have been used to 
represent epistemic uncertainties due to modeling limitations 
and model assumptions. The revolutionary methodology has 
been applied to multidisciplinary design optimization and 
demonstrated on a wing-sizing problem for a high altitude, 
long endurance aircraft. Uncertainties have been examined 
that have been explicitly maintained and propagated through 
the design and synthesis process, resulting in quantified 
uncertainties on the output estimates of quantities of interest. 
However, the proposed approach focuses on the optimization 
of the predefined and computer-ready simulation model. 

For these reasons there are only a handful of different 
methods and techniques used to identify matching of 
physical-mathematical models and studied physical 
phenomena or technological processes by the uncertainty 
formulated with usage of the concepts of "information 
quantity" and “entropy”. All the above-mentioned 
methodologies are focused on identifying a posterior 
uncertainty caused by the ineradicable gap between model 
and a physical system. At the same time, according to our 
data, in the modern literature there does not exist any 
physical or mathematical relationship which could formulate 
the interaction between the level of detailed descriptions of 
the material object (the number of recorded variables) and 
the lowest achievable total experimental uncertainty of the 
main parameter. 

Thus, it is advisable to choose the appropriate/acceptable 
level of detail of the object (a finite number of registered 
variables) and formulate the requirements for the accuracy of 
input data and the uncertainty of specific target function 
(similarity criteria), which describes the "livelihood" and 
characterizes the behavior of the observed object.  

3. Formulation of Applied Tools 
3.1. System of Primary Variables 

The harmonic building of modern science is based on a 
simple consensus that any physical laws of micro- and 
macro-physics are described by quite certain dimensional 
variables. These variables are selected within a pre-agreed 
system of primary variables (SPV) such as SI (international 
system of units) or CGS (centimeter–gram–second system 
of units). The SPV is a set of dimensional variables (DL), 
which are primary and can generate secondary variables, 
which are necessary and sufficient to describe the known 
laws of nature, as in the quantitative physical content [17]. 
This means that any scientific knowledge and all, without 
exception, formulated physical laws are discovered due to 
information contained in SPV. This is a unique channel 
(generalizing carrier of information) through which 
information is transmitted to the observer or the observer 
extracts information about the object from SPV. SPV 
includes a finite number of physical DL variables which 
have the potential to characterize the world’s physical 
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properties and, in particular, observed phenomenon 
qualitatively and quantitatively. So, an observation of a 
material object and its modeling are framed by SPV. We 
model only what we can imagine or observe, and the mere 
presence of a selected SPV, such as the lens, sets a specific 
limit on measurement of the observed object. 

In turn, SPV includes the primary and secondary variables 
used for descriptions of different classes of phenomena 
(COP). In other words, the additional limits of the 
description of the studied material object are caused due to 
the choice of COP and the number of secondary parameters 
taken into account in the mathematical model [18]. For 
example, in mechanics SI uses the basis {L– length, M– 
mass, Т– time}, i.e. COPSI≡  LMT. Basic accounts of 
electromagnetism here add the magnitude of electric current 
I. Thermodynamics requires the inclusion of thermodynamic 
temperature Θ. For photometry it needs to add J– force of 
light. The final primary variable of SI is a quantity of 
substance F. 

If SPV and COP are not given, then the definition of 
"information about researched object" loses its force. 
Without SPV, the modeling of phenomenon is impossible. 
You can never get something out of nothing, not even by 
watching [19]. It is possible to interpret SPV as a basis of all 
accessible knowledge that humans are able to have about 
their environment at the present time. In turn, establishment 
of a specific SPV (e.g. SI units) means that we are talking 
about trying to restrict the set of possible variables by a 
smaller number of basic variables and the corresponding 
units. Then all other required variables can be found or 
determined based on these primary variables, which must 
meet certain criteria [17] that are introduced below. Let the 
different types of variables be denoted by A, B, C. Then the 
following relations must be realized: 

a.  From A and B a new type of value is obtained as: C = 
A · B (multiplicative relationship);  

b.  There are unnamed numbers, denoted by (I) = (A°), 
which when multiplied by A do not change the 
dimensions of this type of variables. A · (I) = A (single 
item);  

c.  There must exist a variable which corresponds to the 
inverse of the variable 𝐴𝐴, which we denote 𝐴𝐴−1, such 
that 𝐴𝐴−1· A = (I);  

d.  The relation between the different types of variables 
obeys the laws of associativity and commutativity:  

    Associativity: A · (B · C) = (A · B) · C,  
    Commutativity: A · B = (B · A);  
e.  For all A ≠ (1) and m ∈ N; m ≠ 0, the expression   

𝐴𝐴𝑚𝑚≠ 1 is the case;  
f.  The complete set consisting of an infinite number of 

types of variable has a finite generating system.  
This means that there are a finite number of elements C1, 

C2… CH, through which any type of variable q can be 
represented as 

q כ 𝐶𝐶1
𝛕𝛕1· 𝐶𝐶2

𝛕𝛕2· …· 𝐶𝐶𝐻𝐻𝛕𝛕ℎ ,          (4) 

where the badge כ – means "corresponds to dimension"; τi – 
integer coefficients, i ∈[1, H], τi ∈ λ, where λ is the set of 
integers. 

The uniqueness of such a representation is not expected in 
advance. Axioms “a-f” form a complete system of axioms of 
an Abelian group. By taking into account the basic equations 
of the theory of electricity, magnetism, gravity and 
thermodynamics, they remain unchanged. 

Now we use the theorem that holds for an Abelian group: 
among H elements of the generating system C1, C2… CH 
there is a subset h ≤ H of elements B1, B2… Bh, with the 
property that each element can be uniquely represented in the 
form 

q כ 𝐵𝐵1
𝛽𝛽1· 𝐵𝐵2

𝛽𝛽2· …·𝐵𝐵ℎ
𝛽𝛽ℎ ,             (5) 

where 𝛽𝛽k are integers, k ∈ [1, h], h  < H; elements 
𝐵𝐵1

 ·𝐵𝐵2
 ·…𝐵𝐵ℎ  are called the basis of the group, and 𝐵𝐵𝑘𝑘  are the 

basic types of variables. ∏ 𝐵𝐵𝑘𝑘
𝛽𝛽𝛽𝛽𝒌𝒌

𝟏𝟏  is the product of the 
dimensions of the main types of variables 𝐵𝐵𝑘𝑘 . 

For the above-stated conditions the following statement 
holds: the group, which satisfies axioms a-f, has, at least, one 
basis 𝐵𝐵1

 ·𝐵𝐵2
 ·…𝐵𝐵ℎ . In the case h > 2, there are infinitely many 

valid bases. How to determine the number of elements of a 
basis? In order to answer this question, let’s apply the 
approach introduced for the SI units. In this case, you need to 
pay attention to the following irrefutable situation. We 
should be aware that the condition (4) is a very strong 
constraint. It is well known that not every physical system 
can be represented as an Abelian group. Presentation of 
experimental results as a formula, in which the main 
parameter is represented in the form of the correlation 
function of the one-parameter selected functions, has many 
limitations [18]. However, in this study, the condition (4) can 
be successfully applied to the dummy system, in terms of 
lack in nature, which is SI. In this system, the secondary 
variables are always presented as the product of the primary 
variables in different powers. 

The entire information above can be represented as 
follows:  

1.  There are ξ = 7 primary variables: L – length, M – 
mass, Т – time, I– electric current, Θ– thermodynamic 
temperature, J– force of light, F– the number of 
substances [20]; 

2. The dimension of any secondary variable q can only be 
expressed as a unique combination of dimensions of 
the main primary variables to different powers [17]:           

q כ Ll ⋅Mm ⋅Tt ⋅ Ii ⋅ ΘΘ ⋅ Jj ⋅Ff.                   (6) 
3.  l, m... f are exponents of the variables, the range of 

each has a maximum and minimum value; according 
to [20], integers are the following:  

-3 ≤ l ≤ +3,  -1 ≤ m ≤ +1,  -4 ≤ t ≤+4,  -2 ≤ i ≤ +2, 
-4 ≤ Θ ≤ +4,     -1 ≤ j ≤ +1,     -1 ≤ f ≤ + 1.  (7) 

4.  The exponents of variables can only take integer 
values [20], so the number of choices of dimensions 
for each variable, according to (7), is the following: 
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еl  = 7; еm  = 3; еt = 9; еi = 5; еθ = 9; еj  = 3; еf  = 3.  (8) 
5.  The total number of dimension options of physical 

variables equals Ğ = ∏ 𝒆𝒆𝒇𝒇𝒍𝒍 i–1  
Ĝ = еl ⋅ еm ⋅ еt ⋅ еi ⋅ еθ ⋅ еj ⋅ еf -1 

= 7 ⋅ 3 ⋅ 9 ⋅ 5 ⋅ 9 ⋅ 3 ⋅ 3-1 = 76 544      (9) 
where "-1" corresponds to the case where all exponents of 
the primary variables in the formula (6) are treated to zero 
dimension. 

6.  According to the axiom c, the value Ĝ includes both 
required, and inverse variables (for example, L¹ – 
length, L-1 – running length). The object can be judged 
knowing only one of its symmetrical parts, while 
others structurally duplicating this part may be 
regarded as information empty. Therefore, the number 
of options of dimensions may be reduced by ω = 2 
times. This means that the total number of dimension 
options of physical variables without inverse variables 
equals G = Ĝ/2 = 38 272.  

7.  For further discussion we use the methods of the 
theory of similarity, which is expedient for several 
reasons. In the study of the phenomena occurring in 
the world around us, it is advisable to consider not 
individual variables but their combination or 
complexes which have a definite physical meaning. 
Methods of the theory of similarity based on the 
analysis of integral-differential equations and 
boundary conditions, allow for the identification of 
these complexes. In addition, the transition from DL 
physical quantities to dimensionless (DS) variables 
reduces the number of variables taken into account. 
The predetermined value of DS complex can be 
obtained by various combinations of DL variables 
included in the complex. This means that when 
considering the challenges of new variables we take 
into account not an isolated case, but a series of 
different events, united by some common properties. It 
is important to note that the universality of similarity 
transformations is defined by the invariant 
relationships that characterize the structure of all the 
laws of nature, including for the laws of relativistic 
nuclear physics. Moreover, dimensional analysis from 
the point of view of the mathematical apparatus has a 
group structure, and conversion factors (the similarity 
complexes) are invariants of the groups. The concept 
of the group is a mathematical representation of the 
concept of symmetry, which is one of the most 
fundamental concepts of modern physics [21]. 

According to π-theorem [22], the number אSI of possible 
DS complexes (criteria) with ξ = 7 main DL variables for SI 
will be 

 SI = G -ξ = 38,272 – 7 = 38,265.        (10)א
Applying the theory of similarity is motivated by the 

desire to generalize obtained results in the future for different 
areas of physical applications. The numerical value of אSI can 
only increase with the deepening of knowledge about the 

material world. It should be mentioned that the set of DS 
variables אSI is a fictitious system, since it does not exist in 
physical reality. However, this observation is true for proper 
SI too. At the same time, the object which exists in actuality 
may be expressed by this set.  

The relationships (6)–(9) are obtained on the basis of the 
principles of the theory of groups as set forth in [17]. The 
present results provide a possible use of information theory 
to different physical and engineering areas with a view to 
formulating precise mathematical relationships to assess the 
minimum comparative uncertainty (see section 3.2) of the 
model that describes the studied physical phenomenon or 
process. 

3.2. Information Quantity Inherent to Model 

The validity of a mathematical model structure is 
confirmed, to a researcher, by the small differences between 
theoretical calculations and the experimental data. In doing 
so a question is overlooked: to what extent does the chosen 
model correctly describe the relevant natural phenomenon or 
process. 

In [23] it has been shown that by setting a priori the total 
value of uncertainties of an experiment and the formulated 
model, one can determine the necessary number of 
measurements of the chosen variable and the validity of the 
selected model. The specified approach at the decision of 
inverse mathematical tasks is based on the legitimacy of a 
condition [24]:  

ρG (By, v) ≤ Δ,                 (11) 
where y is the set of characteristics of the investigated 
process; v is an experimental field of measurement; G 
denotes the set of possible theoretical fields of measurements 
g; B is the law connecting the characteristic of investigated 
object y with g; ρG (g1, g2) is a measure of affinity ("distance") 
between two fields; and Δ is an absolute uncertainty of 
definition of a field g. 

The condition (11) means that the field, calculated under 
the characteristic y, is from v on distance, smaller or equal Δ.  
In what follows, we denote Δpmm as the uncertainty in 
determining the DS theoretical field u, "embedded" in a 
physical-mathematical model and caused only by its 
dimension that is the property of the model to reflect a 
certain number of characteristics of researched phenomena, 
its external and internal connections. What is the possible 
structure of Δpmm? To answer this question, we turn to [25], 
in which there has been reviewed some attempts to find a 
more general measure of information than the Shannon 
concept. In addition, the need for such an alternative measure 
has been demonstrated based on a historical review of the 
problems concerned with the conceptualization of 
information. The author has proven that an alternative 
measure can be presented in the context of a modified 
definition of information applicable outside of the conduit 
metaphor of Shannon’s approach. There has been shown 
several features superior to those of entropy. For instance, 
unlike entropy it can be easily and consistently extended to 
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continuous probability distributions, and unlike differential 
entropy this extension is always positive and invariant with 
respect to linear transformations of the coordinates. The 
author has proven a theorem, which is interpreted as an 
assertion that the total information amount can be separated 
into information identifying the element of the partition, plus 
the average information identifying an element within 
subsets of the partition. Taking into account this conclusion, 
we can represent Δpmm as the sum of two terms, in which a 
first term of an alternative measure of information defines 
Δpmm' and the second term dictates the choice of Δpmm'' 

Δpmm = Δpmm' + Δpmm'',             (12) 

where Δpmm' is the uncertainty due to COP, which is 
associated with the reduction in the number of recorded 
primary variables compared with SPV; and Δpmm'' is the 
uncertainty due to the choice of the number of recorded 
influencing variables within the framework of the set of 
COP.                                          

The equation (12) is an expression of the fact that during 
modeling of any phenomenon or technological process and 
equipment there is a gap between the researched object and 
its theoretical representation in physical-mathematical form 
due to choosing only COP and a number of variables 
recorded by the conscious observer due to their knowledge, 
experience and intuition. The reality of the environment is 
the obvious a priori condition for the modeling of the 
investigated material object. By allocating the interested 
process or phenomenon, the unknown relationships between 
the content of object and the environment are "broken". In 
this context it is obvious that an overall uncertainty of the 
model including inaccurate input data, physical assumptions, 
the approximate solution of the integral-differential 
equations, etc., will be larger than Δpmm. Thus, Δpmm is only 
one component of a possible mismatch of real object and its 
modeling results. In turn, Δpmm'' cannot be defined without 
declaration of the chosen COP (Δpmm'). So, according to its 
nature, Δpmm will be equal to the sum of two terms. When 
comparing different models (according to a value of Δpmm) 
describing the same object, preference should be given to the 
model for which Δpmm/Δexp is closer to 1. The uncertainty Δexp 
is the estimated uncertainty in the determination of the 
generalized objective function (similarity criterion) during 
an experiment or computer simulation. It will be always 
larger than Δpmm. Many different models may describe 
essentially the same object, where two models are 
considered to be essentially the same if they are 
indistinguishable from a value of Δpmm.  

We formulate an approach for the introduction of a 
measure of the information quantity about an object in SPV 
and the definition of a sequence of actions (algorithm) 
allowing a measurement of this quantity. A certain 
complexity of the observed material object is offered as a 
measure of the complexity of the object model. Each 
observer can decide only the category of the model. Any 
claim can be made only with respect to the model. Of course, 
the notion of "complexity" also requires definition, and there 

is a possibility of arbitrariness. However, the process of 
cognition of a real object as a physical system, in general, is 
infinite. Thus, the model of the system is a formal structure 
built according to certain rules, and the design certainly is 
predictable. In this case, a material object (a certain totality) 
can be represented in two different ways. By merely listing 
its elements when the researcher supposes that a set of values 
is finite, or by specifying a system of rules (algorithm), based 
on which you can perform such an enumeration. This means 
a totality is thus accounted for. From a practical point of view, 
the most natural assertion is that the measure of complexity 
of the totality is the number of elements contained therein. 
So, one of the simplest ways is to find the magnitude 
calculated according to the number of elements included in 
this description. This value is an information quantity 
measure contained in the description of a physical system. In 
order to calculate an information quantity we choose Х1, 
Х2,.... Хn (n Є N) primary variables. Then [17] for a 
secondary variable, primary variables enter into the formula 
of dimension with exponents τ1, τ2, ..., τn Є P, where Р is the 
set of rational numbers. If the set of values Ετn, which can 
accept τn in various variants of formulas of dimension for 
secondary variables, has the top and bottom verges, then Ετn 
is finite [26]. Consideration of a case τnЄ R, τnЄ Ετn, ΕτnЄ R, 
where R is a totality of real numbers, is invalid as then it is 
possible τnЄ R\Р, where τn represents an irrational number 
does not have physical meaning. The number of elements in 
Ετn will make еn. The variant dimension number of physical 
variables describing the internal structure of a material object 
reaches Ğ = Πеn – 1, where "-1" corresponds to the occasion 
when all exponents of primary variables in the formula are 
treated to zero dimension.  

As the information quantity of an object is connected to its 
symmetry [27], the number Ğ can be reduced by a factor of 
ω (quantity of equivalent parts in the researched material 
object): G = Ğ / ω. Obviously, the equivalent parts of a 
symmetrical object {Ετn} have identical structure, where 
{Ετn} is the totality including elements of Ετn totalities.  
Consequently, the object can be judged, knowing only one of 
its symmetrical parts, while others structurally duplicating 
this part, may be regarded as information empty. Knowing G 
and using π-theorem [22], as it is mentioned in Chapter 3.1, 
the number of DS complexes אSI equals to the number of DL 
physical parameters G, net amount of ξ primary parameters, 
i.е. אSI = G – ξ. For further discussion we will assume that 
each DS complex represents the original readout through 
which some information on DS researched field u can be 
obtained [28]. It is supposed that the accounting of readouts 
(complexes) is equiprobable. Use of the concept "readout" in 
examining some object at the stage of the model 
development is due to the expediency of the vector 
(positional) ways of representing information of the 
observed phenomena. When there are a large numbers of 
components (a large-dimensional vector space) it is possible 
to distinguish only two states of the vector component: for 
example, presence or absence of a signal, in our case the 
appearance or lack of a readout-variable [29]. It should be 
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noted that the approval of the equiprobable occurrence of a 
readout is justified by the purpose of the research – finding 
the absolute uncertainty Δpmm stipulated by the level of the 
detail of the researched object. Indeed, any other distribution 
of readouts yields less information [25, 30], which leads to a 
larger uncertainty in comparison with an uncertainty 
calculated at the uniform distribution of readouts. 

This approach completely ignores the human evaluation of 
information. In other words, a set of 100 notes played by 
chimpanzees, and a melody of Mozart’s 100 notes in his 
Piano Concerto No.21-Andante movement, have exactly the 
same amount of information. Let there be אSI readouts, such 
that there is an uncertainty directly related to אSI. That is, the 
larger the אSI, the greater the uncertainty. Its measured 
numerical value is called entropy, and may be calculated by 
the formula [28]:  

H = k ∙ ln אSI,                (13) 
where k is Boltzmann's constant. 

When a researcher chooses the influencing factors (the 
conscious limitation of the number of variables describing an 
object), the mathematical model entropy is decreased a 
priori. It is natural to measure the entropy change by a 
parameter [30]:  

ΔH = Hpr – Hps,              (14) 
where ΔH is entropy difference between the two cases, pr – 
"a priori", ps - "a posterior". 

If one considers that the efficiency Q [28] of the passive 
mental method as equal to one because just a thought 
experiment is conducted and no distortion is brought into the 
real system (modeler is thinking only), then one can write 
according to (14): 

ΔA = Q ∙ ΔH = Hpr – Hps,          (15) 
where ΔA is the a priori information quantity about the 
material object.   

Using Equations (13), (14), (15) and imposing symbols: z' 
being the number of physical DL values in the selected COP 
(see 3.1), β' is the number of primary physical DL values in 
the selected COP, we obtain: 

ΔA' = Q ∙ (H'pr – H'ps ) = 1∙[ k ∙ ln אSI - k ∙ ln (z' - β')] 
= k ln [אSI /(z' - β')],                             (16) 

where ΔA' is the a priori amount of information quantity 
about the observed object due to the choice of COP. 

The value ΔA' is linked to Δpmm' and S (the DS interval of 
supervision of a field u) by the dependence [28]:  

Δpmm' = S exp (-ΔA'/k).              (17) 
Substituting (15) into (16):   

Δpmm' = S (z' - β')/ אSI.              (18) 
Following the same reasoning, it can be shown that Δ" is 

the following:   
Δpmm'' = S (z'' - β'')/(z' - β'),          (19) 

where z" is the number of physical DL variables recorded in 
a mathematical model; β" is the number of primary physical 

DL variables recorded in a model. Then, summarizing Δpmm' 
and Δpmm'', one can estimate the value Δpmm.    

All of the above could be summarized as follows in the 
form of א –hypothesis: Let during a model formulation the 
chosen system of primary variables with the total number of 
DL physical variables be denoted by G, ξ of which are of 
independent dimension. In the framework of the class of 
phenomena (the total number of DL variables (z'), the 
number of primary DL variables (β') there is a dimensionless 
field u raised in a given range of values S. Then the absolute 
uncertainty of u calculation (for a given number of recorded 
physical DL variables z", of which β" is the number of 
recorded primary physical DL variables) can be determined 
from the relationship:    

     Δpmm = S ∙ [(z' – β')/(G - ξ) – (z'' - β'')/(z' - β')],   (20) 
where ε = Δpmm/S is the comparative uncertainty [28]. 

Using formula (20), one can find the recommended 
uncertainty value with the theoretical analysis of the physical 
phenomena. Moreover, equation (20) also can inform a limit 
on the advisability of obtaining an increase of the 
measurement accuracy in conducting pilot studies or 
computer simulation. It is not a purely mathematical 
abstraction. Equation (20) has physical meaning. This 
relationship testifies that in nature there is a fundamental 
limit to the accuracy of measuring any observed material 
object, which cannot be surpassed by any improvement of 
instruments and methods of measurement. The value of this 
limit is much more than the Heisenberg uncertainty relation 
provides and places severe restrictions on the micro-physics.         

At its core, Δpmm is an a priori conceptual "first-born" 
uncertainty that is inherent to any physical-mathematical 
model and is independent from the measurement process. 
The uncertainty determined by the proposed principle is not 
the result of measurement, it represents an intrinsic property 
of the model, and it is caused only by the number of selected 
variables and the chosen COP. Therefore, the overall 
uncertainty model including additional uncertainties 
associated with the structure of the model and its subsequent 
computerization will be much greater than Δpmm. Actually, 
equation (20) can be regarded as the uncertainty principle for 
the model development process. Namely, any change in the 
level of the detailed description of the observed object (z''-β''; 
z'-β') causes a change in the uncertainty model Δpmm and the 
accuracy of each main variable characterizing the properties 
of the object internal structure. 

It is interesting to speculate on further applications of 
equation (20) for micro- and macro-physics, such as the 
Heisenberg uncertainty relation, the accuracy of the fine 
structure constant, and as applied to heat and mass transfer 
processes which are discussed below. 

4. Applications of א -Hypothesis  
4.1. Heisenberg’s Uncertainty Relation  

The numerical value of אSI can be calculated by the use of 
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a heuristic approach with a relative uncertainty of 4 ⋅ 10-6, as  
 SI = 2 · (α-1 + e0.25)² = 38,265,            (21)א

where α is the fine structure constant, α -1 = 137.035999 [31]. 
We apply אSI formula (21) in order to select a modified 

form of Heisenberg's uncertainty relation for one 
dimensional space [32]. The theoretical limit of accuracy of 
any measurements for the DL standard deviation of 
coordinates Δx  (uncertainty of position) and DL standard 
deviation of the momentum Δp (uncertainty of momentum) 
is the following 

Δx · Δp ≥ ħ /2,                   (22) 
where ħ = h/(2π), and h denotes Planck's constant.  

We take into account that comparative uncertainties of DL 
researched variable x and DS researched variable X which 
are equal to:  

 (Δx/Sx*) = (Δx/r*)/(Sx*/r*) = (ΔX/Sx),       (23) 
or 

Δx / ΔX = Sx*/ Sx,                (24) 
where Sx* is the DL considered range of changes of the 
measured DL variable x, Sx denotes the DS considered range 
of changes of the measured DS variable X, r* denotes the DL 
scale parameter with the same dimension that x and Sx* have, 
and ΔX denotes the DS standard deviation of coordinate X.  

We can obtain: 
ΔX / Sx ≤ [(z'-β')/א SI + (z''-β'')/ (z'-β')],       (25) 
ΔP / Sp ≤ [(z'-β')/א SI + (z''-β'')/ (z'-β')],       (26) 

where ΔP denotes the DS uncertainty of the DS momentum 
P, Sp denotes the DS considered range of changes of the DS 
momentum P.   

Due to analyzing of recorded variables dimensions, the 
model of Heisenberg's uncertainty relation is classified with 
COPSI≡  LMT. In order to formulate the conditions for 
achieving the minimum comparative uncertainty of a model 
(εmin)LMT, it is required to equate its partial derivative with 
respect to z'- β', to zero. Thus we can obtain: 

(Δupmm/S)′z′-β′ = [(z'-β')/ אSI + (z''-β'')/(z'-β')]' 
 (27)      ,[SI - (z''-β'')/ (z'-β')²א /1] =

 0,              (28) = [SI - (z''-β'')/ (z'-β')²א/1]
(z'-β ')²/ אSI = (z''-β'').                (29) 

So, (εmin)LMT can be reached at the following data:   
(z' - β') = (еl ·еm·еt -1)/2 -3 = (7·3·9 -1)/2 – 3 = 91,   (30) 
(z'' - β'') = (z' – β')²/ אSI = 91² /38, 265 = 0.216412,  (31) 

where "-1" corresponds to the case when all the primary 
variable exponents are zero in formula (6); dividing by 2 
indicates that there are direct and inverse variables, e.g., 
L1-length, L-1- run length, and 3 corresponds to the three 
primary variables L,M,T.                                                                       

And (εmin)LMT equals   
(εxmin)LMT = 91/38,265 + 0.216412/91 = 0.004756,   (32) 
(εpmin)LMT = 91/38,265 + 0.216412/91 = 0.004756,   (33) 

where (εxmin)LMT and (εpmin)LMT are minimum comparative 
uncertainties, respectively, of DS variables X and P.                       

Then  
ΔX/Sx ≤ 0.004756,               (34) 
ΔP/Sp ≤ 0.004756.               (35) 

Taking into account (22), (24), (34) and (35),  
Δx · Δp = Sx*·Sp*·0.004756² 

= Sx*·Sp*·0.0000236 ≥ ħ /2,  (36) 
where Sp* is the DL considered range of changes of the 
measured DL variable p. 

Then the modified Heisenberg's uncertainty relation can 
be introduced with a relative uncertainty of 9 ⋅ 10-6 in the 
following form 

Sx*· Sp* ≥ 44,203.90729 · ħ ≈ אSI · (2·γ + 1.4 β) ·ħ 
= (α-1 + e0.25)² · (2γ + 1.4 β) · ħ,            (37) 

where γ is Euler's constant, 0.577216; β=1/1,836.152746,  β 
= me/mp, me is the electron mass, 9.109383 ⋅ 10-31 kg, and mp 
is the proton mass, 1.672622 ⋅ 10-27 kg [20]. 

The modified theoretical limit of accuracy of any 
measurements connects the DL considered range of changes 
of the measured DL variable x and the DL considered range 
of changes of the measured DL variable p. According to the 
aforementioned investigation the expression Sx*· Sp* (37) 
can be regarded as a first approximation, as a real constant in 
space and time because its value depends essentially on α, e, 
γ, β and ħ.   

This equation (37) is objective and independent from the 
presence of the conscious observer conducting 
measurements. Thus, according to equation (36) the interval 
of the particle location and the interval of the particle 
momentum cannot be known with absolute precision 
simultaneously. The more precisely one specifies the 
location of the particle, the larger the degree of uncertainty of 
the particle's momentum, and vice versa. 

Equation (37) is in fact a possible interpretation of a 
general principle of W. Heisenberg (22) in another form, 
which holds for any investigated object. At the same time, it 
is understood that without enough comparison with previous 
results, the readers cannot evaluate whether the introduced 
results are good or bad. That is why further examples, maybe, 
can convince researchers for the appropriateness of the א 
–hypothesis for experiments in engineering and physics. 

4.2. Heat and Mass-Transfer 

The process of heat transfer by freezing a thin layer of 
paste material posted onto a moving cooled cylinder wall has 
been investigated [33]. According to analysis of the recorded 
variables dimensions, the model is classified by COPSI ≡ 
LMTΘ.  

Let’s calculate z'-β'. According to (8) 
z'-β' = (еl ·еm·еt·еθ -1)/2 -4 = (7·3·9·9 -1)/2 -4 = 846,  (38) 

where "-1" corresponds to the case where all the primary 
variables exponents are zero in formula (6); division by 2 
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indicates that there are direct and inverse variables, e.g., 
L1-length, L-1- run length; and 4 corresponds to four primary 
variables L,M,T,Θ .              

The minimum comparative uncertainty of a model 
(εmin)LMTθ, can be reached at condition (29). Then we obtain: 

(z'' - β'') = (z' – β')²/ אSI = 846 /38,265 ≈ 19.     (39) 
Substituting (38) and (39) into (20) we find 

(εmin)LMTθ = Δupmm/S = 0.0445.            (40) 
There were recorded 18 (z*) input DL variables and 5 (β*) 

primary physical variables, such that we obtain 
z*-β*=18-5=13 for the DS criteria.  

A study of the developed model by computer simulation 
using the random balance method has been conducted. As 
the objective function, the final DS temperature of the outer 
surface of the material 𝜃𝜃 s=(𝜃𝜃 s-𝜃𝜃 e)/(𝜃𝜃 cr–𝜃𝜃 e) was selected, 
where 𝜃𝜃cr, 𝜃𝜃s, 𝜃𝜃e are the DL temperatures of the freezing 
point of a material, outer surface of a material layer and 
evaporation point of the refrigerant, respectively. Δ𝜃𝜃cr, Δ𝜃𝜃s, 
Δ𝜃𝜃 e are the DL uncertainties of measurement of these 
temperatures. Their declared values were: 𝜃𝜃cr= 272 ºК, 𝜃𝜃s= 
259 ºК, 𝜃𝜃e = 243 ºК, Δ𝜃𝜃cr = 0.1 ºК, Δ𝜃𝜃s = Δ𝜃𝜃e = 0.5 ºК. 

The declared achieved discrepancy between the 
experimental and computational data in the range of 
admissible values of the similarity criteria and dimensionless 
conversion factors did not exceed 8%. 

Taken into account was the fact that the direct 
measurement uncertainties are much smaller than the 
measured values, accounting for a few percent or less of 
them. The uncertainty can be considered formally as small 
increments of a measured variable. In practice, finite 
differences are used, rather than the differentials. So, in order 
to find the value of an absolute DS uncertainty (Δ𝜃𝜃s), the 
mathematical apparatus of differential calculus was applied 
[34]: 

Δ𝜃𝜃𝑠𝑠 = ∑ │ ∂𝜃𝜃𝑠𝑠
∂𝜃𝜃𝑖𝑖

1
𝑖𝑖 Δ𝜃𝜃𝑖𝑖│,           (41) 

where ∂𝜃𝜃
∂𝜃𝜃𝑖𝑖

 denotes the partial derivatives of the function 

(Δ𝜃𝜃𝑠𝑠) with respect to one of the several variables 𝜃𝜃𝑖𝑖  that 
affect 𝜃𝜃𝑠𝑠; and Δ𝜃𝜃𝑖𝑖  denotes the uncertainty of the variable 𝜃𝜃𝑖𝑖 . 

For the present example, according to equation (40), one 
can find an absolute total DS uncertainty of the indirect 
measurement (Δ𝜃𝜃s)exp, reached in the experiment:   

(Δ𝜃𝜃s)exp = (Δ𝜃𝜃 s+Δ𝜃𝜃 e) / (׀𝜃𝜃cr – 𝜃𝜃e׀) 
 (42)  .0.066 ≈ (²׀𝜃𝜃cr– 𝜃𝜃e ׀∙ (Δ𝜃𝜃cr+Δ𝜃𝜃e)) /׀𝜃𝜃s– 𝜃𝜃e ׀ +

From equation (20), using calculated values אSI (9), z'-β' 
(38), and (z''-β'') (39), one obtains a DS uncertainty value 
(Δ𝜃𝜃s)pmm of the chosen model:    

 (Δ𝜃𝜃s)pmm ≤ 𝜃𝜃smax∙ ((z'-β')/אSI + (z''-β'')/(z'-β'))  
=0.93∙[846/38,265+13/846] ≈ 0.038,         (43) 

where 𝜃𝜃smax= 0.93 is the DS given range of changes of the 
DS final temperature allowed by the chosen model [33].    

From (42) and (43) we get (Δ𝜃𝜃s)exp> (Δ𝜃𝜃s)pmm, i.e., an 

actual uncertainty in the experiment is 1.7 times 
(0.066/0.038) larger than the possible minimum. It means, at 
the recorded number of DS criteria the existing accuracy of 
the DL variable’s measurement is insufficient. In addition, 
the number of the chosen DS variables z*-β* = 13 is less than 
the recommended ≈ 19 (39) that corresponds to the lowest 
comparative uncertainty at COPSI ≡ LMTΘ. That is why, 
for further experimental work it is required to use devices of 
a higher class of accuracy sufficient to confirm/clarify a new 
model designed with many DS variables. 

In this example we introduce a full explanation of the 
required steps for analyzing experimental data and compare 
it with results obtained from a field test or computer 
simulation of model.  

4.3. The Fine Structure Constant 

4.3.1. First Example 
In [31] the authors have reported a new experimental 

scheme which combines atom interferometry with Bloch 
oscillations leading to a new determination of the fine 
structure constant (FSC) α₁−1 = 137.03599945(62) with a 
relative uncertainty r₁ of 4.6·10−9. In this case the absolute 
uncertainty was Δ₁ = α₁−1· r₁ = 6.3037·10−7. The declared 
range S₁ of α₁−1  variations was 0.14·10−5 . Research is 
organized into the frame of COPSI ≡ LMТ.       

One can calculate the achieved comparative uncertainty as 
ε₁ = Δ₁/S₁ = 6.3037·10−7/ 0.14· 10−5 = 0.4503.   (44) 

For the mechanical processes (COPSI ≡ LMТ), taking into 
account (8), (10) and (29), the lowest comparative 
uncertainty (Δpmm/S)LMT that can be reached occurs under the 
following conditions: 

(z' - β') = (еl ·еm·еt -1)/2 -3 = (7·3·9 -1)/2 – 3 = 91,  (45) 
(z'' - β'') = (z' - β')²/א SI = 91² /38,265 = 0.2164< 1.  (46) 

where "-1" corresponds to the case when all the primary 
variables exponents are zero in formula (6); division by 2 
indicates that there are direct and inverse variables, e.g., 
L1-length, - run length; and 3 corresponds to three primary 
variables L,M,T.                                             

We obtain: 
(εmin)LMT  = (Δpmm/S)LMT 

= 91/38,265 + 0.2164/91 = 0.0048.          (47) 
The calculated comparative uncertainty ε₁ = 0.4503 is 

much higher than that recommended (see equation (47)) 
according to the discussed approach. So, the 
above-mentioned method and apparatus should measure the 
FSC value with a greater accuracy.  

4.3.2. Second Example 
A recoil-velocity measurement of Rubidium has been 

conducted and a new determination of the FSC as α₂−1 = 
137.035999037(91) with a relative uncertainty of r₂ = 
6.6·10−10  [35]. In this case the absolute uncertainty was  
Δ₂ = α₂−1  · r₂ = 9.0444· 10−8 . The description of the 
experimental unit and methods corresponded to COPSI ≡ 
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LMТ. According to equation (47), the lowest comparative 
uncertainty is equal to 0.0048. The range of variation S₂ of 
α₂−1 is 6.0·10−7. In this case, the comparative uncertainty of 
the experimental method is     

ε₂ = Δ₂/S₂ = 9.0444·10−8/ 6.0·10−7 = 0.1507.    (48) 
This value is larger than the lowest comparative 

uncertainty for COPSI ≡ LMТ calculated according to 
equation (47). For this reason the research team knows the 
limiting value of achievable accuracy and can try to find 
different strategies for obtaining optimum results. 

The two studies discussed above differ from each other by 
the design of the experimental setups and methods of 
measurement. However, in the framework of the suggested 
approach it can be argued that a greater accuracy in the 
measurement of FSC was achieved in [35].  

4.3.3. Third Example 

Analysis of the FSC measurements made during 
2006-2014. None of the current experimental measurements 

which calculate the FSC have declared an uncertainty 
interval in which the true value can be placed. Therefore, in 
order to apply the stated approach, as an estimated e error 
interval of FSC, we choose the difference of its value 
reached by the experimental results of two projects: (α') -1 = 
137.035999872 [36] and (α'') -1 = 137.035999038 [35]. In 
this case the possible observed range S* of (α) -1 variation is 
equal to 

S*= (α') -1 - (α'') -1 
= 137.035999872 - 137.035999038 = 8.34·10−7. (49) 

Following the same scheme of reasoning that was 
introduced in Chapters 4.3.1 and 4.3.2, and taking into 
account (47), we analyzed several scientific original 
publications and CODATA (Committee on Data for Science 
and Technology) recommendations over the past nine years 
from the perspective of the achieved comparative uncertainty 
value. The data are summarized in Table 1 and Figure 1.      

 

Table 1.  Results of the fine structure constant measurements during 2006-2014 including the achieved comparative uncertainty 

No. Year FSC 
reverse value 

Relative 
uncertainty 

Absolute 
uncertainty α range Comparative 

uncertainty Ref. 

  1/α r Δ Sα Δ / Sα  

1 2006 137.035999680 6.80·10−10 9.31844798·10−8 

 

 

 

 

8.34·10−7 

0.1117 [37] 

2 2007 137.035999071 7.10·10−8 9.72955593·10−6 0.1167 [38] 

3 2008 137.035999085 3.70·10−10 5.07033197·10−8 0.0608 [39] 

4 2008 137.035999252 1.00·10−9 1.37035999·10−7 0.1643 [40] 

5 2010 137.035999074 3.20·10−10 4.38515197·10−8 0.0526 [41] 

6 2011 137.035999038 6.60·10−10 9.04437594·10−8 0.1084 [35] 

7 2011 137.035999456 4.60·10−9 6.30365597·10−7 0.7558 [31] 

8 2012 137.035999173 2.50·10−10 3.42589998·10−8 0.0411 [42] 

9 2013 137.035999872 2.00·10−9 2.74072000·10−7 0.3286 [36] 

10 2014 137.035999139 2.30·10−10 3.15182798·10−8 0.0378 [43] 

 

 

Figure 1.  A graph summarizing the partial history of the fine structure constant measurement displaying the decrease of the comparative uncertainty 
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As a rule, when considering the accuracy of the achieved 
results during the FSC measurement the concept of relative 
uncertainty is used. However, this method for identifying the 
measurement accuracy does not indicate the direction in 
which one can find the true value of FSC. In addition, it 
involves an element of subjective judgment [44]. For this 
reason we use the comparative uncertainty. 

It can be seen from the data given in Table 1 and Figure 1 
that the affirmations presented in [40] are only partially 
confirmed. The fact is that there has been a dramatic 
improvement in the accuracy of measurement of the FSC 
during last decade. This is verified by using the calculated 
value of the relative uncertainty, the smallest achievable 
value of which has not been mentioned. However, judging 
the data by the comparative uncertainty according to the 
proposed approach, one can see that the measurement 
accuracy has not significantly changed. Perhaps this 
situation has arisen as a result of unaccounted systematic 
errors in these experiments. At the same time, it must be 
noted that in all likelihood, the exactness of the FSC 
measurements, as other fundamental physical constants, 
cannot be perfect. Therefore the development of a larger 
number of designs and improvements of various 
experimental facilities for the measurement of the FSC is 
required in order to bring results closer to the minimum 
comparative error (εmin)LMT.  

We can argue about the order of the desired value of the 
relative uncertainty (rmin)LMT . For this purpose we take into 
account the following variables: (εmin)LMT = 0.0048 (47), S*= 
8.34· 10−7  (49). Then the lowest possible absolute 
uncertainty for COPSI ≡LMТ is equal to 
 (Δmin)LMT = (εmin)LMT · S*= 0.0048· 8.34·10−7= 4·10−9. (50) 

In this case the lowest possible relative uncertainty 
(rmin)LMT for COPSI ≡LMТ  is the following: 
(rmin)LMT  = (Δmin)LMT / (((α') -1 + (α'') -1) /2) 

= 4·10−9 / 137.035999455 = 2.9·10−11.     (51) 
This value corresponds to recommendations mentioned in 

[45] and should satisfy the existing standards community.  

5. Discussion  
Despite the apparent attractiveness and versatility of the 

suggested approach, there are certain limitations, restrictions 
and occasions where its applicability is limited. They include 
the following: 

-  The information-based approach requires the probable 
appearance of variables chosen by a conscious observer. 
It ignores factors such as developer knowledge, 
intuition, experience and environmental properties; 

-  The approach requires the knowledge or declaration of 
the uncertainty interval of the main observed or 
researched variable. In reality, the value of this 
parameter is not declared in any serious experimental 
research in physics and engineering. Sometimes the 

uncertainty interval, for example, of Planck's constant, 
the speed of light and other fundamental physical 
constants, is mentioned in the review articles only in 
order to confirm the convergence of the experimental 
data to a certain value or reducing the spread of the 
results; 

-  The method does not give any recommendations on the 
selection of specific physical variables, but only places 
a limit on their number. 

Nevertheless, the approach yields the universal metric by 
which the model discrepancy can be calculated. A more 
effective solution to finding the minimum uncertainty can be 
reached using the principles of information and similarity 
theories. Qualitative and quantitative conclusions drawn 
from the obtained relations are consistent with practice. They 
are as follows:  

Based on the information and similarity theories, a 
theoretical lowest value of the mathematical model 
uncertainty of the phenomenon or technological process can 
be derived. A numerical evaluation of this relation requires 
the knowledge of the error interval of the main researched 
variable and the required number of variables taken into 
account. In order to estimate the discrepancy between the 
chosen model measurement and the observed material 
object, a universal metric called comparative uncertainty 
has been developed further. Our analytical result for ε = 
Δpmm/S is a surprisingly simple relation. 

The author has carried out a theoretical evaluation of 
Heisenberg's uncertainty relation based on a mathematical 
formulation of the comparative uncertainty. This is the first 
time that this has been examined. When analyzing the 
modified Heisenberg uncertainty relation, the error interval 
of the particle location and the error interval of the particle 
momentum cannot be known with absolute precision 
simultaneously. This is an objective fact and is independent 
of the presence of the conscious observer conducting 
measurements. The more precisely the location of the 
particle is specified, the more uncertain a measurement of the 
momentum will be, and vice versa. 

Many attempts have been made to optimize a 
mathematical model of technological process or equipment 
which could bypass this. At that time, information and 
similarity theories were available for this purpose only. 
Satisfactory solutions could be achieved by applying the 
 hypothesis and by taking the optimum number of variables-א
into account. In addressing applications such as heat and 
mass transfer, full explanations of the required steps for 
analyzing experimental data and comparison with results 
obtained by a field test or computer simulation are 
introduced. From the present investigation one can conclude 
that the fundamentally novel analysis determines the most 
simple and reliable way to select a model with the optimal 
number of selected variables. This will greatly diminish the 
duration of the studies as well as the design stage, thereby 
reducing the cost of the project. 

The proposed methodology is an initial attempt to use a 
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comparative uncertainty instead of relative uncertainty in 
order to compare the measurements results of the FSC and to 
verify its true value. A direct way to obtain reliable results 
has always been open, namely to assume that the FSC value 
lies within a chosen interval. However, this idea cannot be 
proved because of the difficulty of specifying the possible 
limit of the relative uncertainty. Of course, the choice of a 
value of the variation of (α) -1, S*, is controversial because of 
its apparent subjectivity. With these methods, our capacity to 
predict the FSC value by usage of the comparative 
uncertainty allows for an improvement of our fundamental 
comprehension of complex phenomenon, as well as allowing 
us to apply this understanding to the solution of specific 
problems. It may be the case that such findings will induce a 
negative reaction on the part of scientific community and 
some readers who consider the above examples as a game of 
numbers. In his defense, the author notes that eminent 
scientists such as Arnold Sommerfeld, Wolfgang Pauli and 
others scientists have followed a similar approach in order to 
approximate values for the FSC. The calculated results are 
routine calculations from formulas known in the scientific 
literature. At the same time, an additional perspective of the 
existing problem will, most likely, help us to understand the 
existing situation and identify concrete ways for its solution. 
Reducing the value of the comparative uncertainty of the 
FSC to the lowest achievable value of 0.0048 for the chosen 
COPSI ≡LMТ will serve as a convincing argument for 
professionals involved in the perfecting of SI.  

6. Conclusions  
The measurement theory and its concepts remain a 

precise science today, in the twenty-first century, and will 
continue to be the case forever (a paraphrase of Prof. Okun 
[46]). The use of the א-hypothesis only limits the domain of 
applicability of measurement theory for uncertainties that 
are much larger than the uncertainty of the 
physical-mathematical model due to its finiteness. 

 hypothesis might be applicable to experimental-א
verification. In general, it is available when the researcher 
has all the information about the uncertainty interval of the 
main variable. 

The quantification of the model uncertainty via the 
information quantity value embedded in the 
physical-mathematical model opens up the possibility of 
linking the experimental and theoretical investigations by 
adopting the proposed approach for investigations into 
various physical phenomena or technological processes. 

The comparative uncertainty concept for calculating the 
optimal number of recorded variables and derived effects 
which are amenable to rigorous experimental verification 
have been introduced. 

One of the main results in the present paper is the proof 
of a necessary and sufficient condition for the correct 
choice of the number of variables recorded in a 

mathematical model describing physically observed 
phenomena and measurement processes. 

The author has proposed that the estimate of the a priori 
achievable uncertainty of a mathematical model due to a 
model’s finiteness (limited number of chosen variables), 
can be a peculiar metric for the assessing the accuracy of 
experimental measurements and computer simulation data. 

The author also hopes this paper stimulates readers to 
participate in the development of this approach in different 
fields of physics and engineering. 
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