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Abstract  In this paper, the refined iterative method namely, refinement of generalized Gauss-Seidel (RGGS) method for 
solving systems of linear equations is studied. Sufficient conditions for convergence are given and some numerical 
experiments are considered to show the efficiency of the method. The result shows that RGGS method converges if the 
coefficient matrix is diagonally dominant (DD) or an M- matrix for any initial vectors, moreover it is more efficient than the 
other methods Refinement of generalized Jacobi (RGJ) and successive-over relaxation (SOR) methods, considering their 
performance, using parameters such as time to converge, number of iterations required to converge and level of accuracy.  
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1. Introduction  
Consider the linear systems of equations 

𝐴𝐴𝐴𝐴 = 𝑏𝑏                      (1.1) 

where A= (aij) be an NxN non- singular matrix with non-zero 
diagonal elements, U and b are N-dimensional vectors. For 
the determination of the N-dimensional solution vector U of 
Eq. (1.1) using a stationary first order iterative method, 
which can be written in the form of      

𝑈𝑈(𝑛𝑛+1)  = 𝐵𝐵𝑈𝑈(𝑛𝑛) +  𝐶𝐶             (1.2) 

The Gauss-Seidel method is more efficient if it combined 
with other method, [1]. It has also been proved that if A is 
strictly diagonally dominant or irreducible diagonally 
dominant or symmetric positive definite matrix, the 
Gauss-Seidel method converges for any initial 
approximation (0)U . On the other hand [1] developed the 
method called generalized Gauss-Seidel method and the 
result shows that the method is more efficient than 
conventional Gauss-Seidel method. Author [2], indicated 
that the basic idea behind the first order stationary iterative 
method is how to write Eq. (1.2) and the choice of initial 
approximation to guarantee the convergence of the method. 
In this paper, the generalized Gauss-Seidel method is refined 
and compared its efficiency with the other methods. 

Some of the basic definition of terms used in the this paper 
given here as under 
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Definition 1: A matrix A is said to be an M-matrix if it 
satisfies the following four properties 

i. 𝑎𝑎𝑖𝑖𝑖𝑖 > 0, 𝑓𝑓𝑓𝑓𝑓𝑓  𝑖𝑖 = 1(1)𝑁𝑁 
ii. 𝑎𝑎𝑖𝑖𝑖𝑖   ≤   0, 𝑓𝑓𝑓𝑓𝑓𝑓  𝑖𝑖 ≠ 𝑗𝑗,   𝑖𝑖, 𝑗𝑗 = 1(1)𝑁𝑁 
iii. A is non-singular 
iv. 𝐴𝐴−1   ≥   0 
Definition 2: A banded matrix is a square matrix with 

zeros after “m” elements above and below the main diagonal, 
where m is less than the size of the matrix (i.e if the matrix is 
𝑁𝑁×𝑁𝑁 then 𝑚𝑚 < 𝑁𝑁). In this case where bandedness mater, 
“m” is usually significantly less than N. 

2. Preliminary  
Considering the system of equations given in Eq. (1.1) and 

using splitting procedures in [1], we obtain: 
𝐴𝐴 =   𝑇𝑇𝑚𝑚 −   𝐸𝐸𝑚𝑚 −  𝐹𝐹𝑚𝑚               (2.1) 

where 𝑇𝑇𝑚𝑚 = (𝑡𝑡𝑖𝑖𝑖𝑖 ) be a banded matrix of band width 2m+1 
defined as 
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Then, the Generalized Gauss-Seidel method for the 
solution of Eq. (1.1) is defined as 

𝑢𝑢𝑛𝑛+1 =  (𝑇𝑇𝑚𝑚 −  𝐸𝐸𝑚𝑚)−1𝐹𝐹𝑚𝑚  𝑢𝑢𝑛𝑛 + (𝑇𝑇𝑚𝑚 −  𝐸𝐸𝑚𝑚)−1𝑏𝑏  ,  
(𝑛𝑛 =  0, 1, 2, . . . )                    (2.2) 

Where 𝐵𝐵𝐺𝐺𝐺𝐺𝐺𝐺𝑚𝑚 =  (𝑇𝑇𝑚𝑚 −  𝐸𝐸𝑚𝑚)−1𝐹𝐹𝑚𝑚   is generalized 
Gauss-Seidel iteration matrix and (𝑇𝑇𝑚𝑚 −  𝐸𝐸𝑚𝑚)−1𝑏𝑏   its 
corresponding iteration vector. 

3. Description of the Method 
Meaningful modifications of the iterative matrix will 

reduce the spectral radius and increases the rate of 
convergence of the method, [5] and [7]. The objective of this 
section is to develop refinement of generalized Gauss-Seidel 
(RGGS). Assume 𝑢𝑢(1) be an initial approximation for the 
solution of the linear system Eq. (1.1), and     

  𝑏𝑏𝑖𝑖
(1)   =    ∑ 𝑎𝑎𝑖𝑖𝑖𝑖𝑁𝑁

𝑗𝑗=1 𝑢𝑢𝑗𝑗
(1)  ,    𝑖𝑖 =   1(1)𝑁𝑁. 

After n iterations, we can have  

𝑢𝑢(𝑛𝑛+1) = (𝑢𝑢1
(𝑛𝑛+1),𝑢𝑢2

(𝑛𝑛+1), .  .  .  ,    𝑢𝑢𝑁𝑁
(𝑛𝑛+1)) 

it implies that 

𝑏𝑏𝑖𝑖
(𝑛𝑛+1) = ∑ 𝑎𝑎𝑖𝑖𝑖𝑖𝑁𝑁

𝑗𝑗=1 𝑢𝑢𝑗𝑗
(𝑛𝑛+1) , 𝑖𝑖 =   1(1)𝑁𝑁. 

Now we refine this to obtain solution as   𝑏𝑏𝑖𝑖
(𝑛𝑛+1) →   𝑏𝑏𝑖𝑖 . 

Let 𝑢𝑢�(𝑛𝑛+1) = (𝑢𝑢�1
(𝑛𝑛+1), 𝑢𝑢�2

(𝑛𝑛+1), .  .  .  , 𝑢𝑢�𝑁𝑁
(𝑛𝑛+1), )  be an 

approximation for the solution of linear system Eq. (1.1). i.e; 
𝑢𝑢�𝑖𝑖

(𝑛𝑛+1) →   𝑢𝑢 where u is the exact solution of Eq. (1.1). Here 
all 𝑢𝑢�𝑗𝑗

(𝑛𝑛+1) are unknown, so we define it as  

𝑢𝑢�(𝑛𝑛+1)  =   𝑢𝑢(𝑘𝑘+1) +  𝑏𝑏(𝑛𝑛+1) −  𝑏𝑏        (3.1) 
Making use of Eq. (2.2) and (3.1) we obtain the refinement 

of generalized Gauss-Seidel (RGGS) method as: 
(𝑇𝑇𝑚𝑚 −  𝐸𝐸𝑚𝑚 −  𝐹𝐹𝑚𝑚 )𝑢𝑢 =   𝑏𝑏 
(𝑇𝑇𝑚𝑚 − 𝐸𝐸𝑚𝑚)𝑢𝑢  = 𝐹𝐹𝑚𝑚𝑢𝑢 + 𝑏𝑏 
(𝑇𝑇𝑚𝑚 − 𝐸𝐸𝑚𝑚)𝑢𝑢 =  (𝑇𝑇𝑚𝑚 − 𝐸𝐸𝑚𝑚)𝑢𝑢 + (𝑏𝑏 − 𝐴𝐴𝐴𝐴) 
𝑢𝑢 = 𝑢𝑢  + (𝑇𝑇𝑚𝑚 − 𝐸𝐸𝑚𝑚)−1(𝑏𝑏 − 𝐴𝐴𝐴𝐴)              (3.2) 

From the Eq. (3.2), we obtain the iterative refinement 
formula in matrix form as 

𝑢𝑢�(𝑘𝑘+1) =  𝑢𝑢𝑘𝑘+1   + (𝑇𝑇𝑚𝑚 − 𝐸𝐸𝑚𝑚)−1(𝑏𝑏 − 𝐴𝐴𝑢𝑢(𝑘𝑘+1)) 
Further, from Eq. (2.2), we obtain 

   𝑢𝑢(𝑘𝑘+1) = (𝑇𝑇𝑚𝑚 −  𝐸𝐸𝑚𝑚)−1𝐹𝐹𝑚𝑚𝑢𝑢(𝑘𝑘) + (𝑇𝑇𝑚𝑚 −  𝐸𝐸𝑚𝑚)−1𝑏𝑏 
+ (𝑇𝑇𝑚𝑚 −  𝐸𝐸𝑚𝑚)−1 
× �𝑏𝑏 − 𝐴𝐴�(𝑇𝑇𝑚𝑚 −  𝐸𝐸𝑚𝑚 )−1𝐹𝐹𝑚𝑚  𝑢𝑢(𝑘𝑘) + (𝑇𝑇𝑚𝑚 −  𝐸𝐸𝑚𝑚)−1𝑏𝑏�� 

=  [(𝑇𝑇𝑚𝑚 −  𝐸𝐸𝑚𝑚)−1𝐹𝐹𝑚𝑚 ]2𝑢𝑢(𝑘𝑘)  +  (𝑇𝑇𝑚𝑚 −  𝐸𝐸𝑚𝑚)−1b 
+  (𝑇𝑇𝑚𝑚 −  𝐸𝐸𝑚𝑚)−1𝐹𝐹𝑚𝑚(𝑇𝑇𝑚𝑚 −  𝐸𝐸𝑚𝑚)−1b, 
=  𝐵𝐵�𝐺𝐺𝐺𝐺𝐺𝐺𝑚𝑚 𝑢𝑢(𝑘𝑘)  +  [𝐼𝐼 + (𝑇𝑇𝑚𝑚 −  𝐸𝐸𝑚𝑚)−1𝐹𝐹𝑚𝑚)](𝑇𝑇𝑚𝑚 −  𝐸𝐸𝑚𝑚)−1𝑏𝑏 

(3.3) 
where 𝐵𝐵�𝐺𝐺𝐺𝐺𝐺𝐺𝑚𝑚 =   [(𝑇𝑇𝑚𝑚 −  𝐸𝐸𝑚𝑚)−1𝐹𝐹𝑚𝑚 ]2  is the refinement of 
generalized Gauss-Seidel iteration matrix. 

4. Condition on the Convergence of the 
Method 

Theorem 1:- Let A be a strictly diagonally dominant 
(SDD) matrix. Then for any natural number 𝑚𝑚  ≤   𝑛𝑛 the 
GGS method is convergent for any initial guess 𝑢𝑢(0).  

Proof: - see [1] 
Theorem 2:- Let A = (𝑎𝑎𝑖𝑖𝑖𝑖 ) be an M-matrix. Then for a 

given natural number  𝑚𝑚  ≤   𝑛𝑛, generalized Gauss-Seidel 
method is convergent for any initial guess  𝑢𝑢(0). 

Proof: - see [1]. 
Theorem 3:- If A is strictly diagonally dominant matrix 

then the refinement of generalized Gauss-Seidel method 
converges for any choice of the initial approximation 𝑢𝑢(0). 

Proof:- Let 𝑢𝑢 be the exact solution of Eq. (1.1) and A be 
SDD matrix. Then generalized Gauss- Seidel method is 
convergent as proved by [1]. If  𝑢𝑢�(𝑛𝑛+1)  →   𝑢𝑢, then  

�𝑢𝑢�(𝑛𝑛+1)  −   𝑢𝑢�
∞

 ≤  �𝑢𝑢(𝑛𝑛+1) –  𝑢𝑢�
∞

  

+‖(𝑇𝑇𝑚𝑚 −  𝐸𝐸𝑚𝑚 )−1‖∞�𝑏𝑏 − 𝐴𝐴 𝑢𝑢(𝑛𝑛+1)�
∞

 

From Theorem 4.1,  �𝑢𝑢(𝑛𝑛+1)  −   𝑢𝑢�
∞
→   0 likewise we 

have   �𝑏𝑏 − 𝐴𝐴 𝑢𝑢(𝑛𝑛+1)�
∞
→    0.  

Therefore, �𝑢𝑢�(𝑛𝑛+1)  −   𝑢𝑢�
∞
→   0 

Hence refinement of generalized Gauss-Seidel method is 
convergent. 

Theorem 4:- let A = (𝑎𝑎𝑖𝑖𝑖𝑖 ) be an M-matrix. Then for a 
given natural number  𝑚𝑚  ≤   𝑁𝑁 , the refinement of 
generalized Gauss-Seidel method converges for any choice 
of the initial approximation  𝑢𝑢(0). 

Proof:- It follows from Theorem 2 and Theorem 3. 
Theorem 5:- If A is row strictly diagonally dominant 

matrix then ‖𝐵𝐵𝐺𝐺𝐺𝐺𝐺𝐺𝑚𝑚 ‖  <   1 
Proof:- By Theorem 1 and convergence Theorem given 

by [4], ‖𝐵𝐵𝐺𝐺𝐺𝐺𝐺𝐺𝑚𝑚 ‖  <   1 
Theorem 6:- i) If A is SDD matrix, then  ‖𝐵𝐵�𝐺𝐺𝐺𝐺𝐺𝐺𝑚𝑚 ‖∞ ≤

‖𝐵𝐵𝐺𝐺𝐺𝐺𝐺𝐺𝑚𝑚 ‖∞  <   1. 
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ii) If A is an M- matrix, then  ‖𝐵𝐵�𝐺𝐺𝐺𝐺𝐺𝐺𝑚𝑚 ‖∞ ≤ ‖𝐵𝐵𝐺𝐺𝐺𝐺𝐺𝐺𝑚𝑚 ‖∞  <   1. 
Proof:-i) By the convergence Theorem of [4], we have  

𝜌𝜌(𝐵𝐵𝐺𝐺𝐺𝐺𝐺𝐺𝑚𝑚 )   ≤  ‖𝐵𝐵𝐺𝐺𝐺𝐺𝐺𝐺𝑚𝑚 ‖  <   1 
where 𝜌𝜌(𝐵𝐵𝐺𝐺𝐺𝐺𝐺𝐺𝑚𝑚 )  is the spectral radius of generalized 
Gauss-Seidel method. Again by Theorem 5, we have   

‖(𝑇𝑇𝑚𝑚 −  𝐸𝐸𝑚𝑚)−1𝐹𝐹𝑚𝑚‖∞  <  1.         (4.1) 
As a result of Eq. (4.1), we have  
‖[(𝑇𝑇𝑚𝑚 −  𝐸𝐸𝑚𝑚)−1𝐹𝐹𝑚𝑚 ]2 ‖∞ =  ‖(𝑇𝑇𝑚𝑚 −  𝐸𝐸𝑚𝑚)−1𝐹𝐹𝑚𝑚  ‖∞2  

≤   ‖(𝑇𝑇𝑚𝑚 −  𝐸𝐸𝑚𝑚)−1𝐹𝐹𝑚𝑚‖∞ <   1 . 
Therefore, ‖𝐵𝐵�𝐺𝐺𝐺𝐺𝐺𝐺𝑚𝑚 ‖∞ ≤ ‖𝐵𝐵𝐺𝐺𝐺𝐺𝐺𝐺𝑚𝑚 ‖∞  <   1. 
ii) Similar to (i) above, one can complete the proof the 

Theorem. 
Remark: - We observe that the iterative matrix of 

refinement of generalized Gauss-Seidel is the square of 
generalized Gauss-Seidel iterative matrix. i.e.         
𝐵𝐵�𝐺𝐺𝐺𝐺𝐺𝐺𝑚𝑚  = [𝐵𝐵𝐺𝐺𝐺𝐺𝐺𝐺𝑚𝑚 ]2 . As it can be easily realized             
𝜌𝜌(𝐵𝐵�𝐺𝐺𝐺𝐺𝐺𝐺𝑚𝑚 ) =   [𝜌𝜌(𝐵𝐵𝐺𝐺𝐺𝐺𝐺𝐺𝑚𝑚 )]2 .  If GGS method converges 
 𝜌𝜌(𝐵𝐵𝐺𝐺𝐺𝐺𝐺𝐺𝑚𝑚 ) < 1 , then 𝜌𝜌(𝐵𝐵�𝐺𝐺𝐺𝐺𝐺𝐺𝑚𝑚 )  ≤   𝜌𝜌(𝐵𝐵𝐺𝐺𝐺𝐺𝐺𝐺𝑚𝑚 ). Thus, if the GGS 
and RGGS method converge, the RGGS method converges 
faster than the GGS method. 

5. Numerical Experiments  
The major factors to be considered in comparing different 

numerical methods are the accuracy of numerical solution 
and its computational time, [9]. The same author, indicated 
that the comparison of numerical methods is not simply 
because of their performance may depend on the 
characteristic of the problem at hand. It should also be noted 
that there are other factors to be considered, such as stability, 
versatility, proof against run-time error, and so on which are 
being considered in most of the MATLAB built-in routines, 
[10]. Upon this, the efficiency of RGGS was compared with 
SOR and RGJ of [5] by considering two model problems in 
which it reduced to system of linear equations of which its 
coefficient matrix is either M-matrix or diagonal dominant 
matrix and also it illustrate the theory developed in this paper. 
Data about iteration number and computational times (in 
seconds) obtained using RGGS, SOR and RGJ is used for the 
analysis of the result.  

1.  Consider the system of linear equations, which 
obtained from the finite difference approximation of 
the mixed boundary value problem considered by Jain 
and et al [8] on page 106. 

1

2

3

4

5

6

2 3 0 0 0 0 5 / 3
1 4 1 0 1 0 2 / 3

0 1 4 0 0 1 3
0 0 0 2 3 0 4 / 3
0 1 0 1 4 1 1/ 3
0 0 1 0 1 4 5 / 3

u
u
u
u
u
u

− −    
    − − −     
    − −

=    
− −    

    − − − −
    

− −        

 

2.  Consider a system of linear equations, which is 
reduced from the boundary value problem, 

2 1 , 1 , 1u on x y∇ = ≤ ≤ where 0u =  on the 
boundary. By applying Galerkin Method with 
triangular element and considering the symmetry of 
the boundary, Jain and et al [8]. 

1

2

3

4

4 1 1 0 1/ 4
2 4 0 1 1/ 4
2 0 4 1 1/ 4

0 2 2 4 1/ 4

u
u
u
u

− − −    
    − − −    =
    − − −
    

− − −    

 

The coefficient matrix of the first example is an 
M-Matrix whereas the second one is diagonal dominant for 
which the mentioned methods are convergent for any initial 
vector. Results produced by the two linear systems of 
equation are given in the Tables 1 and 2 respectively. 

Table 1.  Linear System of Equations of Order 6X6 

Numerical 
methods 

Number of 
iteration 

Computational time  
(in seconds) 

SOR 14 0.014783 

RGJ 10 0.010498 

RGGS 6 0.003789 

Table 2.  Linear Systems of Equations of Order 4 X4 

Numerical methods Number of 
iteration 

Computational time 
(in seconds) 

SOR 9 0.034219 

RGJ 11 0.014208 

RGGS 6 0.002961 

6. Discussion and Conclusions 
The Refinement of Generalized Gauss-Seidel method for 

solving linear systems of equation has been presented. Two 
examples, which obtained from boundary value problems 
and reduced to systems of linear equations of 6 x6 and 4 x 4 
by finite difference approximation and finite element method 
respectively, were studied using MATLAB version 
7.60(R2008a) software. The results obtained by Refinement 
of generalized Gauss-Seidel are compared with that of 
Refinement of generalized Jacobi and Successive-Over 
Relaxation as presented by Table 1 and Table 2. The analysis 
of results shows that RGGS method takes shorter time, 
0.003789 seconds and 0.002961 seconds for the 6 x 6 and 4 x 
4 linear equations respectively. In terms of number of 
iterations required to converge to the exact solution, the 
RGGS method takes about 6 iteration for each problem as 
compared to other methods, namely; SOR (14 iteration for 
6x6 and 9 iteration for 4x4 system of equations) and RGJ (10 
iteration for 6x6 and 11 iteration for 4x4 system of equations) 
with 5×10-6 error of tolerance. On the other hand, methods 
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which register small number of iteration demands less 
computer storage to store its data, [3], as a result RGGS 
demands less computer storage to store its data relative to 
SOR and RGJ. Thus, in all the parameters considered in this 
paper, i.e. CPU runtime, number of iteration and memory 
storage, the Refinement of generalized Gauss- Seidel is more 
efficient than the other methods considered when the 
coefficient matrix is either an M-matrix or diagonal 
dominant matrix. 
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