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Abstract  This paper presents magnetohydrodynamic (MHD) flow of unsteady convective third grade fluid in a 
cylindrical system. The non-linear governing equations were solved analytically using homotopy perturbation method 
(HPM). The influences of dimensionless parameters on magnetohydrodynamic (MHD) flow of a convective third grade fluid 
in a cylindrical system were investigated. Simulation results revealed that temperature and the velocity depend on the values 
of combination of magnetic field and porosity. The obtained results are presented graphically and discussed. It is observed 
that velocity decreases and increases with increasing magnetic field and porosity, temperature increases as magnetic field 
increases.   
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1. Introduction 
In most recent years, authors carried out investigation and 

problem dealing with the flow of non-Newtonian fluid in a 
cylindrical system. This interest is due to several important 
applications in engineering and industry such as reactive 
polymer flows in heterogeneous porous media, extraction of 
crude oil from the petroleum production, synthetic fibres and 
paper production (Schowaller 1978). Many practical 
situations we have deals with the natural convection of heat 
which play significant role in the behaviour of the flow. 

Convection problems associate will heat sources within 
fluid saturated porous media are of great practical 
signification, such as in geophysics and energy related 
problems (petroleum resources, geophysical flows, cooling 
of underground electric cable e.t.c). In generally terms, the 
difference between Non-Newtonian fluids and the single 
component Newtonian fluid in that, in the latter case the 
mathematical formulation is known but the macroscopic 
physical processes are complex and often not well 
understood, especially for turbulent flow conditions are for 
Non - Newtonian fluids even the appropriation governing 
equations and conditions at the boundaries are still not   
well understood. However, the flow of Non - Newtonian    
fluids plays an important role in many practical applications.  
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Sajid et al (2008) discussed the effect of variable 
viscosity on the flow and heat transfer in a thin film flow 
for a third grade fluid. The thin film was considered on the 
outer side of an infinitely long vertical cylinder. The 
governing non-linear differential equation of momentum 
and energy were solved analytically by using homotopy 
analysis method (HAM). The study of MHD convection in a 
vertical channel, Aiyesimi et al. (2013) considered the MHD 
heat transfer in the flow between 2 concentric cylinders. 

Siddiqui et al (2012) carried out studies on two phase 
flow of a third grade fluid between parallel plates in three 
different cases. Makinde et al. (2010) studied MHD mixed 
convection from a vertical plate embedded in a porous 
medium with a convective boundary condition. Chamkha 
and Ahmad (2012) investigated unsteady MHD heat and 
mass transfer by mixed convection flow in the forward 
stagnation region of a rotating sphere at different wall 
conditions. Unsteady MHD convective heat and mass 
transfer in a boundary layer slip flow part a vertical 
permeable with thermal radiation and chemical reaction was 
examined by Dulal and Talukdar (2000). Singh and Pathak 
(2010) studied effect of slip condition on rotating vertical 
channel. Kandasamy et al. (2011) group theory 
transformation for Soret and Dufour effects on free 
convective heat and mass transfer with thermophoresis and 
chemical reaction over a porous stretching surface in the 
presence of heat source/sink. Rao et al. (2012) have found 
out the chemical effects on an unsteady MHD free 
convection fluid past a semi-infinite vertical plate embedded 
in a porous medium with heat absorption. 
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In this paper, magnetohydrodynamics (MHD) flows of an 
unsteady convective third grade fluid in a cylindrical system 
were investigated. The governing equations arising from the 
unsteady flow are solved using homotopy perturbation 
method (HPM). 

2. Model Formulation 
The one-dimensional momentum and energy equations 

describing MHD flows of an unsteady convective third 
grade fluid in a cylindrical system are: 

Momentum equation 
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together with initial and boundary conditions  

𝑢𝑢(𝑟𝑟, 0) = 𝑈𝑈 �1 −  
𝑟𝑟
𝑅𝑅
� , 𝑢𝑢(0, 𝑡𝑡) = 𝑈𝑈, �𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
� = 0𝑟𝑟=𝑅𝑅

  

𝑇𝑇(𝑟𝑟, 0) =  (𝑇𝑇1 −  𝑇𝑇0) �1 −  𝑟𝑟
𝑅𝑅
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where u is velocity, p is pressure, k is the thermal conductivity, T is the temperature, 𝜌𝜌 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 fluid 𝑐𝑐𝑝𝑝  specific heat, 𝜇𝜇 
fluid viscosity, 𝐵𝐵0 applied magnetic field, t is the non-dimensional time, 𝜎𝜎 electrical conductivity. 

Here, equations (1) – (3) are transformed using the following coordinate transformations: 
𝜕𝜕
𝜕𝜕𝜕𝜕
⟶ 𝜕𝜕

𝜕𝜕𝜕𝜕
∙ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜌𝜌 𝜕𝜕
𝜕𝜕𝜕𝜕

                                        (4) 

𝜕𝜕
𝜕𝜕𝜕𝜕
⟶ 𝜕𝜕

𝜕𝜕𝜕𝜕
∙ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕
𝜕𝜕𝜕𝜕

= −𝜌𝜌𝜌𝜌 𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕
𝜕𝜕𝜕𝜕

                                  (5) 

𝑟𝑟 = 𝜂𝜂
𝜌𝜌

                                               (6) 

and we obtain 

𝜌𝜌
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝜌𝜌
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+
𝜌𝜌
𝜂𝜂
�−𝑝𝑝 + 2𝛼𝛼1𝜌𝜌2 𝜕𝜕

2𝑢𝑢
𝜕𝜕𝜂𝜂2 + 2𝛼𝛼2𝜌𝜌3 𝜕𝜕

2𝑢𝑢
𝜕𝜕𝜂𝜂2

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ (6𝛽𝛽1 + 2𝛽𝛽2)𝜌𝜌3 �
𝜕𝜕2𝑢𝑢
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

∙
𝜕𝜕2𝑢𝑢
𝜕𝜕𝜂𝜂2 +

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

∙
𝜕𝜕3𝑢𝑢
𝜕𝜕𝜕𝜕𝜕𝜕𝜂𝜂2�� 

+ 𝜌𝜌
𝜂𝜂
�𝜇𝜇𝜌𝜌2 𝜕𝜕2𝑢𝑢

𝜕𝜕𝜂𝜂2 + 𝛼𝛼1𝜌𝜌2 𝜕𝜕3𝑢𝑢
𝜕𝜕𝜕𝜕𝜕𝜕 𝜂𝜂2 + 𝛽𝛽1𝜌𝜌2 𝜕𝜕4𝑢𝑢

𝜕𝜕𝑡𝑡2𝜕𝜕𝜂𝜂2 + 6(𝛽𝛽2 + 𝛽𝛽3)𝜌𝜌2 𝜕𝜕2𝑢𝑢
𝜕𝜕𝜂𝜂2 ∙ �𝜌𝜌

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�

2
� − 𝜎𝜎𝐵𝐵0

2𝑢𝑢 − 𝜇𝜇 ∅
𝑘𝑘
𝑢𝑢             (7) 

𝜌𝜌𝑐𝑐𝑝𝑝
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑘𝑘𝜌𝜌2 𝜕𝜕2𝑇𝑇
𝜕𝜕𝜂𝜂2 + 𝑘𝑘 𝜌𝜌2

𝜂𝜂
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 2𝜇𝜇 �−𝑝𝑝 + (2𝛼𝛼1 + 𝛼𝛼2)𝜌𝜌2 �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�

2
+ (6𝛽𝛽1 + 2𝛽𝛽2)𝜌𝜌2 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝜕𝜕3𝑢𝑢
𝜕𝜕𝜕𝜕𝜕𝜕 𝜂𝜂2�

2
+ 𝜎𝜎𝐵𝐵0

2𝑢𝑢2    (8) 

together with initial and boundary conditions; 

𝑢𝑢(𝜂𝜂, 0) = 𝑈𝑈 �1 −
𝜂𝜂
𝑅𝑅𝑅𝑅
� , 𝑢𝑢(0, 𝑡𝑡) = 𝑈𝑈, �𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
� = 0𝜂𝜂=𝑅𝑅
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� + 𝑇𝑇0, 𝑇𝑇(0, 𝑡𝑡) = 𝑇𝑇0, 𝑇𝑇(𝑅𝑅, 𝑡𝑡) = 𝑇𝑇1                  (9) 

3. Method of Solution  
3.1. Non-dimensionalization 

Here, we let pressure p be constant and non-dimensionlised equations (7) – (9) using the following dimensionless 
variables, 
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+ 𝑀𝑀𝑢𝑢2               (12) 

together with initial and boundary conditions: 

𝑢𝑢(𝜂𝜂, 0) = �1 −
𝜂𝜂
𝜌𝜌
� ,   𝑢𝑢(0, 𝑡𝑡) = 1, �𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
� = 0𝜂𝜂=𝑅𝑅

  

𝜃𝜃(𝜂𝜂, 0) = 1 − 𝜂𝜂
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,    𝜃𝜃(0, 𝑡𝑡) = 0,   𝜃𝜃(1, 𝑡𝑡) = 1                             (13) 

where 

𝛼𝛼 =
−𝑝𝑝
𝑈𝑈2 ,      𝛽𝛽 =

2𝛼𝛼1 𝜌𝜌
𝑈𝑈

,         𝜎𝜎1 =
2𝛼𝛼2𝜌𝜌2
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,       𝜎𝜎2 = (6𝛽𝛽1 + 2𝛽𝛽2)

𝜌𝜌3𝑈𝑈
𝑅𝑅2  

𝜎𝜎3 =
𝜌𝜌2𝜇𝜇
𝑈𝑈𝑈𝑈

 ,   𝜎𝜎4 =
𝛼𝛼1𝜌𝜌2

𝑅𝑅
,   𝜎𝜎5 =

𝛽𝛽1𝜌𝜌2

𝑅𝑅
 ,        𝜎𝜎6 = 6(𝛽𝛽2 + 𝛽𝛽3)

𝜌𝜌4

𝑅𝑅2 𝑈𝑈 

𝜎𝜎7 = 𝑅𝑅
𝜌𝜌𝜌𝜌
�𝜎𝜎𝐵𝐵0

2 − 𝜇𝜇 ∅
𝑘𝑘
� ,         𝐸𝐸𝐸𝐸 = 𝜇𝜇𝜇𝜇 𝑈𝑈2

𝑅𝑅2𝑐𝑐𝑝𝑝 (𝑇𝑇1−𝑇𝑇0)
 ,𝐵𝐵𝐵𝐵 = 𝜇𝜇𝜇𝜇𝜇𝜇

𝑈𝑈𝑈𝑈𝑐𝑐𝑝𝑝 (𝑇𝑇1−𝑇𝑇0)
 ,𝑅𝑅𝑅𝑅 = 𝐾𝐾𝐾𝐾
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𝐾𝐾𝐾𝐾
𝑈𝑈𝑐𝑐𝑝𝑝

 ,     𝛾𝛾 = (2𝛼𝛼1 + 𝛼𝛼2) ,     𝑀𝑀 =
𝜎𝜎𝜎𝜎𝐵𝐵0

2

𝜌𝜌𝑐𝑐𝑝𝑝(𝑇𝑇1 − 𝑇𝑇0) 

3.2. Existence and Uniqueness of Solution 
Theorem 3.1: Let 𝑃𝑃𝑃𝑃 = 𝛽𝛽 + 𝜎𝜎3 ,𝑅𝑅𝑅𝑅 = 𝐵𝐵𝐵𝐵 = 𝐺𝐺𝐺𝐺 = 𝐸𝐸𝐸𝐸 = 0,𝛼𝛼 = 𝜎𝜎1 = 𝜎𝜎2 = 𝜎𝜎4 = 𝜎𝜎5 = 𝜎𝜎6 = 0. Then, the equations (11) 

and (12) with initial and boundary conditions (13) has a unique solution for all 𝑡𝑡 ≥ 0. 
Proof; Let 𝑃𝑃𝑃𝑃 = 𝛽𝛽 + 𝜎𝜎3 , 𝑅𝑅𝑅𝑅 = 𝐵𝐵𝐵𝐵 = 𝐺𝐺𝐺𝐺 = 𝐸𝐸𝐸𝐸 = 0,𝛼𝛼 = 𝜎𝜎1 = 𝜎𝜎2 = 𝜎𝜎4 = 𝜎𝜎5 = 𝜎𝜎6 = 0. In equations (11) and (12), we 

obtain 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑃𝑃𝑃𝑃
𝜂𝜂
𝜕𝜕2𝑢𝑢
𝜕𝜕𝜂𝜂2 − 𝜎𝜎7𝑢𝑢                                      (14) 

𝑢𝑢(𝜂𝜂, 0) = �1 −
𝜂𝜂
𝜌𝜌
�  ,    𝑢𝑢(0 , 𝑡𝑡) = 1,   𝑢𝑢𝜂𝜂(1, 𝑡𝑡) = 0 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑃𝑃𝑃𝑃 𝜕𝜕
2𝜃𝜃

𝜕𝜕𝜂𝜂2 + 𝑀𝑀𝑢𝑢2                                     (15) 

θ(η ,0) = �1 −
η
ρ
� ,    θ(0, t) = 0,     θ(1, t) = 1 

Using frobenius method, we obtain the solution of problem (14) as 

𝑢𝑢(𝜂𝜂, 𝑡𝑡) = ��1 + 𝜂𝜂 + 𝜎𝜎7
6
𝜂𝜂3 + 𝜎𝜎7

12
𝜂𝜂4 + ⋯� + �

1+𝜎𝜎7
2 𝜂𝜂

2+𝜎𝜎7
3 𝜂𝜂

3+⋯

1+𝜎𝜎7
3 𝜂𝜂

3+⋯
� �𝜂𝜂 + 𝜎𝜎7

12
𝜂𝜂4 + ⋯��           (16) 

where 

𝑢𝑢𝑛𝑛(𝑡𝑡) =
4

(2𝑛𝑛 − 1)𝜋𝜋
�1 +

(−1)𝑛𝑛

(2𝑛𝑛 − 1)𝜋𝜋
� 𝑒𝑒

−�𝜎𝜎7+𝑃𝑃𝑃𝑃�2𝑛𝑛−1
2 𝜋𝜋�

2
�𝑡𝑡

 

and using eigenfunction expansion method, the solution of problem as 

𝜃𝜃(𝜂𝜂, 𝑡𝑡) = 𝜂𝜂 + ∑ 𝑉𝑉𝑛𝑛∞
𝑛𝑛=1 (𝑡𝑡) sin𝑛𝑛𝑛𝑛𝑛𝑛,                               (17) 

where 

𝑉𝑉𝑛𝑛(𝑡𝑡) = 𝑞𝑞𝑛𝑛(𝑡𝑡) + 𝑏𝑏𝑛𝑛𝑒𝑒−𝑃𝑃𝑃𝑃�𝑛𝑛
2𝜋𝜋2�𝑡𝑡  

𝑞𝑞𝑛𝑛(𝑡𝑡) = 2𝑀𝑀� 𝑇𝑇𝑛𝑛(𝜏𝜏)𝑒𝑒−𝑃𝑃𝑃𝑃𝑛𝑛2𝜋𝜋2(𝑡𝑡−𝜏𝜏)
𝑡𝑡

0
 

𝑇𝑇𝑛𝑛(𝜏𝜏) = � ��𝑢𝑢𝑛𝑛(𝑡𝑡) sin �
2𝑛𝑛 − 1

2
�

∞

𝑛𝑛=1

𝜂𝜂𝜂𝜂�
21

0
sin𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 

Hence, there exists a unique solution of problems (11) and (12). This completes the proof. 
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3.3. Analytical Solution 

Applying homotopy perturbation method (HPM), we have 

(1 − 𝑝𝑝) 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑝𝑝�

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
−  𝛼𝛼

𝜂𝜂
− 𝛽𝛽

𝜂𝜂
�𝜕𝜕

2𝑢𝑢
𝜕𝜕𝜂𝜂2� −

𝜎𝜎1
𝜂𝜂
𝜕𝜕2𝑢𝑢
𝜕𝜕𝜂𝜂2 �

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� − 𝜎𝜎2

𝜂𝜂
� 𝜕𝜕

2𝑢𝑢
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

 ∙  𝜕𝜕
2𝑢𝑢

𝜕𝜕𝜂𝜂2� −
𝜎𝜎2
𝜂𝜂
�𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
∙ 𝜕𝜕3𝑢𝑢
𝜕𝜕𝜕𝜕𝜕𝜕 𝜂𝜂2�

− 𝜎𝜎3
𝜂𝜂
�𝜕𝜕

2𝑢𝑢
𝜕𝜕𝜂𝜂2� −

𝜎𝜎4
𝜂𝜂
� 𝜕𝜕3𝑢𝑢
𝜕𝜕𝜕𝜕𝜕𝜕 𝜂𝜂2� −

𝜎𝜎5
𝜂𝜂
� 𝜕𝜕4𝑢𝑢
𝜕𝜕𝑡𝑡2𝜕𝜕𝜂𝜂2� −

𝜎𝜎6
𝜂𝜂
�𝜕𝜕

2𝑢𝑢
𝜕𝜕𝜂𝜂2 � �𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
�

2
+ 𝜎𝜎7𝑢𝑢

� = 0            (18) 

(1 − 𝑝𝑝) 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑝𝑝 �𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
− 𝑃𝑃𝑃𝑃 �𝜕𝜕

2𝜃𝜃
𝜕𝜕𝜂𝜂2� −

𝑅𝑅𝑅𝑅
𝜂𝜂
�𝜕𝜕𝜕𝜕

 𝜕𝜕𝜕𝜕
� − �−2𝐵𝐵𝐵𝐵 + 2𝐺𝐺𝐺𝐺𝐺𝐺 �𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
�

2
+ 2𝐸𝐸𝐸𝐸 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
� 𝜕𝜕

2𝑢𝑢
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

��
2

−𝑀𝑀𝑢𝑢2� = 0        (19) 

with initial and boundary condition  

𝑢𝑢(𝜂𝜂, 0) = �1 −
𝜂𝜂
𝜌𝜌
� ,   𝑢𝑢(0, 𝑡𝑡) = 1, �𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
� = 0𝜂𝜂=𝑅𝑅

   

𝜃𝜃(𝜂𝜂, 0) = 1 − 𝜂𝜂
𝜌𝜌

,        𝜃𝜃(0, 𝑡𝑡) = 0,           𝜃𝜃(1, 𝑡𝑡) = 1                          (20) 

Therefore, we obtain the following at zero order: 
Momentum equation 

𝑢𝑢0(𝜂𝜂, 𝑡𝑡) = �1 −
𝜂𝜂
𝜌𝜌
� 

Energy equation 

𝜃𝜃0(𝜂𝜂, 𝑡𝑡) = �1 −
𝜂𝜂
𝜌𝜌
� 

at first - order Problem, we have 
Momentum equation: 

𝜕𝜕𝑢𝑢1

𝜕𝜕𝜕𝜕
−
𝛼𝛼
𝜂𝜂

+ 𝜎𝜎7 �1 −
𝜂𝜂
𝜌𝜌
� = 0 

𝑢𝑢1(𝜂𝜂, 𝑡𝑡) = �
𝛼𝛼
𝜂𝜂
− 𝜎𝜎7 �1 −

𝜂𝜂
𝜌𝜌
�� 𝑡𝑡 − 𝜎𝜎7 

Energy equation: 

𝜃𝜃1(𝜂𝜂, 𝑡𝑡 ) = ��−2𝐵𝐵𝐵𝐵 +
2𝐺𝐺𝐺𝐺𝐺𝐺
𝜌𝜌

�
2

+ 𝑀𝑀�1 − 2𝜂𝜂 + �
𝜂𝜂
𝜌𝜌
�

2
� −

𝑅𝑅𝑅𝑅
𝜌𝜌𝜌𝜌
� 𝑡𝑡 − ��−2𝐵𝐵𝐵𝐵 +

2𝐺𝐺𝐺𝐺𝐺𝐺
𝜌𝜌

�
2

� 𝑡𝑡 
we let 

𝑢𝑢 = 𝑢𝑢0 + 𝑝𝑝1𝑢𝑢1 + 𝑝𝑝2𝑢𝑢2 + ⋯ 
𝜃𝜃 = 𝜃𝜃0 + 𝑝𝑝1𝜃𝜃1 + 𝑝𝑝2𝜃𝜃2 + ⋯ 

𝑢𝑢(𝜂𝜂, 𝑡𝑡) = �1 −
𝜂𝜂
𝜌𝜌
� + 𝑝𝑝 �

𝛼𝛼
𝜂𝜂
− 𝜎𝜎7 �1 −

𝜂𝜂
𝜌𝜌
�� 𝑡𝑡 − 𝜎𝜎7 

𝜃𝜃(𝜂𝜂 , 𝑡𝑡) = �1 −
𝜂𝜂
𝜌𝜌
� + 𝑝𝑝 ��−2𝐵𝐵𝐵𝐵 +

2𝐺𝐺𝐺𝐺𝐺𝐺
𝜌𝜌

�
2

+ 𝑀𝑀�1 − 2𝜂𝜂 + �
𝜂𝜂
𝜌𝜌
�

2
� −

𝑅𝑅𝑅𝑅
𝜌𝜌𝜌𝜌�

𝑡𝑡 

The computations were done using algebraic package MAPLE. 

4. Results and Discussion 
The analytical results obtained are shown through graphs 

which demonstrate the various parameter on the velocity and 
temperature of magnetohyrodynamic (MHD) flow of a 
convective third grade fluid in a cylindrical system by using 
homotopy perturbation method (HPM). We prove the 
existence and unigueness of solution by the actural method. 

5. Discussion  
The effect of 𝜎𝜎7  (combination of magnetic field and 

porosity) on velocity (u) for 𝛼𝛼 = 1, 𝜌𝜌 = 1, 𝑡𝑡 = 5 is shown 
in fig.1. It is observed that, velocity (u) decreases with 
combination of magnetic field and porosity increases. Fig.2, 
Shows the effect of 𝜎𝜎7 (combination of magnetic field and 
porosity) on velocity (u) for 𝛼𝛼 = 1, 𝜌𝜌 = 1, 𝜂𝜂 = 0.5. We 
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noted that, the velocity (u) increases with magnetic field 
and porosity increases. 

 

Figure 1. 

 

Figure 2. 

 

Figure 3. 

 

Figure 4. 

The effect of magnetic field (M) on temperature (T) for 
𝐵𝐵𝐵𝐵 = 15, 𝐺𝐺𝐺𝐺 = 15, 𝛾𝛾 = 13, 𝑅𝑅𝑅𝑅 = 1, 𝑡𝑡 = 5  is shown in 
fig.3, it is observed that temperature (T) increases with 
magnetic field increases. It is also found that, in fig. 4 as 
temperature (T) increases, magnetic field increases for 
𝐵𝐵𝐵𝐵 = 15, 𝐺𝐺𝐺𝐺 = 15, 𝛾𝛾 = 13, 𝑅𝑅𝑅𝑅 = 1, 𝜂𝜂 = 0.5. 

6. Conclusions 
The MHD flows of unsteady convective third grade fluid 

in cylindrical systems were examined. The resulting 
equations were solved using HPM and graphical results 
were obtained. The unsteady flow study were analysed 
through the effects of physical parameters such as Magnetic 
field on velocity and temperature distribution. 
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