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Abstract  In this paper, we consider the convergence rates of the Forward Time, Centered Space (FTCS) and Backward 
Time, Centered Space (BTCS) schemes for solving one-dimensional, time-dependent diffusion equation with Neumann 
boundary condition. We present the derivation of the schemes and develop a computer program to implement it. The 
consistency and the stability of the schemes are described. By the support of the numerical problems convergence rates of the 
schemes have been determined. It is found that both methods are first order accurate in the spatial dimension in 𝐿𝐿∞ - norm.  
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1. Introduction 
Consider the following one-dimensional, time-dependent 

diffusion equation:  
𝑢𝑢𝑡𝑡(x, t) = 𝛼𝛼𝑢𝑢𝑥𝑥𝑥𝑥 (x, t), 0 < x < L, 0 < t ≤ T    (1.1a) 

with initial condition, 
𝑢𝑢(x, 0) = 𝑓𝑓(x), 0 ≤ x ≤ L           (1.1b) 

and Neumann boundary conditions 
𝑢𝑢𝑥𝑥(0, t) = 𝑓𝑓1(t)                (1.1c) 
𝑢𝑢𝑥𝑥(L, t) = 𝑓𝑓2(t)                (1.1d) 

where 𝑢𝑢 (x, t) is an unknown function, 𝑢𝑢𝑡𝑡(x, t)  and 
𝑢𝑢𝑥𝑥𝑥𝑥 (x, t) are the first and second partial derivatives of the 
temperature 𝑢𝑢 (x, t) with respect to time and space 
respectively, 𝛼𝛼 is the thermal diffusivity of the rod, f(x) is a 
prescribed initial temperature distribution over the rod, L is 
the length of the rod, T is a maximum time and, 𝑓𝑓1(t) and 
𝑓𝑓2(t) are specified functions of time t representing the heat 
flow across the boundaries. We assume the rod is of a 
homogeneous material and the surface of the rod is 
insulated so that heat flows only in the x-direction. 

This equation is also assumed to be well posed and to 
have a unique smooth solution u(x, t) which has sufficient 
regularity.   

The diffusion problems arise in many important 
applications of science and engineering, describing the 
distribution of temperature in a given region as a function of 
position and time [1, 2]. The natural conditions would be to  
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specify the temperature everywhere in the rod at time t = 0, 
and use the differential equation to determine the 
temperature at later times by stepping along the time axis.  

In literature, various numerical techniques such as finite 
differences, finite elements and finite volumes have been 
developed and compared for solving one dimensional 
diffusion equation with Dirichlet and Neumann boundary 
conditions (see[1- 6]). Theoretical results have been obtained 
regarding the accuracy, stability and convergence of the 
finite difference methods (FDMs) for solving this equation. 
In [1, 3, 5], it is stated that for any time step size ∆𝑡𝑡 > 0 in 
the time range [0, T] and for space step size ∆𝑥𝑥 > 0, FTCS 
method is stable if r ≤ 𝟏𝟏

𝟐𝟐
 (r is stability limit) and BTCS 

method is unconditionally stable with Dirichlet boundary 
conditions. The authors also stated that, these methods are 
first-order accurate in time and second-order accurate in 
space.  

In this work, it is aimed to determine the convergence 
rates of the FTCS and BTCS schemes for solving equations 
(1.1a) - (1.1d) which are often encountered in engineering 
applications. The Neumann boundary condition specifies the 
temperature gradients across the boundaries as well as the 
initial temperature distribution within the rod. To solve the 
equation, spatial and temporal domains are discretized by the 
grids of points and partial derivatives occurring in the 
equation are replaced by approximations based on the Taylor 
series expansions of the function near the point or points of 
interest [1, 4, 5]. Since convergence is difficult to prove 
directly, we use an equivalent result known as the Lax 
Equivalence Theorem which stated that, for a given properly 
posed linear consistent finite difference approximation to 
Partial differential equation (PDE), stability is necessary 
and sufficient for convergence [3]. Thus, showing the 
consistency and stability of the finite difference scheme is 
sufficient for convergence. We use Gerschgorin’s Theorem 
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to determine the stability of the methods [4], and show that 
FTCS method is stable if r ≤ 𝟏𝟏

𝟐𝟐
 and BTCS method is 

unconditionally stable with Neumann boundary conditions. 
Since finite difference discretization converges at the rate of 
the Truncation Error (TE) (determined by the order of the 
spatial and temporal discretization) if the exact solution is 
smooth enough (see, [7]), we expand the exact solution at 
the mesh points of the scheme with a Taylor series and 
insert the Taylor expansions in the scheme to calculate the 
TE (difference between the resulting equation and the 
original PDE) and determine its order in the approximation 
used. Then, we see that as the discrete step sizes approach 
to zero, their TE also approaches to zero which indicates 
that the difference approximations are consistent.   

For the remainder of this paper, we give the details of the 
numerical algorithms to solve application problems 
involving diffusion equation. In section 2, a difference 
schemes for (1.1) is derived. In section 3, convergence of the 
schemes is described. Finally, numerical problems are given 
to verify the validity of the theoretical results.  

2. Finite Difference Schemes 
We divide x = [0, L] and t = [0, T] into M and N 

subintervals of equal lengths ∆𝑥𝑥  = L
N−1

 and ∆𝑡𝑡  = T
M−1

 
respectively. The Neumann boundary conditions given on 
equations (1.1c) and (1.1d) are approximated by the central 
differences. For this we introduce “ghost points” 𝑥𝑥0 and 
𝑥𝑥𝑁𝑁+1 in addition to the grid points  𝑥𝑥1,  𝑥𝑥2, … ,  𝑥𝑥𝑁𝑁.   

𝑢𝑢𝑥𝑥(𝑥𝑥1, 𝑡𝑡𝑗𝑗 ) = 
𝑢𝑢2,𝑗𝑗−𝑢𝑢0,𝑗𝑗

2∆𝑥𝑥
             (2.1) 

𝑢𝑢𝑥𝑥(𝑥𝑥𝑁𝑁 , 𝑡𝑡𝑗𝑗 ) = 
𝑢𝑢𝑁𝑁+1,𝑗𝑗−𝑢𝑢𝑁𝑁−1,𝑗𝑗

2∆𝑥𝑥
           (2.2) 

From equation (2.1) and equation (2.2), the values of 
𝑢𝑢0,𝑗𝑗  and 𝑢𝑢𝑁𝑁+1,𝑗𝑗  can be computed which will then be used 
to compute 𝑢𝑢1,𝑗𝑗+1 and 𝑢𝑢𝑁𝑁,𝑗𝑗+1 at the boundaries.  

2.1. The Explicit (FTCS) Scheme  
To form the scheme, the first derivative of the 

temperature 𝑢𝑢(x, t) with respect to time in equation (1.1a) is 
approximated with a forward difference and central 

difference is used to approximate 𝜕𝜕
2𝑢𝑢

𝜕𝜕𝑥𝑥2 about (𝑥𝑥𝑖𝑖 , 𝑡𝑡𝑗𝑗 ), and all 
terms are evaluated at time j.   

𝑢𝑢𝑖𝑖 ,𝑗𝑗+1− 𝑢𝑢𝑖𝑖 ,𝑗𝑗
∆𝑡𝑡

 =𝛼𝛼( 𝑢𝑢𝑖𝑖+1,𝑗𝑗−2𝑢𝑢𝑖𝑖 ,𝑗𝑗+ 𝑢𝑢𝑖𝑖−1,𝑗𝑗

(∆𝑥𝑥)2  ), 

for i = 2, . . . , N-1 and j = 1,…,M-1         (2.3) 

𝑢𝑢𝑖𝑖 ,𝑗𝑗+1= 𝑟𝑟𝑢𝑢𝑖𝑖−1,𝑗𝑗 + (1 − 2 𝑟𝑟)𝑢𝑢𝑖𝑖 ,𝑗𝑗 + 𝑟𝑟𝑢𝑢𝑖𝑖+1,𝑗𝑗 , 𝑟𝑟 = 𝛼𝛼∆𝑡𝑡
(∆𝑥𝑥)2  (2.4) 

Initial condition,  
𝑢𝑢𝑖𝑖 ,1=𝑓𝑓𝑖𝑖 , for i=1, 2, . . ., N           (2.5) 

At two end points, 
𝑢𝑢1,𝑗𝑗+1− 𝑢𝑢1,𝑗𝑗

∆𝑡𝑡
 = (

𝑢𝑢0,𝑗𝑗−2𝑢𝑢1,𝑗𝑗+ 𝑢𝑢2,𝑗𝑗

(∆𝑥𝑥)2 ), for i = 1     (2.6) 

𝑢𝑢𝑁𝑁 ,𝑗𝑗+1− 𝑢𝑢𝑁𝑁 ,𝑗𝑗

∆𝑡𝑡
 = (𝑢𝑢𝑁𝑁−1,𝑗𝑗−2𝑢𝑢𝑁𝑁 ,𝑗𝑗+ 𝑢𝑢𝑁𝑁+1,𝑗𝑗

(∆𝑥𝑥)2 ), for i = N   (2.7) 

But from equation (2.1) and equation (2.2),  
𝑢𝑢2,𝑗𝑗−𝑢𝑢0,𝑗𝑗

2∆𝑥𝑥
= 𝑓𝑓1�𝑡𝑡𝑗𝑗 �  ⇒ 𝑢𝑢0,𝑗𝑗  = 𝑢𝑢2,𝑗𝑗  - 2∆𝑥𝑥𝑓𝑓1(𝑡𝑡𝑗𝑗 )   (2.8) 

𝑢𝑢𝑁𝑁+1,𝑗𝑗−𝑢𝑢𝑁𝑁−1,𝑗𝑗

2∆𝑥𝑥
 = 𝑓𝑓2�𝑡𝑡𝑗𝑗 � ⇒ 𝑢𝑢𝑁𝑁+1,𝑗𝑗  = 𝑢𝑢𝑁𝑁−1,𝑗𝑗+2∆𝑥𝑥𝑓𝑓2(𝑡𝑡𝑗𝑗 ) (2.9) 

Then, by substitution equation (2.6) and equation (2.7) 
become; 

 𝑢𝑢1,𝑗𝑗+1= (1-2r)𝑢𝑢1,𝑗𝑗  + (2r)𝑢𝑢2,𝑗𝑗  - 2r∆𝑥𝑥𝑓𝑓1(𝑡𝑡𝑗𝑗 )       (2.10) 

  𝑢𝑢𝑁𝑁,𝑗𝑗+1= (2r)𝑢𝑢𝑁𝑁−1,𝑗𝑗 + (1-2r)𝑢𝑢𝑁𝑁,𝑗𝑗  + 2r ∆𝑥𝑥𝑓𝑓2(𝑡𝑡𝑗𝑗 )     (2.11) 

This can be written in matrix form as follows which is to 
be solved iteratively; 

⎝

⎜
⎜
⎜
⎛

𝑢𝑢1,𝑗𝑗+1
𝑢𝑢2,𝑗𝑗+1

.

.

.
𝑢𝑢𝑁𝑁−1,𝑗𝑗+1
𝑢𝑢𝑁𝑁,𝑗𝑗+1 ⎠

⎟
⎟
⎟
⎞

=

⎝

⎜⎜
⎛

1 − 2𝑟𝑟
𝑟𝑟
0
⋮
0
0

  

2𝑟𝑟
1 − 2𝑟𝑟
𝑟𝑟
⋮
0
0

  

0
𝑟𝑟

1 − 2𝑟𝑟
⋱
⋯
⋯

  

0
0
𝑟𝑟
⋱
𝑟𝑟
0

  

⋯
⋯
⋯
⋱

1 − 2𝑟𝑟
2𝑟𝑟

 

0
0
0
⋮
𝑟𝑟

1 − 2𝑟𝑟⎠

⎟⎟
⎞

 

⎝

⎜
⎜
⎜
⎛

𝑢𝑢1,𝑗𝑗
𝑢𝑢2,𝑗𝑗

.

.

.
𝑢𝑢𝑁𝑁−1,𝑗𝑗
𝑢𝑢𝑁𝑁,𝑗𝑗 ⎠

⎟
⎟
⎟
⎞

 

+

⎝

⎜
⎜
⎜
⎛

−2r∆𝑥𝑥𝑓𝑓1(𝑡𝑡𝑗𝑗 ) 
0
.
.
.
0

2 r ∆𝑥𝑥𝑓𝑓2(𝑡𝑡𝑗𝑗 ) ⎠

⎟
⎟
⎟
⎞

                        (2.12) 

𝑢𝑢𝑗𝑗+1 = A𝑢𝑢𝑗𝑗  + 𝑏𝑏𝑗𝑗                              (2.13) 

2.2. The Implicit (BTCS) Scheme  
The forward time difference in equation (2.3) is replaced 

by the backward time difference and the space difference 
remaining the same to form this scheme;   

𝑢𝑢𝑖𝑖 ,𝑗𝑗− 𝑢𝑢𝑖𝑖 ,𝑗𝑗−1

∆𝑡𝑡
 = 𝛼𝛼(𝑢𝑢𝑖𝑖+1,𝑗𝑗−2𝑢𝑢𝑖𝑖 ,𝑗𝑗+ 𝑢𝑢𝑖𝑖−1,𝑗𝑗

(∆𝑥𝑥)2 )         (2.14) 

This is equivalent to; 
𝑢𝑢𝑖𝑖 ,𝑗𝑗+1− 𝑢𝑢𝑖𝑖 ,𝑗𝑗

∆𝑡𝑡
 = 𝛼𝛼(𝑢𝑢𝑖𝑖+1,𝑗𝑗+1− 2𝑢𝑢𝑖𝑖 ,𝑗𝑗+1+ 𝑢𝑢𝑖𝑖−1,𝑗𝑗+1

(∆𝑥𝑥)2 ), 

for i = 2, . . .,N-1 and j=1,…, M-1        (2.15) 
𝑢𝑢𝑖𝑖 ,𝑗𝑗  = -r𝑢𝑢𝑖𝑖−1,𝑗𝑗+1 + (1+2r)𝑢𝑢𝑖𝑖 ,𝑗𝑗+1 - r𝑢𝑢𝑖𝑖+1,𝑗𝑗+1     (2.16) 

With initial condition,  
𝑢𝑢𝑖𝑖 ,1=𝑓𝑓𝑖𝑖 , for i=1, 2,…,N           (2.17) 

From equation (2.1) and equation (2.2),  
𝑢𝑢2,𝑗𝑗−𝑢𝑢0,𝑗𝑗

2∆𝑥𝑥
= 𝑓𝑓1�𝑡𝑡𝑗𝑗 � ⇒ 𝑢𝑢0,𝑗𝑗  = 𝑢𝑢2,𝑗𝑗  - 2∆𝑥𝑥𝑓𝑓1(𝑡𝑡𝑗𝑗 ) 

⇒ 𝑢𝑢0,𝑗𝑗+1 = 𝑢𝑢2,𝑗𝑗+1 - 2∆𝑥𝑥𝑓𝑓1(𝑡𝑡𝑗𝑗+1)           (2.18) 
𝑢𝑢𝑁𝑁+1,𝑗𝑗−𝑢𝑢𝑁𝑁−1,𝑗𝑗

2∆𝑥𝑥
 = 𝑓𝑓2�𝑡𝑡𝑗𝑗 �  ⇒ 𝑢𝑢𝑁𝑁+1,𝑗𝑗  = 𝑢𝑢𝑁𝑁−1,𝑗𝑗  + 2∆𝑥𝑥𝑓𝑓2(𝑡𝑡𝑗𝑗 ) 

⇒ 𝑢𝑢𝑁𝑁+1,𝑗𝑗+1 = 𝑢𝑢𝑁𝑁−1,𝑗𝑗+1 + 2∆𝑥𝑥𝑓𝑓2(𝑡𝑡𝑗𝑗+1)     (2.19) 

Then, at two end points (i=1 and i=N), 
 𝑢𝑢1,𝑗𝑗  = (1+2r)𝑢𝑢1,𝑗𝑗+1- (2r)𝑢𝑢2,𝑗𝑗+1 + 2r∆𝑥𝑥𝑓𝑓1(𝑡𝑡𝑗𝑗+1)    (2.20) 

 𝑢𝑢𝑁𝑁,𝑗𝑗  = (-2r)𝑢𝑢𝑁𝑁−1,𝑗𝑗+1 + (1+2r)𝑢𝑢𝑁𝑁,𝑗𝑗+1 - 2r∆𝑥𝑥𝑓𝑓2(𝑡𝑡𝑗𝑗+1) (2.21) 
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This can be written in matrix form as;  

⎝

⎜⎜
⎛

𝑢𝑢1,𝑗𝑗
𝑢𝑢2,𝑗𝑗

.

.

.
𝑢𝑢𝑁𝑁,𝑗𝑗⎠

⎟⎟
⎞

 = 

⎝

⎜⎜
⎛

1 + 2𝑟𝑟
−𝑟𝑟
0
⋮
0
0

  

−2𝑟𝑟
1 + 2𝑟𝑟
−𝑟𝑟
⋮
0
0

  

0
−𝑟𝑟

1 + 2𝑟𝑟
⋱
⋯
⋯

  

0
0
−𝑟𝑟
⋱
−𝑟𝑟
0

  

⋯
⋯
⋯
⋱

1 + 2𝑟𝑟
−2𝑟𝑟

 

0
0
0
⋮
−𝑟𝑟

1 + 2𝑟𝑟⎠

⎟⎟
⎞

⎝

⎜⎜
⎛

𝑢𝑢1,𝑗𝑗+1
𝑢𝑢2,𝑗𝑗+1

.

.

.
𝑢𝑢𝑁𝑁,𝑗𝑗+1⎠

⎟⎟
⎞

 + 

⎝

⎜
⎜
⎜
⎛

2r∆𝑥𝑥𝑓𝑓1(𝑡𝑡𝑗𝑗+1) 
0
.
.
.
0

− 2 r ∆𝑥𝑥𝑓𝑓2(𝑡𝑡𝑗𝑗+1)⎠

⎟
⎟
⎟
⎞

               (2.22) 

𝑢𝑢𝑗𝑗  = A𝑢𝑢𝑗𝑗+1 + 𝑏𝑏𝑗𝑗                                           (2.23) 

This system of equation is a tri-diagonal and strictly diagonally dominated which indicates that it is non-singular. 
Non-singularity guarantees that it is invertible and our equation will have a unique solution which we can obtain using 
Thomas algorithm.  

3. Convergence of the Finite Difference Schemes 
Gerschgorin’s Theorem: The eigenvalues of the matrix A lie in the union of circles 

  |z − aii | ≤ ∑ �aij �N
j=1
j≠i

=Ri,                                     (3.1) 

where z is a complex number, aii  are the diagonal entries, aij  are the non-diagonal entries and |z – aii | is a closed disc 
centered at aii  with radius R. If all disks of the matrix A are contained in the unit circle of the complex plane, so do the 
eigenvalues and we will have stability [4].  

3.1. Consistency of the Explicit (FTCS) Scheme 
Using equation (2.3) above and assuming that the true solution is smooth, 

𝑇𝑇𝑖𝑖 ,𝑗𝑗=
𝑢𝑢�𝑥𝑥𝑖𝑖 ,tj+1� − 𝑢𝑢�xi ,tj�

∆𝑡𝑡
- α 

𝑢𝑢�xi+1,tj�−2𝑢𝑢�xi ,tj�+𝑢𝑢�xi−1,tj�
(∆𝑥𝑥)2                      (3.2) 

With a Taylor expansion,  

                𝑇𝑇𝑖𝑖 ,𝑗𝑗  = [𝑢𝑢𝑡𝑡(𝑥𝑥𝑖𝑖 , 𝑡𝑡𝑗𝑗 )+
∆𝑡𝑡
2
𝑢𝑢𝑡𝑡𝑡𝑡 �𝑥𝑥𝑖𝑖 , 𝑡𝑡𝑗𝑗 � + ⋯] - 𝛼𝛼[𝑢𝑢𝑥𝑥𝑥𝑥 (𝑥𝑥𝑖𝑖 , 𝑡𝑡𝑗𝑗 ) + (∆x)2

12
𝑢𝑢xxxx �𝑥𝑥𝑖𝑖 , 𝑡𝑡𝑗𝑗 � + ⋯] 

Since                     𝑢𝑢t = 𝑢𝑢xx  , 𝑢𝑢tt  = 𝑢𝑢txx  = 𝑢𝑢xxxx  then;   

                           𝑇𝑇𝑖𝑖 ,𝑗𝑗  = (∆𝑡𝑡
2

 - 𝛼𝛼 (∆𝑥𝑥)2

12
) 𝑢𝑢xxxx  (𝜀𝜀𝑖𝑖 , tj) + O [(∆𝑡𝑡)2 + (∆𝑥𝑥)4]     

Where, 𝜀𝜀𝑖𝑖 ∈ (𝑥𝑥𝑖𝑖−1, 𝑥𝑥𝑖𝑖+1).  
⇒ 𝑇𝑇𝑖𝑖 ,𝑗𝑗  = O [∆𝑡𝑡 + (∆𝑥𝑥)2] and 𝑇𝑇𝑖𝑖 ,𝑗𝑗 → 0 as∆𝑡𝑡, ∆𝑥𝑥 → 0.                  (3.3) 

Therefore, the difference approximation is consistent at interior points.  
Again, the local truncation error (LTE) of the numerical boundary conditions at two boundary points 0 and L can be 

obtained as; 

𝑇𝑇0,𝑡𝑡  = 
𝑢𝑢�𝑥𝑥2,𝑡𝑡𝑗𝑗 � − 𝑢𝑢�𝑥𝑥0,𝑡𝑡𝑗𝑗 �

2∆𝑥𝑥
 - 𝑓𝑓1�𝑡𝑡𝑗𝑗 �                                  (3.4) 

With a Taylor series expansion,  

𝑇𝑇0,𝑡𝑡  = 𝑢𝑢𝑥𝑥�𝑥𝑥1, 𝑡𝑡𝑗𝑗 � + (∆𝑥𝑥)2

6
𝑢𝑢𝑥𝑥𝑥𝑥𝑥𝑥 �𝑥𝑥1, 𝑡𝑡𝑗𝑗 � + ⋯ - 𝑓𝑓1�𝑡𝑡𝑗𝑗 � 

                      ⇒ 𝑇𝑇0,𝑡𝑡  = (∆𝑥𝑥)2

6
𝑢𝑢𝑥𝑥𝑥𝑥𝑥𝑥 �𝑥𝑥1, 𝑡𝑡𝑗𝑗 � + ⋯  and hence,  

𝑇𝑇0,𝑡𝑡  = O [(∆𝑥𝑥)2]                                                      (3.5) 

𝑇𝑇𝐿𝐿,𝑡𝑡  = 
u�xN +1,tj� − u�xN−1,tj�

2∆x
 - 𝑓𝑓2�𝑡𝑡𝑗𝑗 �                                    (3.6) 

                                  = 𝑢𝑢𝑥𝑥�𝑥𝑥𝑁𝑁 , 𝑡𝑡𝑗𝑗 � + (∆𝑥𝑥)2

6
𝑢𝑢𝑥𝑥𝑥𝑥𝑥𝑥 �𝑥𝑥𝑁𝑁 , 𝑡𝑡𝑗𝑗 � +…-𝑓𝑓2�𝑡𝑡𝑗𝑗 � 

                                  
 = (∆𝑥𝑥)2

6
𝑢𝑢𝑥𝑥𝑥𝑥𝑥𝑥 �𝑥𝑥𝑁𝑁 , 𝑡𝑡𝑗𝑗 � + ⋯  and then, 

𝑇𝑇𝐿𝐿,𝑡𝑡  = O [(∆𝑥𝑥)2]                                                      (3.7) 

 



 American Journal of Computational and Applied Mathematics 2016, 6(2): 92-102 95 
 

Since 𝑢𝑢0,𝑗𝑗  and 𝑢𝑢𝑁𝑁+1,𝑗𝑗  will be used to calculate 𝑢𝑢1,𝑗𝑗  and 𝑢𝑢𝑁𝑁,𝑗𝑗  respectively, the TE at the boundary will spread in to 
the interior nodes. To see how this will affect the LTE there, we use equation (2.8) and (2.9) above to obtain the effective 
difference scheme on the nodes �𝑥𝑥1, 𝑡𝑡𝑗𝑗 � and �𝑥𝑥𝑁𝑁 , 𝑡𝑡𝑗𝑗 � respectively. 

𝑇𝑇1,𝑗𝑗  = 
𝑢𝑢�𝑥𝑥1,𝑡𝑡𝑗𝑗+1� − 𝑢𝑢�𝑥𝑥1,𝑡𝑡𝑗𝑗 �

∆𝑡𝑡
 - 𝛼𝛼 

𝑢𝑢�𝑥𝑥0,𝑡𝑡𝑗𝑗 �−2𝑢𝑢(𝑥𝑥1,𝑡𝑡𝑗𝑗 ) +𝑢𝑢(𝑥𝑥2,𝑡𝑡𝑗𝑗 ) 
(∆𝑥𝑥)2                                    (3.8) 

  = 
𝑢𝑢�𝑥𝑥1,𝑡𝑡𝑗𝑗+1� − 𝑢𝑢�𝑥𝑥1,𝑡𝑡𝑗𝑗 �

∆𝑡𝑡
 - 𝛼𝛼[

𝑢𝑢�𝑥𝑥2,𝑡𝑡𝑗𝑗 �−2∆𝑥𝑥  𝑓𝑓1�𝑡𝑡𝑗𝑗 �−2𝑢𝑢(𝑥𝑥1,𝑡𝑡𝑗𝑗 ) + 𝑢𝑢(𝑥𝑥2,𝑡𝑡𝑗𝑗 ) 
(∆𝑥𝑥)2 ]  

  = 
𝑢𝑢�𝑥𝑥1,𝑡𝑡𝑗𝑗+1� − 𝑢𝑢�𝑥𝑥1,𝑡𝑡𝑗𝑗 �

∆𝑡𝑡
 - 𝛼𝛼[

−2𝑢𝑢�𝑥𝑥1,𝑡𝑡𝑗𝑗 �+2𝑢𝑢�𝑥𝑥2,𝑡𝑡𝑗𝑗 �−2∆𝑥𝑥[𝑢𝑢𝑥𝑥(𝑥𝑥1,𝑡𝑡𝑗𝑗 )] 
(∆𝑥𝑥)2 ]   

  = 
𝑢𝑢�𝑥𝑥1,𝑡𝑡𝑗𝑗+1� − 𝑢𝑢�𝑥𝑥1,𝑡𝑡𝑗𝑗 �

∆𝑡𝑡
 – 𝛼𝛼[

𝑢𝑢�𝑥𝑥0,𝑡𝑡𝑗𝑗 �−2𝑢𝑢(𝑥𝑥1,𝑡𝑡𝑗𝑗 ) +2𝑢𝑢(𝑥𝑥2,𝑡𝑡𝑗𝑗 ) 
(∆𝑥𝑥)2  - 2

∆𝑥𝑥
(
𝑢𝑢�𝑥𝑥2,𝑡𝑡𝑗𝑗 �− 𝑢𝑢�𝑥𝑥0,𝑡𝑡𝑗𝑗 �

2∆𝑥𝑥
) - 

𝑢𝑢�𝑥𝑥0,𝑡𝑡𝑗𝑗 �
(∆𝑥𝑥)2 ]  

Then from Taylor series expansion,   

𝑇𝑇1,𝑗𝑗  = ∆𝑡𝑡
2
𝑢𝑢𝑡𝑡𝑡𝑡 �𝑥𝑥1, 𝜂𝜂𝑗𝑗 � – 𝛼𝛼[(∆𝑥𝑥)2

12
𝑢𝑢𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 �𝜀𝜀1, 𝑡𝑡𝑗𝑗 � - 2

∆𝑥𝑥
 [(∆𝑥𝑥)2

6
𝑢𝑢𝑥𝑥𝑥𝑥𝑥𝑥 �𝜀𝜀1, 𝑡𝑡𝑗𝑗 �]] 

= ∆𝑡𝑡
2
𝑢𝑢𝑡𝑡𝑡𝑡 �𝑥𝑥1, 𝜂𝜂𝑗𝑗 �- 𝛼𝛼[(∆𝑥𝑥)2

12
𝑢𝑢𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 �𝜀𝜀1, 𝑡𝑡𝑗𝑗 � −  ∆𝑥𝑥

3
𝑢𝑢𝑥𝑥𝑥𝑥𝑥𝑥 �𝜀𝜀1, 𝑡𝑡𝑗𝑗 �]                            (3.9) 

Where, 𝜂𝜂𝑗𝑗 ∈ (𝑡𝑡𝑗𝑗 ,𝑡𝑡𝑗𝑗+1) and 𝜀𝜀1 ∈ (𝑥𝑥0, 𝑥𝑥2). Hence, 𝑇𝑇1,𝑗𝑗 → 0 as ∆𝑡𝑡, ∆𝑥𝑥 →0. 

𝑇𝑇𝑁𝑁,𝑗𝑗  = 
𝑢𝑢�𝑥𝑥𝑁𝑁 ,𝑡𝑡𝑗𝑗+1� − 𝑢𝑢�𝑥𝑥𝑁𝑁 ,𝑡𝑡𝑗𝑗 �

∆𝑡𝑡
– 𝛼𝛼[

2𝑢𝑢�𝑥𝑥𝑁𝑁−1,𝑡𝑡𝑗𝑗 �−2𝑢𝑢�𝑥𝑥𝑁𝑁 ,𝑡𝑡𝑗𝑗 �+2∆𝑥𝑥  𝑓𝑓2�𝑡𝑡𝑗𝑗 �

(∆𝑥𝑥)2 ]                                      (3.10) 

             = 
𝑢𝑢�𝑥𝑥𝑁𝑁 ,𝑡𝑡𝑗𝑗+1� − 𝑢𝑢�𝑥𝑥𝑁𝑁 ,𝑡𝑡𝑗𝑗 �

∆𝑡𝑡
 - 𝛼𝛼[ 

2𝑢𝑢�𝑥𝑥𝑁𝑁−1,𝑡𝑡𝑗𝑗 �−2𝑢𝑢�𝑥𝑥𝑁𝑁 ,𝑡𝑡𝑗𝑗 �+2∆𝑥𝑥[𝑢𝑢𝑥𝑥 (𝑥𝑥𝑁𝑁 ,𝑡𝑡𝑗𝑗 )] 
(∆𝑥𝑥)2 ]   

            = 𝑢𝑢�𝑥𝑥𝑁𝑁 ,𝑡𝑡𝑗𝑗+1� − 𝑢𝑢�𝑥𝑥𝑁𝑁 ,𝑡𝑡𝑗𝑗 �
∆𝑡𝑡

 – 𝛼𝛼[
2𝑢𝑢�𝑥𝑥𝑁𝑁−1,𝑡𝑡𝑗𝑗 �−2𝑢𝑢�𝑥𝑥𝑁𝑁 ,𝑡𝑡𝑗𝑗 � +𝑢𝑢�𝑥𝑥𝑁𝑁+1,𝑡𝑡𝑗𝑗 � 

(∆𝑥𝑥)2  + 2
∆𝑥𝑥

(
𝑢𝑢�𝑥𝑥𝑁𝑁+1,𝑡𝑡𝑗𝑗 �− 𝑢𝑢�𝑥𝑥𝑁𝑁−1,𝑡𝑡𝑗𝑗 �

2∆𝑥𝑥
) - 

𝑢𝑢�𝑥𝑥𝑁𝑁+1,𝑡𝑡𝑗𝑗 �
(∆𝑥𝑥)2 ]  

  ⇒ 𝑇𝑇𝑁𝑁,𝑗𝑗  = ∆𝑡𝑡
2
𝑢𝑢𝑡𝑡𝑡𝑡 (𝑥𝑥𝑁𝑁 , 𝜂𝜂𝑗𝑗 ) − 𝛼𝛼[(∆𝑥𝑥)2

12
uxxxx  (𝜀𝜀𝑁𝑁 , 𝑡𝑡𝑗𝑗 ) + ∆𝑥𝑥

3
uxxx  (𝜀𝜀𝑁𝑁 , 𝑡𝑡𝑗𝑗 )]                              (3.11) 

Hence, TN,j →0, as  ∆𝑡𝑡, ∆𝑥𝑥 → 0.  
Therefore, the difference approximation is consistent at the boundary points and the interior points. 

3.2. Stability of the Explicit (FTCS) Scheme 

For stability of FTCS scheme, it is suffices to show that the eigenvalues of the coefficient matrix A of equation (2.12) are 
contained in circles centered at (1-2r) with radius of 2r.  

|𝜆𝜆𝑖𝑖 − (1 − 2𝑟𝑟)| ≤ 2𝑟𝑟 ⇒  −2r ≤  𝜆𝜆𝑖𝑖 − (1 − 2𝑟𝑟)  ≤  2𝑟𝑟 
                                               ⇒ 1- 4r ≤ 𝜆𝜆𝑖𝑖  ≤ 1.   
 

 
 
But, for stability |𝜆𝜆𝑖𝑖| ≤ 1, so that for 𝜆𝜆1: 𝜆𝜆1≤ 1is satisfied. 

For 𝜆𝜆2: |1 − 4r | ≤ 1 ⇒ r ≤ 1
2
 . Therefore, the explicit scheme is stable if r ≤ 𝟏𝟏

𝟐𝟐
. 

3.3. Consistency of the Implicit (BTCS) Scheme  
Using equation (2.15),  

𝑇𝑇𝑖𝑖 ,𝑗𝑗  = 
𝑢𝑢�𝑥𝑥𝑖𝑖 ,𝑡𝑡𝑗𝑗+1�− 𝑢𝑢�𝑥𝑥𝑖𝑖 ,𝑡𝑡𝑗𝑗 �

∆𝑡𝑡
 - 𝛼𝛼 𝑢𝑢�𝑥𝑥𝑖𝑖+1,𝑡𝑡𝑗𝑗+1�−2𝑢𝑢�𝑥𝑥𝑖𝑖 ,𝑡𝑡𝑗𝑗+1�+𝑢𝑢�𝑥𝑥𝑖𝑖−1,𝑡𝑡𝑗𝑗+1�

(∆𝑥𝑥)2                 (3.12) 

1 − 2r 

 

 

 
 1-4r 1 
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Using a Taylor series expansion, 

𝑇𝑇𝑖𝑖 ,𝑗𝑗  = [ 𝑢𝑢𝑡𝑡�𝑥𝑥𝑖𝑖 , 𝑡𝑡𝑗𝑗+1� −
∆𝑡𝑡
2
𝑢𝑢𝑡𝑡𝑡𝑡 �𝑥𝑥𝑖𝑖 , 𝑡𝑡𝑗𝑗+1� + ⋯] - α[𝑢𝑢𝑥𝑥𝑥𝑥 �𝑥𝑥𝑖𝑖 , 𝑡𝑡𝑗𝑗+1� + (∆𝑥𝑥)2

12
𝑢𝑢𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 �𝑥𝑥𝑖𝑖 , 𝑡𝑡𝑗𝑗+1� + ⋯ ] 

Recall that, 𝑢𝑢𝑡𝑡  = 𝑢𝑢𝑥𝑥𝑥𝑥  , 𝑢𝑢𝑡𝑡𝑡𝑡  = 𝑢𝑢𝑡𝑡𝑡𝑡𝑡𝑡  = 𝑢𝑢𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥  such that;  

𝑇𝑇𝑖𝑖 ,𝑗𝑗  = (−∆𝑡𝑡
2

 - 𝛼𝛼 (∆𝑥𝑥)2

12
) 𝑢𝑢𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥  (𝜀𝜀𝑖𝑖 , 𝑡𝑡𝑗𝑗 ) + O [(∆𝑡𝑡)2 + (∆𝑥𝑥)4], Where, 𝜀𝜀𝑖𝑖 ∈ (𝑥𝑥𝑖𝑖−1, 𝑥𝑥𝑖𝑖+1) 

        ⇒ 𝑇𝑇𝑖𝑖 ,𝑗𝑗  = O [∆𝑡𝑡 + (∆𝑥𝑥)2]                                                              (3.13) 

And, the LTE of the numerical boundary conditions becomes,  

𝑇𝑇0,𝑡𝑡  = 
𝑢𝑢�𝑥𝑥2,𝑡𝑡𝑗𝑗+1� − 𝑢𝑢�𝑥𝑥0,𝑡𝑡𝑗𝑗+1�

2∆𝑥𝑥
 - 𝑓𝑓1�𝑡𝑡𝑗𝑗+1�                

                                   (3.14) 

By Taylor series expansion,  

                  𝑇𝑇0,𝑡𝑡  = 𝑢𝑢𝑥𝑥�𝑥𝑥1, 𝑡𝑡𝑗𝑗+1� + (∆𝑥𝑥)2

6
𝑢𝑢𝑥𝑥𝑥𝑥𝑥𝑥 �𝑥𝑥1, 𝑡𝑡𝑗𝑗+1� + ⋯ - 𝑓𝑓1�𝑡𝑡𝑗𝑗+1�   

                      = (∆𝑥𝑥)2

6
𝑢𝑢𝑥𝑥𝑥𝑥𝑥𝑥 �𝑥𝑥1, 𝑡𝑡𝑗𝑗+1� + O [(∆𝑥𝑥)4]  

           𝑇𝑇0,𝑡𝑡  = O [(∆𝑥𝑥)2]                                                                        (3.15) 

        𝑇𝑇𝐿𝐿,𝑡𝑡  = 
𝑢𝑢�𝑥𝑥𝑁𝑁+1,𝑡𝑡𝑗𝑗+1� − 𝑢𝑢�𝑥𝑥𝑁𝑁−1,𝑡𝑡𝑗𝑗+1�

2∆𝑥𝑥
 - 𝑓𝑓2�𝑡𝑡𝑗𝑗+1�                                                (3.16) 

                      = 𝑢𝑢𝑥𝑥�𝑥𝑥𝑁𝑁 , 𝑡𝑡𝑗𝑗+1� + (∆𝑥𝑥)2

6
𝑢𝑢𝑥𝑥𝑥𝑥𝑥𝑥 �𝑥𝑥𝑁𝑁 , 𝑡𝑡𝑗𝑗+1� +… - 𝑓𝑓2�𝑡𝑡𝑗𝑗+1� 

                      = (∆𝑥𝑥)2

6
𝑢𝑢𝑥𝑥𝑥𝑥𝑥𝑥 �𝑥𝑥𝑁𝑁 , 𝑡𝑡𝑗𝑗+1� + O [(∆𝑥𝑥)4] 

   𝑇𝑇𝐿𝐿,𝑡𝑡  = O [(∆𝑥𝑥)2]                                                                       (3.17) 

The effective difference scheme on the nodes �𝑥𝑥1, 𝑡𝑡𝑗𝑗 � and �𝑥𝑥𝑁𝑁 , 𝑡𝑡𝑗𝑗 � become, 

        𝑇𝑇1,𝑗𝑗  = 
𝑢𝑢�𝑥𝑥1,𝑡𝑡𝑗𝑗+1� − 𝑢𝑢�𝑥𝑥1,𝑡𝑡𝑗𝑗 �

∆𝑡𝑡
 - 𝛼𝛼 𝑢𝑢�𝑥𝑥0,𝑡𝑡𝑗𝑗+1�−2𝑢𝑢(𝑥𝑥1,𝑡𝑡𝑗𝑗+1) +𝑢𝑢(𝑥𝑥2,𝑡𝑡𝑗𝑗+1) 

(∆𝑥𝑥)2                              (3.18) 

                    = 
𝑢𝑢�𝑥𝑥1,𝑡𝑡𝑗𝑗+1� − 𝑢𝑢�𝑥𝑥1,𝑡𝑡𝑗𝑗 �

∆𝑡𝑡
 - 𝛼𝛼[

𝑢𝑢�𝑥𝑥2,𝑡𝑡𝑗𝑗+1�−2∆𝑥𝑥  𝑓𝑓1�𝑡𝑡𝑗𝑗+1�−2𝑢𝑢(𝑥𝑥1,𝑡𝑡𝑗𝑗+1) + 𝑢𝑢(𝑥𝑥2,𝑡𝑡𝑗𝑗+1) 
(∆𝑥𝑥)2 ] 

                    = 
𝑢𝑢�𝑥𝑥1,𝑡𝑡𝑗𝑗+1� − 𝑢𝑢�𝑥𝑥1,𝑡𝑡𝑗𝑗 �

∆𝑡𝑡
 - 𝛼𝛼[

−2𝑢𝑢�𝑥𝑥1,𝑡𝑡𝑗𝑗+1�+2𝑢𝑢�𝑥𝑥2,𝑡𝑡𝑗𝑗+1�−2∆𝑥𝑥[𝑢𝑢𝑥𝑥(𝑥𝑥1,𝑡𝑡𝑗𝑗+1)] 
(∆𝑥𝑥)2 ]  

                  = 
𝑢𝑢�𝑥𝑥1,𝑡𝑡𝑗𝑗+1� − 𝑢𝑢�𝑥𝑥1,𝑡𝑡𝑗𝑗 �

∆𝑡𝑡
–𝛼𝛼[

𝑢𝑢�𝑥𝑥0,𝑡𝑡𝑗𝑗+1�−2𝑢𝑢(𝑥𝑥1,𝑡𝑡𝑗𝑗+1) +2𝑢𝑢(𝑥𝑥2,𝑡𝑡𝑗𝑗+1) 
(∆𝑥𝑥)2 - 2

∆𝑥𝑥
(
𝑢𝑢(𝑥𝑥2,𝑡𝑡𝑗𝑗+1)−𝑢𝑢�𝑥𝑥0,𝑡𝑡𝑗𝑗+1�

2∆𝑥𝑥
)-
𝑢𝑢�𝑥𝑥0,𝑡𝑡𝑗𝑗+1�

(∆𝑥𝑥)2 ] 

Then from Taylor series expansion, 

                𝑇𝑇1,𝑗𝑗  = - ∆𝑡𝑡
2
𝑢𝑢𝑡𝑡𝑡𝑡 �𝑥𝑥1, 𝜂𝜂𝑗𝑗 � – 𝛼𝛼[(∆𝑥𝑥)2

12
𝑢𝑢𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 �𝜀𝜀1, 𝑡𝑡𝑗𝑗+1� - 2

∆𝑥𝑥
 [(∆𝑥𝑥)2

6
𝑢𝑢𝑥𝑥𝑥𝑥𝑥𝑥 �𝜀𝜀1, 𝑡𝑡𝑗𝑗+1�] 

            = - ∆𝑡𝑡
2
𝑢𝑢𝑡𝑡𝑡𝑡 �𝑥𝑥1, 𝜂𝜂𝑗𝑗 � – 𝛼𝛼[(∆𝑥𝑥)2

12
𝑢𝑢𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥 �𝜀𝜀1, 𝑡𝑡𝑗𝑗+1� −  ∆𝑥𝑥

3
𝑢𝑢𝑥𝑥𝑥𝑥𝑥𝑥 �𝜀𝜀1, 𝑡𝑡𝑗𝑗+1�]                         (3.19) 

Where, 𝜂𝜂𝑗𝑗 ∈ (𝑡𝑡𝑗𝑗 ,𝑡𝑡𝑗𝑗+1) and 𝜀𝜀1 ∈ (𝑥𝑥0, 𝑥𝑥2). Hence, 𝑇𝑇1,𝑗𝑗 → 0, as ∆𝑡𝑡, ∆𝑥𝑥 →0. Again,  

  𝑇𝑇𝑁𝑁,𝑗𝑗  = 
𝑢𝑢�𝑥𝑥𝑁𝑁 ,𝑡𝑡𝑗𝑗+1� − 𝑢𝑢�𝑥𝑥𝑁𝑁 ,𝑡𝑡𝑗𝑗 �

∆𝑡𝑡
 – 𝛼𝛼[2𝑢𝑢�𝑥𝑥𝑁𝑁−1,𝑡𝑡𝑗𝑗+1�−2𝑢𝑢�𝑥𝑥𝑁𝑁 ,𝑡𝑡𝑗𝑗+1�+2∆𝑥𝑥  𝑓𝑓2�𝑡𝑡𝑗𝑗+1�

(∆𝑥𝑥)2 ]                      (3.20) 

                    = 
𝑢𝑢�𝑥𝑥𝑁𝑁 ,𝑡𝑡𝑗𝑗+1� − 𝑢𝑢�𝑥𝑥𝑁𝑁 ,𝑡𝑡𝑗𝑗 �

∆𝑡𝑡
 - [ 

2𝑢𝑢�𝑥𝑥𝑁𝑁−1,𝑡𝑡𝑗𝑗+1�−2𝑢𝑢�𝑥𝑥𝑁𝑁 ,𝑡𝑡𝑗𝑗+1�+2∆𝑥𝑥[𝑢𝑢𝑥𝑥(𝑥𝑥𝑁𝑁 ,𝑡𝑡𝑗𝑗+1)] 
(∆𝑥𝑥)2 ] 

                   = 
𝑢𝑢�𝑥𝑥𝑁𝑁 ,𝑡𝑡𝑗𝑗+1� − 𝑢𝑢�𝑥𝑥𝑁𝑁 ,𝑡𝑡𝑗𝑗 �

∆𝑡𝑡
 – 𝛼𝛼[

2𝑢𝑢�𝑥𝑥𝑁𝑁−1,𝑡𝑡𝑗𝑗+1�−2𝑢𝑢�𝑥𝑥𝑁𝑁 ,𝑡𝑡𝑗𝑗+1� +𝑢𝑢�𝑥𝑥𝑁𝑁+1,𝑡𝑡𝑗𝑗+1� 
(∆𝑥𝑥)2   

                  + 2
∆𝑥𝑥

(
𝑢𝑢(𝑥𝑥𝑁𝑁+1,𝑡𝑡𝑗𝑗+1)−𝑢𝑢�𝑥𝑥𝑁𝑁−1,𝑡𝑡𝑗𝑗 �

2∆𝑥𝑥
) - 

𝑢𝑢�𝑥𝑥𝑁𝑁+1,𝑡𝑡𝑗𝑗+1�

(∆𝑥𝑥)2  ] 

  ⇒ 𝑇𝑇𝑁𝑁,𝑗𝑗  = - ∆𝑡𝑡
2
𝑢𝑢𝑡𝑡𝑡𝑡(𝑥𝑥𝑁𝑁 , 𝜂𝜂𝑗𝑗 ) − 𝛼𝛼[(∆𝑥𝑥)2

12
𝑢𝑢𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥  (𝜀𝜀𝑁𝑁 , 𝑡𝑡𝑗𝑗+1) + ∆𝑥𝑥

3
𝑢𝑢𝑥𝑥𝑥𝑥𝑥𝑥  (𝜀𝜀𝑁𝑁 , 𝑡𝑡𝑗𝑗+1)]                (3.21) 
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Hence, 𝑇𝑇𝑁𝑁,𝑗𝑗 →0, as ∆𝑡𝑡, ∆𝑥𝑥 → 0.   
Therefore, the difference approximation is consistent at 

the boundary points and the interior points. 

3.4. Stability of the Implicit (BTCS) Scheme  

Using Gerschgorin’s Theorem, the eigenvalues of the 
coefficient matrix A of equation (2.22) are contained in 
circles centered at (1+2r) with radius of 2r.  

        |𝜆𝜆𝑖𝑖 − (1 + 2𝑟𝑟)| ≤ 2r ⇒ 1 ≤ 𝜆𝜆𝑖𝑖  ≤ 1+4r  
 

 
 

Thus, all eigenvalues are at least 1. In solving for 𝑢𝑢𝑖𝑖 ,𝑗𝑗+1 
in equation (2.23), we have 𝑢𝑢𝑖𝑖 ,𝑗𝑗+1 = A−1[𝑢𝑢𝑖𝑖,𝑗𝑗  - 𝑏𝑏𝑗𝑗 ]. Since 
the eigenvalues of A-1 are the reciprocal of the eigenvalues 
of A, the eigenvalues of A-1 are all ≤ 1. Thus, the implicit 
algorithm yields stable iterates and do not grow without 
bound. Hence, it is unconditionally stable. 

4. Numerical Experiments and 
Discussion 

This section presents convergence rates of the FTCS and 
BTCS schemes by means of applying the schemes to solve a 
one dimensional diffusion equation with Neumann boundary 
conditions. Four numerical problems are presented and, both 
FTCS and BTCS schemes have been implemented on the 
same time steps for each iteration solution. To look at the 
accuracy of the methods, difference between the exact 
solution 𝑢𝑢�𝑥𝑥𝑖𝑖 , 𝑡𝑡𝑗𝑗 �  and the approximate solution 𝑢𝑢𝑖𝑖,𝑗𝑗  
(solution error) is used. For 𝑒𝑒𝑖𝑖,𝑗𝑗 (∆𝑥𝑥) denotes the error in the 

calculation with grid spacing ∆𝑥𝑥, its magnitude is measured 
by the maximum norm,     

�𝑒𝑒𝑖𝑖 ,𝑗𝑗 (∆𝑥𝑥) �
∞

 = �𝑢𝑢�𝑥𝑥𝑖𝑖 , 𝑡𝑡𝑗𝑗 � − 𝑢𝑢𝑖𝑖,𝑗𝑗 �∞  

= max1≤ i ≤N�𝑢𝑢�𝑥𝑥𝑖𝑖 , 𝑡𝑡𝑗𝑗 � − 𝑢𝑢𝑖𝑖 ,𝑗𝑗  �             (4.1) 
To improve the accuracy and again to determine order of 

accuracy of the methods, the grid sizes were refined. The 
time step size ∆𝑡𝑡 is set extremely small to reduce the effect 
from the temporal dimension, so that the discretization error 
in time is negligible in which we have used,  

∆𝑡𝑡𝑘𝑘= (∆𝑥𝑥𝑘𝑘)2

2
                     (4.2) 

k = 1, 2, 3, 4, 5, 6 (which is the number of iterations), to 
have a proper resolution expecting that the resulting error of 
the solution will approaches to zero. Then, we plot numerical 
solutions with their exact solutions for different iterations to 
determine convergence of the methods as grid sizes were 
refined. The order of accuracy p which determines 
convergence rate between two errors, [3, 8] was obtained as,  

p𝑘𝑘  = log (𝑒𝑒𝑘𝑘/𝑒𝑒𝑘𝑘+1)
log (∆𝑥𝑥𝑘𝑘/∆𝑥𝑥𝑘𝑘+1)

              (4.3) 

We also plot errors as a function of ∆𝑥𝑥 in a loglog plot 
and determine the slope of the line that appears to 
approximate p.  

In this work, we have taken thermal diffusivity constant  
𝛼𝛼 = 1, total number of spatial nodes for first iteration N = 6 
for the interval [0, 1] which means ∆𝑥𝑥1= 0.2, total number of 
time steps for first iteration M = 51 for the interval [0, 1] 
which means ∆𝑡𝑡1 = 0.02.  

Example 1: Consider one dimensional heat equation    
𝑢𝑢𝑡𝑡  = 𝑢𝑢𝑥𝑥𝑥𝑥  

with initial condition 𝑢𝑢 (x,0) = sin(𝜋𝜋x) , and boundary 
conditions 

𝑢𝑢𝑥𝑥 (0, t) = e−π2t , 𝑢𝑢𝑥𝑥 (1, t) = −πeπ2t. 

The exact solution is given by 𝑢𝑢(x, t) = e−π2t  sin(𝜋𝜋x). 
The numerical results of the example are shown in  

Figure 1, Table 1 and Figure 2 below. 

 

              For ∆𝑥𝑥= 0.2, M = 6 and t = 0.1             For ∆𝑥𝑥= 0.1, M = 11 and t = 0.05              For ∆𝑥𝑥= 0.05, M = 21 and t = 0.025 

Figure 1.  FTCS and BTCS solutions with their exact solutions for example 1 

 

    1 + 2r  
 
 1-4r 1 
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Table 1.  Convergence rate of FTCS and BTCS schemes for example 1 

K M FTCS Rate BTCS Rate 

1 6 1.421118262636863 1.485493701296148 1.657171433090590 1.616737728196271 

2 11 0.507518710785459 1.487685850722192 0.540357130637248 1.530634490126381 

3 21 0.180973086310408 1.488628142544331 0.187031170979587 1.511013860635447 

4 41 0.064489984062137 1.492744213403491 0.065622609619807 1.504856226428579 

5 81 0.022915613330621 1.495944186204181 0.023123130685518 1.502321831879283 

6 161 0.008124701492246  0.008162114806405  
 

 
Figure 2.  Order of accuracy of FTCS and BTCS methods for example 1 

Example 2: Consider one dimensional heat equation    
𝑢𝑢𝑡𝑡  = 𝑢𝑢𝑥𝑥𝑥𝑥  

with initial condition 𝑢𝑢(x, 0) = ex , and boundary conditions 𝑢𝑢𝑥𝑥 (0, t) = e−t, 𝑢𝑢𝑥𝑥 (1, t) = e1−t . 
The exact solution is given by 𝑢𝑢(𝑥𝑥, 𝑡𝑡) =ex−t .    
The numerical results of the example are shown in Figure 3, Table 2 and Figure 4 below. 

 
               For ∆𝑥𝑥= 0.2, M = 6 and t = 0.1              For ∆𝑥𝑥= 0.1, M = 11 and t = 0.05             For ∆𝑥𝑥= 0.05, M = 21 and t = 0.025 

Figure 3.  FTCS and BTCS solutions with their exact solutions for example 2 
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Table 2.  Convergence rate of FTCS and BTCS schemes for example 2 

K M FTCS Rate BTCS Rate 

1 6 0.426954049627740 0.903710476481229 0.412386177657661 0.871254538512916 

2 11 0.228211316509002 0.925742106493148 0.225439675293694 0.914440034947635 

3 21 0.120132643578023 0.947075170395023 0.119606965024506 0.942995597977189 

4 41 0.062310753006845 0.962755194021133 0.062213768625893 0.961305032375189 

5 81 0.031970159848917 0.973888756468443 0.031952501211662 0.973374159843547 

6 161 0.016277026839019  0.016273839964623  
 

 
Figure 4.  Order of accuracy of FTCS and BTCS methods for example 2 

Example 3: Consider one dimensional heat equation     
𝑢𝑢𝑡𝑡  = 𝑢𝑢𝑥𝑥𝑥𝑥  

with initial condition 𝑢𝑢(x, 0) = sin(x), and boundary conditions 𝑢𝑢𝑥𝑥 (0, t) = 1, 𝑢𝑢𝑥𝑥 (1, t) = sin(t).  
The exact solution is given by 𝑢𝑢(x, t) = t3

3
 x + e−tsin(x). 

The numerical results of the example are shown in Figure 5, Table 3 and Figure 6 below. 

 
             For ∆𝑥𝑥= 0.2, M = 6 and t = 0.1               For ∆𝑥𝑥= 0.1, M = 11 and t = 0.05             For ∆𝑥𝑥= 0.05, M = 21 and t = 0.025 

Figure 5.  FTCS and BTCS solutions with their exact solutions for example 3 
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Table 3.  Convergence rate of FTCS and BTCS schemes for example 3 

K M FTCS Rate BTCS Rate 

1 6 0.171705105582934 0.505769645030705 0.151987986387044 0.330189389699311 

2 11 0.120929254309735 0.413736891318337 0.120896116591605 0.413297969701572 

3 21 0.090778742046850 0.456692181302963 0.090781481252673 0.456696381553922 

4 41 0.066146385090949 0.478335278803461 0.066148188443398 0.478359834773568 

5 81 0.047480233711860 0.489170002551645 0.047480719996488 0.489180211793695 

6 161 0.033826573234344  0.033826680304862  

 
Figure 6.  Order of accuracy of FTCS and BTCS methods for example 3 

Example 4: Consider inhomogeneous one dimensional heat equation     

𝑢𝑢𝑡𝑡  = 𝑢𝑢𝑥𝑥𝑥𝑥  + (π
2

2
) 𝑒𝑒

−π2
2 t cos(πx) + x-2 

with initial condition 𝑢𝑢(x, 0) = cos(πx) + x2, and boundary conditions 𝑢𝑢𝑥𝑥 (0, t) = t, 𝑢𝑢𝑥𝑥 (1, t) = 2+t. 

The exact solution is given by 𝑢𝑢(x, t) = x2 + xt +𝑒𝑒
−π2

2 t cos(πx). 

The numerical results of the example are shown in Figure 7, Table 4 and Figure 8 below. 

 
For ∆𝑥𝑥= 0.2, M = 6 and t = 0.1            For ∆𝑥𝑥= 0.1, M = 11 and t = 0.05              For ∆𝑥𝑥= 0.05, M = 21 and t = 0.025 

Figure 7.  FTCS and BTCS solutions with their exact solutions for example 4 
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Table 4.  Convergence rate of FTCS and BTCS schemes for example 4 

K M FTCS Rate BTCS Rate 

1 6 0.383930214523626 0.716139145447695 0.316496602350487 0.527146872402019 

2 11 0.233707649584338 0.832347641975832 0.219625129930923 0.767734666918440 

3 21 0.131253629211403 0.909272406182062 0.128994403321771 0.890769305899846 

4 41 0.069886461560893 0.953716804535024 0.069570093604313 0.948820415935307 

5 81 0.036082422427840 0.977365116912930 0.036041194980097 0.976121153824764 

6 161 0.018326497405415  0.018321348481068  

 

 

Figure 8.  Order of accuracy of FTCS and BTCS methods for example 4 

Figure 1, Figure 3, Figure 5 and Figure 7 above present 
the numerical solutions with their exact solutions for each 
example and clearly show that the methods are convergent 
as grid sizes were refined. Also as one can see from the error 
values computed in the Table 1 – Table 4, as grid sizes were 
refined the error of the two methods reduces and becomes 
almost the same with one another which indicates that, 
solutions of the methods are very similar and also accurate, 
smooth and hardly distinguishable from the exact solution. 
Also both methods are first-order accurate in the spatial 
dimension. But their convergence rate towards its order of 
accuracy is slow in every Table. This first order of accuracy 
can be obtained by the effect of using Neumann boundary 
conditions at end points 𝑥𝑥1 and 𝑥𝑥𝑁𝑁 in which the errors in 
the ratio of differences to find order of accuracy prevents 

the convergence rate to be actual order.  

5. Conclusions 
This study has considered the FTCS and BTCS finite 

difference schemes for solving one dimensional time 
dependent diffusion equation with Neumann boundary 
conditions. The difference schemes are derived. Using Lax 
Equivalence Theorem, convergence of the methods was 
described by testing consistency and stability of the methods. 
Stability was discussed by using Gerschgorin’s Theorem and 
shown that BTCS method is unconditionally stable and 
FTCS method is stable only if stability limit r  ≤  1

2
. A 

systematic study was applied to the four test numerical 

10 -3 10 -2 10 -1 10 0 
10 -3 

10 -2 

10 -1 

10 0 

∆𝑥𝑥 
 

error 

Log-log scale for example 4 

  

  

FTCS 
FTCS Slope=0.884 
BTCS Slope=0.8361 
BTCS 

 



102 Doyo Kereyu et al.:  Convergence Rates of Finite Difference Schemes for  
the Diffusion Equation with Neumann Boundary Conditions 

problems and the schemes have been successfully applied. 
The performance of the schemes for the considered problems 
was measured by calculating the error. The result of the 
computed errors showed that, increasing of resolution 
increases accuracy of the methods and therefore schemes are 
capable of solving the problems. Most usefully the analysis 
presented here shows that, both methods are first-order 
accurate in the spatial dimension regardless of the actual 
order by the result of using Neumann boundary conditions.  
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