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Abstract  The analysis and design in structural and geotechnical engineering problems requires the calculation of stress 
and strain which is generally a difficult task because of the uncertainty and spatial variability of the properties of soil 
materials. This paper presents a procedure of conducting Stochastic Finite Element Analysis using Polynomial Chaos in order 
to propagate the uncertainties of input to constitutive relation of stress and strain. The problem is dominated by highly non 
linearity. Among other methods the procedure leads to an efficient computational cost for real practical problems. This is 
achieved by polynomial chaos expansion displacement field, stress and strain also. An example of a plane-strain strip load on 
a semi-infinite elastic foundation is presented and the results of settlement are compared to those obtained from the closed 
form solution method. A close matching of the two is observed. The constitutive relation of stress and strain is presented as 
result of the Polynomial Chaos expansion and Monte Carlo method. A close matching of the two method is observed also. 
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1. Introduction 
The analysis and design in structural and geotechnical 

engineering problems requires the calculation of stress and 
strain which is generally a difficult task because of the 
uncertainty and spatial variability of the materials’s 
properties. Various forms of uncertainties arise which 
depend on the nature of geological formation or construction 
method, the site investigation, the type and the accuracy of 
design calculations etc. In recent years there has been 
considerable interest amongst engineers and researchers in 
the issues related to quantification of uncertainty as it affects 
safety, design as well as the cost of projects.  

A number of approaches using statistical concepts have 
been proposed in engineering in the past 25 years or so. 
These include the Stochastic Finite Element Method (SFEM) 
[1-3], and the Random Finite Element Method (RFEM) [4-8]. 
The RFEM involves generating a random field of soil or 
structure properties with controlled mean, standard deviation 
and spatial correlation length, which is then mapped onto a 
finite element mesh. However the number of works on the 
stochastic stress and strain calculation and their statistical 
moments are limited. An essential paper on the field is 
presented by Ghosh & Farhat [9] where the constitutive 
relation of stress and strain calculated by different 
approaches. 
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In the past SFEM has been developed using different 
expansions of stochastic variables. In this paper we present 
SFEM [11-13] using the method of Generalized Polynomial  

Chaos (GPC) [14]. To descretise the stochastic process of 
material the Karhunen-Loeve Expansion was used and it is 
presented. The constitutive relation of stress and strain 
calculated using the Generalized Polynomial Chaos and 
verified against Monte Carlo simulation which is treated as 
the exact solution based on a series of computational 
experiment. 

A numerical example of foundation settlement given in 
the last part of the paper and the results of settlement 
compared with those arises from closed form solution. The 
two methods of stress and strains constitutive relation 
compared also and the results are presented. 

2. Problem Description and Model 
Formulation 

Let us consider a general boundary value problem of 
computation of probable deformation of a body of arbitrary 
shape having randomly varying material properties caused 
by the application of a randomly varying load as shown in 
Fig. 1.  

According to the elasticity theory a boundary value 
problem can be described as follow: 

⎩
⎪
⎨

⎪
⎧𝜎𝜎𝑖𝑖𝑖𝑖 ,𝑗𝑗 (𝑥𝑥,𝜔𝜔) = 𝑓𝑓(𝑥𝑥,𝜔𝜔)  𝑖𝑖𝑖𝑖 𝐷𝐷 × 𝛺𝛺                                         

𝜎𝜎𝑖𝑖𝑖𝑖 (𝑥𝑥,𝜔𝜔) = 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (𝑥𝑥,𝜔𝜔)𝜀𝜀𝑘𝑘𝑘𝑘 (𝑥𝑥,𝜔𝜔) 𝑖𝑖𝑖𝑖 𝐷𝐷 × 𝛺𝛺 
𝑢𝑢(𝑥𝑥,𝜔𝜔) = 𝑔𝑔𝐷𝐷  𝑖𝑖𝑖𝑖 𝐵𝐵𝐷𝐷                                         

𝜎𝜎𝑖𝑖𝑖𝑖 (𝑥𝑥,𝜔𝜔)𝑛𝑛𝑗𝑗 = 𝑔𝑔𝑁𝑁  𝑖𝑖𝑖𝑖 𝐵𝐵𝐷𝐷                                                       

�  (1) 
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And in the weak form as: 
𝑎𝑎(𝑢𝑢, 𝑣𝑣) = 𝑙𝑙(𝑣𝑣)              (2) 

Where: 
𝑎𝑎(𝑢𝑢, 𝑣𝑣) = ∫ 𝜀𝜀𝛵𝛵(𝑣𝑣)𝐶𝐶(𝑥𝑥,𝜔𝜔)𝜀𝜀(𝑢𝑢) 

𝐷𝐷 𝑑𝑑𝑑𝑑      (3) 

𝑙𝑙(𝑣𝑣) = � 𝑓𝑓(𝑥𝑥,𝜔𝜔) ∙ 𝑣𝑣𝑣𝑣𝑣𝑣 + � 𝑔𝑔𝑁𝑁 ∙ 𝑣𝑣𝑣𝑣𝑣𝑣
 

𝐵𝐵𝑁𝑁

 

𝐷𝐷
 

−∫ 𝜀𝜀𝛵𝛵(𝑣𝑣)𝐶𝐶(𝑥𝑥,𝜔𝜔)𝜀𝜀(𝑢𝑢) 
𝐵𝐵𝐷𝐷

𝑑𝑑𝑑𝑑 ∙ 𝑔𝑔𝐷𝐷       (4) 

 

Figure 1.  Body of arbitrary shape 

In order to model the problem assuming the sample space 
(Ω,ℱ,ℙ)  where ℱ  is the σ-algebra and is considered to 
contain all the information that is available, ℙ  is the 
probability measure and the spatial domain of the soil or the 
structure is  𝐷𝐷 ⊂  ℝ2. The Elasticity modulus {𝐸𝐸( 𝑥𝑥 ,𝜔𝜔) : ∈
 𝐷𝐷 × 𝛺𝛺}  and the external load   {𝑓𝑓( 𝑥𝑥 ,𝜔𝜔) : ∈  𝐷𝐷 × 𝛺𝛺} 
considered as second order random fields and their functions 
are determined 𝐸𝐸, 𝑓𝑓:𝐷𝐷 ×  𝛺𝛺 →  ℝ ∈ 𝑉𝑉 = 𝐿𝐿2�𝛺𝛺, 𝐿𝐿2(𝐷𝐷)� 
and characterized by specific distribution where in our case 
as lognormal. Considering as 𝜇𝜇𝑘𝑘 , 𝜎𝜎𝑘𝑘  and 𝑣𝑣𝑘𝑘 = 𝜎𝜎𝑘𝑘

𝜇𝜇𝑘𝑘
 the 

mean value the standard deviation and the coefficient of 
variation of Elasticity modulus, the lognormal distribution is 
given [8]:  

𝐸𝐸 = exp(𝜇𝜇𝑙𝑙𝑙𝑙𝑙𝑙 + 𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙 𝑍𝑍(𝜔𝜔))       (5) 
Where the mean values and the variance of the distribution 

are equal to: 

�
𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙2 = ln(1 + 𝑣𝑣𝑘𝑘2)      
𝜇𝜇𝑙𝑙𝑙𝑙𝑙𝑙 = ln(𝜇𝜇𝑘𝑘) − 1

2
𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙2   �        (6) 

And  𝜔𝜔 ∈ 𝛺𝛺, 𝛧𝛧 ∼ 𝛮𝛮(0,1) 
To separate the deterministic part from the stochastic part 

of the formulation the Karhunen-Loeve expansion has been 
used. It is considered as the most efficient method for the 
discretization of a random field, requiring the smallest 
number of random variables to represent the field within a 
given level of accuracy. Based on that the stochastic process 
of Young modulus over the spatial domain with a known 
mean value E�(x)  and covariance matrix 𝐶𝐶𝐶𝐶𝐶𝐶(x1, x2)  

assuming lognormal distribution is given by: 

𝐸𝐸�𝒙𝒙, 𝜉𝜉(𝜔𝜔)� = exp(𝛦𝛦�(𝒙𝒙) + ∑ �𝜆𝜆𝜅𝜅𝑤𝑤𝜅𝜅(𝒙𝒙)𝜉𝜉𝜅𝜅(𝝎𝝎)∞
𝜅𝜅 ) (7) 

In practice, calculations were carried out over a finite 
number of summations (for example 1-5) so the approximate 
stochastic representation is given by the trancuated part of 
expansion: 

𝐸𝐸�𝒙𝒙, 𝜉𝜉(𝜔𝜔)� = exp(𝛦𝛦�(𝒙𝒙) + ∑ �𝜆𝜆𝜅𝜅𝑤𝑤𝜅𝜅𝜉𝜉𝜅𝜅(𝜔𝜔)𝛫𝛫
𝜅𝜅=1 )   (8) 

Where: 
𝜆𝜆𝜅𝜅 : are the eingenvalues of the covariance function  
𝑤𝑤𝜅𝜅(𝒙𝒙): are the eingenfunctions of the covariance function 

𝐶𝐶𝐶𝐶𝐶𝐶(x1, x2) 
x ∈ D and ω ∈ Ω  

𝝃𝝃 = [𝜉𝜉1, 𝜉𝜉1, … , 𝜉𝜉𝛭𝛭 ]:𝛺𝛺 → 𝛤𝛤 ⊂ ℝ𝛭𝛭  
and 

𝛤𝛤 = 𝛤𝛤1 × 𝛤𝛤1 × … × 𝛤𝛤𝛭𝛭  
The pairs of eingenvalues and eingenfunctions arised by 

the equation: 

∫ 𝐶𝐶(𝑥𝑥1
 
𝐷𝐷 , 𝑥𝑥2)𝜑𝜑𝜅𝜅(𝑥𝑥2) = 𝜆𝜆𝜅𝜅𝑤𝑤𝜅𝜅(𝑥𝑥1)       (9) 

Using the Karhunen-Loeve expansion the stochastic 
elasticity tensor is given by: 

𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 (𝒙𝒙,𝒚𝒚) = 𝐸𝐸(𝒙𝒙)𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∗ (𝒙𝒙),     𝑖𝑖, 𝑗𝑗, 𝑘𝑘, 𝑙𝑙 = 1,2,3   (10) 

𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∗ (𝑥𝑥): is expressed in terms of (deterministic) Poisson's 
ratio as 

𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∗ (𝒙𝒙) = 𝑣𝑣
(1+𝑣𝑣)

𝛿𝛿𝑖𝑖𝑖𝑖 𝛿𝛿𝑘𝑘𝑘𝑘 + 1
2(1+𝑣𝑣)

(𝛿𝛿𝑖𝑖𝑖𝑖𝛿𝛿𝑗𝑗𝑗𝑗 + 𝛿𝛿𝑙𝑙𝑙𝑙𝛿𝛿𝑗𝑗𝑗𝑗 ) (11) 

To compute the statistical moments of the calculations 
output we perform a change of variable 𝑦𝑦𝑘𝑘 : = 𝜉𝜉𝑘𝑘(𝜔𝜔) and 
𝒚𝒚 = [𝑦𝑦1,𝑦𝑦2 ⋯ ,𝑦𝑦𝑀𝑀]  [10]. If the random variables are 
independent and 𝜌𝜌𝑖𝑖  denote the density of 𝜉𝜉𝑖𝑖  then the joint 
density is given by: 

𝜌𝜌(𝒚𝒚) = 𝜌𝜌1(𝑦𝑦1)𝜌𝜌2(𝑦𝑦2)⋯𝜌𝜌𝑀𝑀(𝑦𝑦𝑀𝑀)       (12) 

Drakos & Pande [12, 13] developed a new algorithm of 
Stochastic Finite method using the Generalized Polynomial 
Chaos (appendix A) and proved that the problem formulation 
has the final form: 

𝑄𝑄𝑚𝑚⨂𝐾𝐾𝑚𝑚 = 𝑞𝑞0⨂�𝑓𝑓0+𝑡𝑡𝑔𝑔𝑔𝑔� − 𝑄𝑄𝑚𝑚⨂𝐾𝐾𝐵𝐵𝐵𝐵 ∙ 𝑔𝑔𝑑𝑑   (13) 

Where: 

�
𝑄𝑄𝑚𝑚 = ∫ 𝜌𝜌(𝒚𝒚)𝜓𝜓𝜅𝜅(𝒚𝒚)𝜓𝜓𝑝𝑝(𝒚𝒚)exp(∑ �𝜆𝜆𝜅𝜅𝜑𝜑𝜅𝜅𝑦𝑦𝜅𝜅𝛫𝛫

𝜅𝜅=1 ) 
𝛤𝛤 𝑑𝑑𝑑𝑑   

𝐾𝐾𝑚𝑚 = ∫ 𝐵𝐵𝑇𝑇exp(𝛦𝛦�(𝒙𝒙))𝐶𝐶∗(𝒙𝒙)𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 
𝐷𝐷                          

�(14) 

⎩
⎪
⎨

⎪
⎧ 𝑞𝑞0 = ∫ 𝜌𝜌(𝒚𝒚)𝜓𝜓𝑝𝑝(𝒚𝒚)𝜓𝜓1(𝒚𝒚) 

𝛤𝛤 𝑑𝑑𝑑𝑑             
𝐾𝐾𝐵𝐵𝐵𝐵 = ∫ 𝐵𝐵𝑇𝑇exp(𝛦𝛦�(𝒙𝒙))𝐶𝐶∗(𝒙𝒙)𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 

𝐵𝐵𝐵𝐵
𝑓𝑓0 = ∫ 𝜑𝜑𝛵𝛵𝑓𝑓(𝒙𝒙)𝑑𝑑𝑑𝑑                                     

𝐷𝐷
𝑡𝑡𝑔𝑔𝑔𝑔 = ∫ 𝜑𝜑𝛵𝛵 ⋅ 𝑔𝑔𝑁𝑁𝑑𝑑𝑑𝑑

 
𝐵𝐵𝐵𝐵                                     

�  (15) 

B is strain displacement matrix. 
𝜑𝜑 is the hat function.  
𝜓𝜓 is the Polynomial Chaos 
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3. Constitutive Relations of Stress and 
Strain 

The calculation of the constitutive relation of stress and 
strain in the case of stochastic problems is quite complicated 
especially when the invariant of them are needed where the 
equations become highly nonlinear. In [9] several numerical 
integration schemes to evaluate the statistical moments of 
strains and stresses in a random system is presented. In the 
current work the propagation of the input uncertainty to the 
stress and strain relation is modelled by the polynomial 
Chaos expansion and verified against Monte Carlo 
simulation which is treated as the exact solution of the 
problems. The computational implementation of the Monte 
Carlo Method leads to the random field generation and the 
requested function  uk(x)  gets a new value for each 
realization. At the end of all simulations the statistical 

moment are calculated.  
The expected value and the variance are given by:   

�
𝔼𝔼�𝑢𝑢(𝒙𝒙)� = 1

𝐾𝐾
∑ 𝑢𝑢𝑘𝑘(𝒙𝒙)𝐾𝐾
𝑘𝑘=1                                       

𝑉𝑉𝑉𝑉𝑉𝑉(𝑢𝑢(𝒙𝒙)) = 1
𝐾𝐾−1

∑ (𝑢𝑢𝑘𝑘(𝒙𝒙) − 𝔼𝔼(𝑢𝑢(𝒙𝒙))2𝐾𝐾
𝑘𝑘=1

�  (16) 

In an elastostatic problem of homogeneous isotropic body 
one of the field equations that must be satisfied at all interior 
points of the body is the Strain-Displacement relations: 

𝜀𝜀𝑖𝑖𝑖𝑖 (𝒙𝒙,𝒚𝒚) = 1
2
�𝑢𝑢(𝒙𝒙,𝒚𝒚)𝑖𝑖 ,𝑗𝑗 + 𝑢𝑢(𝒙𝒙,𝒚𝒚)𝑗𝑗 ,𝑖𝑖�      𝑖𝑖, 𝑗𝑗 = 1,2,3 (17) 

Using the displacement polynomial chaos expansion  

𝑢𝑢(𝒙𝒙,𝒚𝒚) = ∑ 𝑢𝑢𝑘𝑘(𝒙𝒙)𝜓𝜓𝜅𝜅(𝒚𝒚)𝑄𝑄
𝑘𝑘=1          (18) 

Where: Q and ψ are given in appendix A 
The equation 17 leads to:  

𝜀𝜀𝑖𝑖𝑖𝑖 (𝒙𝒙,𝒚𝒚) =
1
2
���𝑢𝑢𝑖𝑖

(𝑘𝑘)(𝒙𝒙)𝜓𝜓𝜅𝜅(𝒚𝒚)
𝑄𝑄

𝑘𝑘=0

�

,𝑗𝑗

+ ��𝑢𝑢𝑗𝑗
(𝑘𝑘)(𝒙𝒙)𝜓𝜓𝜅𝜅(𝒚𝒚)

𝑄𝑄

𝑘𝑘=0

�

,𝑖𝑖

� ⟹ 

       (19) 

𝜀𝜀𝑖𝑖𝑖𝑖 (𝒙𝒙,𝒚𝒚) =
1
2
��𝑢𝑢𝑖𝑖 ,𝑗𝑗

(𝑘𝑘)(𝒙𝒙)𝜓𝜓𝜅𝜅(𝒚𝒚)
𝑄𝑄

𝑘𝑘=0

+ �𝑢𝑢𝑗𝑗 ,𝑖𝑖
(𝑘𝑘)(𝒙𝒙)𝜓𝜓𝜅𝜅(𝒚𝒚)

𝑄𝑄

𝑘𝑘=0

� = �𝜀𝜀𝑖𝑖𝑖𝑖
(𝑘𝑘)𝜓𝜓𝜅𝜅(𝒚𝒚)

𝑄𝑄

𝑘𝑘=0

 

3.1. Expected Value of Strains 

According to the polynomial chaos expansion of strains the expected value can be evaluated by the following: 

𝔼𝔼[𝜀𝜀𝑖𝑖𝑖𝑖 (𝒙𝒙,𝒚𝒚)] = 𝔼𝔼 �
1
2
��𝑢𝑢𝑖𝑖 ,𝑗𝑗

(𝑘𝑘)(𝒙𝒙)𝜓𝜓𝜅𝜅(𝒚𝒚)
𝑄𝑄

𝑘𝑘=0

+ �𝑢𝑢𝑗𝑗 ,𝑖𝑖
(𝑘𝑘)(𝒙𝒙)𝜓𝜓𝜅𝜅(𝒚𝒚)

𝑄𝑄

𝑘𝑘=0

�� 

=
1
2

⎝

⎜
⎛
𝑢𝑢𝑖𝑖,𝑗𝑗

(0)(𝒙𝒙)𝔼𝔼[𝜓𝜓0(𝒚𝒚)]�������
1

+ �𝑢𝑢𝑖𝑖,𝑗𝑗
(𝑘𝑘)(𝒙𝒙)𝔼𝔼[𝜓𝜓𝜅𝜅(𝒚𝒚)]

𝑄𝑄

𝑘𝑘=1�������������
0

+ 𝑢𝑢𝑗𝑗 ,𝑖𝑖
(0)(𝒙𝒙)𝔼𝔼[𝜓𝜓0(𝒚𝒚)]�������

1

+ �𝑢𝑢𝑗𝑗 ,𝑖𝑖
(𝑘𝑘)(𝒙𝒙)𝔼𝔼[𝜓𝜓𝜅𝜅(𝒚𝒚)]

𝑄𝑄

𝑘𝑘=1�������������
0 ⎠

⎟
⎞

 

⟹ 𝔼𝔼�𝜀𝜀𝑖𝑖𝑖𝑖 (𝒙𝒙,𝒚𝒚)� = 1
2
�𝑢𝑢𝑖𝑖,𝑗𝑗

(0)(𝒙𝒙) + 𝑢𝑢𝑗𝑗 ,𝑖𝑖
(0)(𝒙𝒙)� = 𝜀𝜀𝑖𝑖𝑖𝑖

(0)                                   (20) 

3.2. Variance of Strains 

Respected to the expected value evaluation and the Chaos Polynomial characteristics the variance of the strain tensor can 
be calculated as:   

𝜎𝜎2 = 𝔼𝔼�𝜀𝜀𝑖𝑖𝑖𝑖2 (𝒙𝒙,𝒚𝒚)� − (𝔼𝔼�𝜀𝜀𝑖𝑖𝑖𝑖 (𝒙𝒙,𝒚𝒚�)2 

= �[𝜀𝜀𝑖𝑖𝑖𝑖
(𝜅𝜅)(𝒙𝒙)]2 �𝜌𝜌(𝒚𝒚)𝜓𝜓𝑘𝑘

2(𝒚𝒚)𝑑𝑑𝒚𝒚
 

𝛤𝛤
− [𝜀𝜀𝑖𝑖𝑖𝑖

(0)(𝒙𝒙)]2
𝑃𝑃

𝑘𝑘=0

 

= [𝜀𝜀𝑖𝑖𝑖𝑖
(0)(𝒙𝒙)]2 �𝜌𝜌(𝒚𝒚)𝜓𝜓0

2(𝒚𝒚)𝑑𝑑𝒚𝒚+
 

𝛤𝛤�������������
1

�[𝜀𝜀𝑖𝑖𝑖𝑖
(𝜅𝜅)(𝒙𝒙)]2 �𝜌𝜌(𝒚𝒚)𝜓𝜓𝑘𝑘

2(𝒚𝒚)𝑑𝑑𝒚𝒚
 

𝛤𝛤
− [𝜀𝜀𝑖𝑖𝑖𝑖

(0)(𝒙𝒙)]2

𝑄𝑄

𝑘𝑘=1

⇒ 

𝜎𝜎2 = ∑ [𝜀𝜀𝑖𝑖𝑖𝑖
(𝜅𝜅)(𝒙𝒙)]2 < 𝜓𝜓𝑘𝑘

2(𝒚𝒚) >𝑄𝑄
𝑘𝑘=1                                          (21) 
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3.3. Expected Value of Stress Tensor 

The constitutive relation of stress and strain given by the well known equation of Hooke’s law equation: 
𝜎𝜎𝑖𝑖𝑖𝑖 (𝑥𝑥,𝑦𝑦) = 𝐸𝐸(𝑥𝑥,𝑦𝑦)𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∗ 𝜀𝜀𝑚𝑚𝑚𝑚                                    (22) 

Using the polynomial chaos expansion of strains we get: 

𝜎𝜎𝑖𝑖𝑖𝑖 (𝑥𝑥,𝑦𝑦) = 𝐸𝐸(𝑥𝑥,𝑦𝑦)𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∗ ∑ 𝜀𝜀𝑚𝑚𝑚𝑚
(𝑘𝑘)𝜓𝜓𝜅𝜅(𝒚𝒚)𝑄𝑄

𝑘𝑘=0                             (23) 

According to the elasticity modulus distribution and the strain tensor Chaos Polynomial expansion the expected value of 
stress tensor takes the following form: 

< 𝜎𝜎𝑖𝑖𝑖𝑖 (𝑥𝑥,𝑦𝑦) >=< 𝐸𝐸(𝑥𝑥,𝑦𝑦)𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∗ 𝜀𝜀𝑚𝑚𝑚𝑚 >                          

=< 𝑒𝑒𝑒𝑒 𝑝𝑝(𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙 + 𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙 𝒚𝒚)𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∗ �𝜀𝜀𝑚𝑚𝑚𝑚
(𝑘𝑘)𝜓𝜓𝑘𝑘(𝑦𝑦)

𝑄𝑄

𝑘𝑘=0

>     

= 𝑒𝑒𝑚𝑚𝑚𝑚 𝑙𝑙𝑙𝑙𝑙𝑙 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∗ �𝜀𝜀𝑚𝑚𝑚𝑚
(𝑘𝑘) �𝜌𝜌(𝒚𝒚)𝑒𝑒𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙 𝒚𝒚𝜓𝜓𝑘𝑘 (𝒚𝒚)𝑑𝑑𝒚𝒚

 

𝛤𝛤  
)

𝑄𝑄

𝑘𝑘=0

⇒ 

< 𝜎𝜎𝑖𝑖𝑖𝑖 (𝑥𝑥,𝑦𝑦) >= 𝑒𝑒𝑚𝑚𝑚𝑚 𝑙𝑙𝑙𝑙𝑙𝑙 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∗ ∑ 𝜀𝜀𝑚𝑚𝑚𝑚
(𝑘𝑘) < 𝑒𝑒𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙 𝒚𝒚 𝜓𝜓𝑘𝑘

 (𝒚𝒚) >𝑄𝑄
𝑘𝑘=0                      (24) 

3.4. Variance of Stress Tensor 

Having calculated the expected value of stress tensor and knowing its stochastic equation of by the Hook’s law constitutive 
relation, the variance of stress tensor can be calculated as: 

𝜎𝜎2 = 𝔼𝔼�𝜎𝜎𝑖𝑖𝑖𝑖2 (𝒙𝒙,𝒚𝒚)� − (𝔼𝔼�𝜎𝜎𝑖𝑖𝑖𝑖 (𝒙𝒙,𝒚𝒚�)2 

=< �𝐸𝐸(𝑥𝑥,𝑦𝑦)𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∗ �𝜀𝜀𝑚𝑚𝑚𝑚
(𝑘𝑘)𝜓𝜓𝜅𝜅(𝒚𝒚)

𝑃𝑃

𝑘𝑘=0

�

2

> −[𝑒𝑒𝑚𝑚𝑚𝑚 𝑙𝑙𝑙𝑙𝑙𝑙 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∗ �𝜀𝜀𝑚𝑚𝑚𝑚
(𝑘𝑘) < 𝑒𝑒𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙 𝒚𝒚 𝜓𝜓𝑘𝑘

 (𝒚𝒚) >
𝑃𝑃

𝑘𝑘=0

]2 

Given the elasticity modulus distribution the variance of stress tensor is equal to: 

𝜎𝜎2 =< �exp(𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙 + 𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙 𝒚𝒚)𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∗ ∑ 𝜀𝜀𝑚𝑚𝑚𝑚
(𝑘𝑘)𝜓𝜓𝜅𝜅(𝒚𝒚)𝑄𝑄

𝑘𝑘=0 �
2

> −�𝑒𝑒𝑚𝑚𝑚𝑚 𝑙𝑙𝑙𝑙𝑙𝑙 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∗ ∑ 𝜀𝜀𝑚𝑚𝑚𝑚
(𝑘𝑘) ∫ 𝜌𝜌(𝒚𝒚)𝑒𝑒𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙 𝒚𝒚𝜓𝜓𝑘𝑘 (𝒚𝒚)𝑑𝑑𝒚𝒚 

𝛤𝛤  
)𝑄𝑄

𝑘𝑘=0 �
2
  (25) 

3.5. Pore Pressure Calculation 

A major issue in a wide range of geotechnical and geomechanics problem is the estimation of the excess pore pressure in 
the ground. Using the Chaos Polynomial expansion the statistical moments of pore pressure can be evaluated as following. 
The pore pressure is given by the following equation: 

𝑝𝑝 = 𝐾𝐾𝑎𝑎𝜀𝜀𝑣𝑣 = 𝐾𝐾𝑎𝑎(𝜀𝜀11 + 𝜀𝜀22 + 𝜀𝜀33)                                (25) 
Where: 
𝜀𝜀𝑣𝑣: is the volumetric strain 
𝐾𝐾𝑎𝑎 : is shown [15] as  

𝐾𝐾𝑎𝑎 ≥ 20 𝐸𝐸′
(1−2𝑣𝑣)

                                     (26) 

Assuming a minimum value of 𝐾𝐾𝑎𝑎 = 20 𝐸𝐸′
(1−2𝑣𝑣)

 

3.5.1. Expected Value of Pore Pressure 

The expected value of pore pressure is the result of the summation of the expected value of the strain’s Chaos expansion 
multiplied by the stochastic fluid modulus:  

𝐸𝐸[𝑝𝑝] = 𝐸𝐸[𝐾𝐾𝑎𝑎(𝜀𝜀11 + 𝜀𝜀22 + 𝜀𝜀33)]                              (27) 
Replacing the longnormal distribution o elasticity modulus we get: 

𝐸𝐸[𝑝𝑝] = 𝐸𝐸 �20
𝑒𝑒𝑒𝑒𝑒𝑒(𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙 + 𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙 𝑦𝑦)

(1 − 2𝑣𝑣) ��𝜀𝜀11
(𝑘𝑘)𝜓𝜓𝜅𝜅(𝒚𝒚)

𝑄𝑄

𝑘𝑘=1

+ �𝜀𝜀22
(𝑘𝑘)𝜓𝜓𝜅𝜅(𝒚𝒚)

𝑃𝑃

𝑘𝑘=1

+ �𝜀𝜀33
(𝑘𝑘)𝜓𝜓𝜅𝜅(𝒚𝒚)

𝑄𝑄

𝑘𝑘=1

�� 
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= 20
𝑒𝑒𝑒𝑒𝑒𝑒(𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙 )

(1 − 2𝑣𝑣) 𝐸𝐸 �𝑒𝑒𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙 𝑦𝑦 ��𝜀𝜀11
(𝑘𝑘)𝜓𝜓𝜅𝜅(𝒚𝒚)

𝑄𝑄

𝑘𝑘=1

+ �𝜀𝜀22
(𝑘𝑘)𝜓𝜓𝜅𝜅(𝒚𝒚)

𝑄𝑄

𝑘𝑘=1

+ �𝜀𝜀33
(𝑘𝑘)𝜓𝜓𝜅𝜅(𝒚𝒚)

𝑄𝑄

𝑘𝑘=1

�� 

And finally 

𝐸𝐸[𝑝𝑝] = 20 𝑒𝑒𝑒𝑒𝑒𝑒 (𝑚𝑚𝑚𝑚 𝑙𝑙𝑙𝑙𝑙𝑙 )
(1−2𝑣𝑣)

∑ [𝜀𝜀𝑣𝑣
(𝑘𝑘)]𝑄𝑄

𝑘𝑘=1 ∫ 𝑒𝑒𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙 𝑦𝑦𝜓𝜓𝜅𝜅(𝒚𝒚)𝑑𝑑𝑑𝑑 
𝛤𝛤                         (28) 

3.5.2. Variance of Pore Pressure  

Using the outcome of the pore pressure expected value its variance is given by: 
𝑉𝑉𝑉𝑉𝑉𝑉[𝑝𝑝] = 𝐸𝐸[𝑝𝑝2] − (𝐸𝐸[𝑝𝑝])2 

Where: 

⎩
⎪
⎨

⎪
⎧ 𝐸𝐸[𝑝𝑝2] = 𝐸𝐸 ��20 𝑒𝑒𝑒𝑒𝑒𝑒 (𝑚𝑚𝑚𝑚 𝑙𝑙𝑙𝑙𝑙𝑙 )

(1−2𝑣𝑣)
𝑒𝑒𝜎𝜎𝑦𝑦�∑ 𝜀𝜀𝑣𝑣

(𝑘𝑘)𝜓𝜓𝜅𝜅(𝒚𝒚)𝑄𝑄
𝑘𝑘=1 ��

2

�

(𝐸𝐸[𝑝𝑝])2 = �20 𝑒𝑒𝑒𝑒𝑒𝑒 (𝑚𝑚𝑚𝑚 𝑙𝑙𝑙𝑙𝑙𝑙 )
(1−2𝑣𝑣)

∑ [𝜀𝜀𝑣𝑣
(𝑘𝑘)]𝑄𝑄

𝑘𝑘=1 ∫ 𝑒𝑒𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙 𝑦𝑦𝜓𝜓𝜅𝜅(𝒚𝒚)𝑑𝑑𝑑𝑑 
𝛤𝛤 �

�                    (29) 

3.6. Invariants of Stress Tensor 
It is well known that to solve engineering problem the model itself should be defined independent of the coordinate system 

attached to the material. Thus, it is necessary to define the model in terms of stress invariants which are, by definition, 
independent of the coordinate system selected. The physical content of a stress tensor is reflected exclusively in the stress 
invariants (𝐼𝐼1, 𝐼𝐼2, 𝐼𝐼3). 

Where: 

𝐼𝐼1 = 1
3
𝜎𝜎𝑘𝑘𝑘𝑘                                          (30) 

𝐼𝐼2 = 1
2
�(𝜎𝜎𝑘𝑘𝑘𝑘 )2 − 𝜎𝜎𝑖𝑖𝑖𝑖 𝜎𝜎𝑖𝑖𝑖𝑖 �                                    (31) 

𝛪𝛪3 = 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 𝜎𝜎𝑖𝑖1𝜎𝜎𝑗𝑗2𝜎𝜎𝑘𝑘3                                     (32) 

Solving a stochastic problem the statistical moments of stress invariants are needed. In the following paragraphs the 
calculation of the expected and variance value of each of invariants are presented. 

3.6.1. Expected value of 𝐈𝐈𝟏𝟏 

According to the linearity of the excepted value of 𝐼𝐼1 can be calculated: 

𝛦𝛦[𝐼𝐼1] = 𝛦𝛦[
1
3
𝜎𝜎𝑞𝑞𝑞𝑞 ] ⇒ 

𝛦𝛦[𝐼𝐼1] =
1
3
�𝐸𝐸�𝜎𝜎𝑞𝑞𝑞𝑞 �� 

Where: 

𝐸𝐸�𝜎𝜎𝑞𝑞𝑞𝑞 � = ∑ �𝐶𝐶𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 𝜀𝜀𝑚𝑚𝑚𝑚
(𝑘𝑘)�𝑄𝑄

𝑘𝑘=1 ∫ 𝜌𝜌(𝑦𝑦)𝑒𝑒𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙 𝒚𝒚𝜓𝜓𝜅𝜅(𝑦𝑦)𝑑𝑑𝑑𝑑 
𝛤𝛤                         (33) 

and 
𝐶𝐶 = exp(𝑚𝑚𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙 ) ∙ 𝐶𝐶∗                                    (34) 

3.6.2. Variance of 𝑰𝑰𝟏𝟏 

Knowing the mean value of 𝐼𝐼1 the variance is: 
𝑉𝑉𝑉𝑉𝑉𝑉(𝐼𝐼1) = 𝐸𝐸[𝐼𝐼12] − (𝐸𝐸[𝐼𝐼1])2 

But due to linearity: 

𝑉𝑉𝑉𝑉𝑉𝑉(𝐼𝐼1) =
1
9

(𝑉𝑉𝑉𝑉𝑉𝑉�𝜎𝜎𝑞𝑞𝑞𝑞 �) 
Where: 

�
𝐸𝐸[𝐼𝐼12] = 1

9
𝐸𝐸�𝜎𝜎𝑞𝑞𝑞𝑞2 � = 𝐸𝐸 ��𝑒𝑒𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙 𝑦𝑦𝐶𝐶𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 ∑ 𝜀𝜀𝑚𝑚𝑚𝑚

(𝑘𝑘)𝜓𝜓𝜅𝜅(𝒚𝒚)𝑄𝑄
𝑘𝑘=1 �

2
�                           

(𝐸𝐸[𝐼𝐼1])2 = 1
9
�𝐸𝐸[𝜎𝜎𝑞𝑞𝑞𝑞 ]�

2
=

 
�∑ �𝐶𝐶𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 𝜀𝜀𝑚𝑚𝑚𝑚

(𝑘𝑘)�𝑄𝑄
𝑘𝑘=1 ∫ 𝜌𝜌(𝑦𝑦)𝑒𝑒𝜎𝜎𝜎𝜎𝜓𝜓𝜅𝜅(𝑦𝑦)𝑑𝑑𝑑𝑑 

𝛤𝛤 �
2
�          (35) 
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3.6.3. Expected Value of 𝑰𝑰𝟐𝟐 

As shown before: 

𝐸𝐸[𝐼𝐼2] = 𝐸𝐸[
1
2
��𝜎𝜎𝑞𝑞𝑞𝑞 �

2 − 𝜎𝜎𝑖𝑖𝑖𝑖 𝜎𝜎𝑖𝑖𝑖𝑖 �] 
This gives 

𝐸𝐸[𝐼𝐼2] = 1
2
�𝐸𝐸 ��𝑒𝑒𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙 𝑦𝑦𝐶𝐶𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 ∑ 𝜀𝜀𝑚𝑚𝑚𝑚

(𝑘𝑘)𝜓𝜓𝜅𝜅(𝒚𝒚)𝑄𝑄
𝑘𝑘=1 �

2
� − 𝐸𝐸�𝑒𝑒𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙 𝑦𝑦𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∑ 𝜀𝜀𝑚𝑚𝑚𝑚

(𝑘𝑘)𝜓𝜓𝜅𝜅(𝒚𝒚)𝑄𝑄
𝑘𝑘=1 ∙ 𝑒𝑒𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙 𝑦𝑦𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∑ 𝜀𝜀𝑚𝑚𝑚𝑚

(𝑘𝑘)𝜓𝜓𝜅𝜅(𝒚𝒚)𝑄𝑄
𝑘𝑘=1 �� (36) 

3.6.4. Variance of 𝑰𝑰𝟐𝟐 

The variance of 𝐼𝐼2 due to the stress product on its equation become highly nonlinear. Thus 
𝑉𝑉𝑉𝑉𝑉𝑉(𝐼𝐼2) = 𝐸𝐸[𝐼𝐼22] − (𝐸𝐸[𝐼𝐼2])2 

Where: 

⎩
⎪⎪
⎨

⎪⎪
⎧
𝐸𝐸[𝐼𝐼22] = 1

4
𝐸𝐸 �

��𝑒𝑒𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙 𝑦𝑦𝐶𝐶𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 ∑ 𝜀𝜀𝑚𝑚𝑚𝑚
(𝑘𝑘)𝜓𝜓𝜅𝜅(𝒚𝒚)𝑄𝑄

𝑘𝑘=1 �
2
�

−�𝐸𝐸�𝑒𝑒𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙 𝑦𝑦𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∑ 𝜀𝜀𝑚𝑚𝑚𝑚
(𝑘𝑘)𝜓𝜓𝜅𝜅(𝒚𝒚)𝑄𝑄

𝑘𝑘=1 ∙ 𝑒𝑒𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙 𝑦𝑦𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∑ 𝜀𝜀𝑚𝑚𝑚𝑚
(𝑘𝑘)𝜓𝜓𝜅𝜅(𝒚𝒚)𝑄𝑄

𝑘𝑘=1 ��
2�

 

(𝐸𝐸[𝐼𝐼2])2 = ��1
2
�

𝐸𝐸 ��𝑒𝑒𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙 𝑦𝑦𝐶𝐶𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 ∑ 𝜀𝜀𝑚𝑚𝑚𝑚
(𝑘𝑘)𝜓𝜓𝜅𝜅(𝒚𝒚)𝑄𝑄

𝑘𝑘=1 �
2
� −

𝐸𝐸�𝑒𝑒𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙 𝑦𝑦𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∑ 𝜀𝜀𝑚𝑚𝑚𝑚
(𝑘𝑘)𝜓𝜓𝜅𝜅(𝒚𝒚)𝑄𝑄

𝑘𝑘=1 ∙ 𝑒𝑒𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙 𝑦𝑦𝐶𝐶𝑖𝑖𝑗𝑗𝑗𝑗𝑗𝑗 ∑ 𝜀𝜀𝑚𝑚𝑚𝑚
(𝑘𝑘)𝜓𝜓𝜅𝜅(𝒚𝒚)𝑄𝑄

𝑘𝑘=1 �
���

�          (37) 

3.6.5. Expected Value of 𝜤𝜤𝟑𝟑 

The high non linearity presented also in the statistical moments of 𝐼𝐼3. 
𝐸𝐸[𝛪𝛪3] = 𝐸𝐸[𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 𝜎𝜎𝑖𝑖1𝜎𝜎𝑗𝑗2𝜎𝜎𝑘𝑘3] 

This leads to: 

𝐸𝐸[𝛪𝛪3] = 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 𝐸𝐸�𝑒𝑒3𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙 𝒚𝒚𝐶𝐶𝑖𝑖1𝑚𝑚𝑚𝑚 ∑ 𝜀𝜀𝑚𝑚𝑚𝑚
(𝑘𝑘)𝜓𝜓𝜅𝜅(𝒚𝒚)𝑄𝑄

𝑘𝑘=1 ∙ 𝐶𝐶𝑗𝑗2𝑚𝑚𝑚𝑚 ∑ 𝜀𝜀𝑚𝑚𝑚𝑚
(𝑘𝑘)𝜓𝜓𝜅𝜅(𝒚𝒚)𝑄𝑄

𝑘𝑘=1 ∙ 𝐶𝐶𝑘𝑘3𝑚𝑚𝑚𝑚 ∑ 𝜀𝜀𝑚𝑚𝑚𝑚
(𝑘𝑘)𝜓𝜓𝜅𝜅(𝒚𝒚)𝑄𝑄

𝑘𝑘=1 �     (38) 

3.6.6. Variance of 𝜤𝜤𝟑𝟑 

Similarly as documented above the variance of 𝐼𝐼3 is equal to: 
𝑉𝑉𝑉𝑉𝑉𝑉(𝐼𝐼3) = 𝐸𝐸[𝐼𝐼32] − (𝐸𝐸[𝐼𝐼3])2 

Where: 

𝑬𝑬 ��𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 𝑒𝑒3𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙 𝒚𝒚𝐶𝐶𝑖𝑖1𝑚𝑚𝑚𝑚 �𝜀𝜀𝑚𝑚𝑚𝑚
(𝑘𝑘)𝜓𝜓𝜅𝜅(𝒚𝒚)

𝑄𝑄

𝑘𝑘=1

∙ 𝐶𝐶𝑗𝑗2𝑚𝑚𝑚𝑚 �𝜀𝜀𝑚𝑚𝑚𝑚
(𝑘𝑘)𝜓𝜓𝜅𝜅(𝒚𝒚)

𝑄𝑄

𝑘𝑘=1

∙ 𝐶𝐶𝑘𝑘3𝑚𝑚𝑚𝑚 �𝜀𝜀𝑚𝑚𝑚𝑚
(𝑘𝑘)𝜓𝜓𝜅𝜅(𝒚𝒚)

𝑄𝑄

𝑘𝑘=1

�

𝟐𝟐

� − 

     (39) 

�𝐸𝐸 �𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 𝑒𝑒3𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙 𝒚𝒚𝐶𝐶𝑖𝑖1𝑚𝑚𝑚𝑚 �𝜀𝜀𝑚𝑚𝑚𝑚
(𝑘𝑘)𝜓𝜓𝜅𝜅(𝒚𝒚)

𝑄𝑄

𝑘𝑘=1

∙ 𝐶𝐶𝑗𝑗2𝑚𝑚𝑚𝑚 �𝜀𝜀𝑚𝑚𝑚𝑚
(𝑘𝑘)𝜓𝜓𝜅𝜅(𝒚𝒚)

𝑄𝑄

𝑘𝑘=1

∙ 𝐶𝐶𝑘𝑘3𝑚𝑚𝑚𝑚 �𝜀𝜀𝑚𝑚𝑚𝑚
(𝑘𝑘)𝜓𝜓𝜅𝜅(𝒚𝒚)

𝑄𝑄

𝑘𝑘=1

��

𝟐𝟐

 

 

4. Numerical Example 
A shallow foundation problem for various values of 

variation’s coefficient 𝑣𝑣𝑒𝑒  is solved taken to account the 
randomness of the ground. To estimate the statistical 
moments of the soil deformation the numerical algorithm of 
SFEM using the Generalized Polynomial Chaos as described 
in the previous paragraphs is applied and the results are 
compared to those obtained by the closed form solution. To 
avoid the negative values of the elastic modulus assumed to 
have lognormal. It is known that the settlement beneath a 
foundation with uniform but random elastic modulus is given 

by the equation [8]:  

𝑠𝑠 = 𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑 𝜇𝜇𝐸𝐸
𝐸𝐸

                 (40) 

Where: 𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑  is the deterministic value of settlement with 
𝐸𝐸 = 𝜇𝜇𝛦𝛦  everywhere. 

Assuming lognormal distribution for the settlements the 
mean values is equal to  

𝜇𝜇𝑙𝑙𝑙𝑙(𝑠𝑠) = 𝑙𝑙𝑙𝑙(𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑 ) + 1
2
𝜎𝜎𝑙𝑙𝑙𝑙(𝐸𝐸)

2          (41) 

The geometry of the finite elements used for the 
simulation of the problem presented in Fig. 2. The input data 
of the problem is the random field modulus with a constant 
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average value equal to 100 Mpa and a fixed Poisson ratio 
equal to 0.25. Calculations have been made for ten different 
coefficients 𝑣𝑣𝑒𝑒 = 𝜎𝜎𝛦𝛦

𝜇𝜇𝛦𝛦
 of the elastic modulus with a minimum 

value of 0.1 and then with step 0.1 to a maximum value equal 
to 1. The randomness of Elasticity modulus in Fig. 3 is 
shown. For SFEM one dimensional Hermite GPC with order 
5 [14] were used. In the Fig. B1 the results of SFEM method 
comparatively with the closed form solution are shown and 
they present great accuracy. It is observed that for of ve = 0.5 
the error is equal to 0.8%. In the figures B2-B13 the strains 
and stress components, the pore pressure and the stress 
tensor invariants are presented as resulted by the Chaos 
Polynomial expansion and compared with those raised by the 
Monte Carlo Method. Simulations of 1000-5000 samples 
were carried and the convergence of the outcomes decreases 
as the number of Monte Carlo simulations increases.  

 

Figure 2.  Finite element mesh 

 

Figure 3.  Modulus of Random Elasticity of two different realizations 

5. Conclusions 
To propagate the uncertainties of input parameters to 

constitutive relations of strain and stress where arises due to 
spatial variability of mechanical parameters of soil/rock in 
geotechnical and geomechanics problems, a procedure of 
conducting a Stochastic Finite Element Analysis has been 

presented.  
An algorithm of Stochastic Finite Element using 

Polynomial Chaos has been developed. An analysis of 
settlement of a plane strain strip load on an elastic foundation 
has been given as an example of the proposed approach. It is 
shown that the results of SFEM using polynomial chaos 
compare well with those obtained from closed form solution.  

The stress and strain constitutive relation the pore pressure 
and the stress invariants are modeled by the polynomial 
Chaos expansion and verified against Monte Carlo 
simulation which is treated as the exact solution of the 
problems. The main advantage in using the proposed 
methodology is that a large number of realizations which 
have to be made for (Random Finite Element Method) 
avoided, thus making the procedure viable for realistic 
practical problems. 

Appendix A 
Galerkin approximation and Generalized Polynomial of 
chaos  

In order to solve the problem 1 we have to create the new 
space 𝐿𝐿𝑝𝑝2 (𝛤𝛤,𝛨𝛨0

1(𝐷𝐷)) . For that reason the subspace 𝑆𝑆𝑘𝑘 ⊂
𝐿𝐿𝑝𝑝2 (𝛤𝛤) is considered as [10]. 

𝑆𝑆𝑘𝑘 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠{𝜓𝜓1,𝜓𝜓2, … ,𝜓𝜓κ}         (A.1) 
Using the dyadic product of the space 𝑉𝑉ℎ , 𝑆𝑆𝑘𝑘  the space 

𝐿𝐿𝑝𝑝2 (𝛤𝛤,𝛨𝛨0
1(𝐷𝐷)) created. Thus 

𝑉𝑉ℎ𝑘𝑘 = 𝑉𝑉ℎ⨂𝑉𝑉𝑘𝑘 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠{𝜑𝜑𝑖𝑖𝜓𝜓𝑗𝑗 , i = 1 …𝑁𝑁, j = 1, …𝑄𝑄} (A.2) 

The space 𝑉𝑉ℎ𝑘𝑘   has dimension QN and regards the test 
function v. In the case where exists 𝑁𝑁𝐵𝐵  finite element 
supported by boundaries condition then the subspace of 
solution belongs is: 

𝑊𝑊ℎ𝑘𝑘 = 𝑉𝑉ℎ𝑘𝑘⨁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠{𝜑𝜑𝑁𝑁+1,𝜑𝜑𝑁𝑁+2, … ,𝜑𝜑𝛮𝛮+𝑁𝑁𝑁𝑁}  (A.3) 
Assuming that the 𝑆𝑆𝑖𝑖𝑘𝑘  represents a space of univariate 

orthonormal polynomial of variable 𝑦𝑦𝑖𝑖 ⊂ 𝛤𝛤𝜄𝜄 ⊂ ℝ  with 
order k or lower and:  

𝑆𝑆𝑖𝑖𝑘𝑘 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠�𝑃𝑃𝑎𝑎𝑖𝑖
𝑖𝑖 (𝑦𝑦𝑖𝑖),𝑎𝑎𝑖𝑖 = 0,1,2, …𝑘𝑘�, 𝑖𝑖 = 1, …𝑀𝑀  (A.4) 

The tensor product of the M 𝑆𝑆𝑖𝑖𝑘𝑘  subspace results the space 
of the Generalized Polynomial Chaos: 

𝑆𝑆𝑘𝑘 = 𝑆𝑆1⨂𝑆𝑆2 …⨂𝑆𝑆𝑀𝑀             (A.5) 
And using (A4) 

𝑆𝑆𝑘𝑘 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �∏ 𝑃𝑃𝑎𝑎𝑖𝑖
𝑖𝑖 (𝑦𝑦𝑖𝑖):𝑎𝑎𝑖𝑖 = 0,1,⋯𝑘𝑘, 𝑖𝑖 = 1⋯𝑀𝑀,

|𝑎𝑎| ≤ 𝑘𝑘
𝑀𝑀
𝑖𝑖=1 � (A.6) 

Where |𝑎𝑎| = ∑ 𝑎𝑎𝑖𝑖𝑀𝑀
𝑖𝑖=1  

And  

𝑄𝑄 = dim(𝑆𝑆𝑘𝑘) = (𝑀𝑀+𝑘𝑘)!
𝑀𝑀!𝑘𝑘!

           (A.7) 

Xiu & Karniadakis [14] show the application of the 
method for different kind of orthonormal polynomials and in 
the current paper the Hermite polynomial was used with the 
following characteristics: 
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𝑃𝑃0 = 1, < 𝑃𝑃𝑖𝑖 >= 0, 𝑖𝑖 > 0 
< 𝑃𝑃𝑚𝑚𝑃𝑃𝑛𝑛 >= ∫ 𝑃𝑃𝑚𝑚(𝒚𝒚)𝑃𝑃𝑛𝑛(𝒚𝒚)𝜌𝜌(𝒚𝒚)𝑑𝑑𝒚𝒚 = 𝛾𝛾𝑛𝑛𝛿𝛿𝑚𝑚𝑚𝑚

 
𝛤𝛤       (A.8) 

Where: 
𝛾𝛾𝑛𝑛 =< 𝑃𝑃𝑛𝑛2 > : are the normalization factors, 𝛿𝛿𝑚𝑚𝑚𝑚  is 

the  Kronecker delta 
𝜌𝜌(𝒚𝒚) = 1

√2𝜋𝜋
𝑒𝑒−

𝑦𝑦
2 : is the density function and 

  𝑃𝑃𝑛𝑛 = (−1)𝑛𝑛𝑒𝑒
𝑦𝑦
2
𝑑𝑑𝑛𝑛

𝑑𝑑𝑦𝑦𝑛𝑛
𝑒𝑒−

𝑦𝑦
2           (A.9) 

For a 3rd order of one dimension of uncertainty the 
Hermite Polynomial Chaos is given by: 
𝜓𝜓𝜊𝜊(𝑦𝑦) = 𝑃𝑃0(𝑦𝑦) = 1, 𝜓𝜓1(𝑦𝑦) = 𝑃𝑃1(𝑦𝑦) = 𝑦𝑦, 

    𝜓𝜓2(𝑦𝑦) = 𝑃𝑃2(𝑦𝑦) = 𝑦𝑦2 − 1 

Appendix B 
Results of Numerical Example 

 

Figure B1.  Closed form solution and SFEM results 

 

Figure B2.  Expected value of stress tensor complements (MC 1000 
samples) 

 

Figure B3.  Standard deviation of stress tensor complements. (MC 1000 
samples) 

 

Figure B4.  Expected value of strain tensor complements. (MC 1000 
samples) 

 

Figure B5.  Standard deviation of strain tensor complements. (MC 1000 
samples) 
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Figure B6.  Expected value of pore pressure. (MC 1000 samples) 

 

Figure B7.  Standard deviation of pore pressure. (MC 1000 samples) 

 

Figure B8.  Expected value of stress tensor invariant 𝐼𝐼1. (MC 1000, 3000 
samples) 

 

Figure B9.  Standard deviation of stress tensor invariant 𝐼𝐼1 . (MC 3000 
samples) 

 

Figure B10.  Expected value of stress tensor invariant 𝐼𝐼2. (MC 1000, 5000 
samples) 

 

Figure B11.  Standard deviation of stress tensor invariant 𝐼𝐼2. (MC 1000, 
5000 samples) 
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Figure B12.  Expected value of stress tensor invariant 𝐼𝐼3. (MC 1000, 5000 
samples) 

 

Figure B13.  Standard deviation of stress tensor invariant 𝐼𝐼3. (MC 1000, 
5000 samples) 
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