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Abstract  The methodology and exact mathematical calculations of the comparative error of physical-mathematical 
model that caused only due to finite amount of recorded variables are introduced. This approach allows to reduce time for 
research and development and to decrease cost of design. The developed concept introduces in the first time a specific metric 
to estimate the a-priori achievable error for any chosen model before starting computational modeling. Examples of practical 
application of the considered concept for heat- and mass-transfer processes, measurement of fundamental physical constants 
and thermal energy storage systems are discussed. 
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1. Introduction 
Usually, in most scientific publications, it is presupposed 

that the achievement of high-precision measurements and 
“low value” of discrepancy between computer results and 
experimental data testifies the correctness of the proposed 
physical-mathematical model (PMM). The eligibility choice 
of PMM is confirmed, in terms of researcher/observer, if the 
theoretical calculated results coincide with the experimental 
data within the reached known error of measurements. 

Nevertheless, errors occur not only during the 
measurements, but also in a stage of the model synthesis. 
There are significant errors that arise when developing 
physical model, mathematical model, in the computer 
analysis/numerical computations, associated with a finite 
amount of digits of variables in calculations and, etc. 

It should me mentioned that the issue of error existing 
because of a limited number of recorded variables into PMM 
is generally ignored in the theory of measurements. It covers 
only a-posteriori error aspects of the measuring procedure 
and data analysis for the value of the main variable, which 
describes the observed phenomenon. 

The well-known and already common in the scientific 
community point of view is that computer simulations give 
only the impression of precision, but they are founded on a 
raft of assumptions, simplifications, and outright errors. 

All the above mentioned efforts are based on usage of 
System of Primary Variables (SPV). It is a peculiar channel  
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(generalizing carrier of information) between material object 
(MO) and conscious observer due to which information is 
transmitted to researcher or she/he extracts information 
quantity about the studied phenomena from SPV. As an 
example of SPV, SI (International system of units), or CGS 
may be offered. 

Here we try to introduce the methodology and exact 
mathematical calculations of the comparative error of PMM 
that caused only due to limited numbers of observed 
variables. The applying of the suggested approach can 
significantly reduce the duration of the research and design 
phase and thus reduce the cost of the project. 

2. The Main Idea 
General knowledge about the world is significantly 

depended on the choice of SPV. It is a set of primary and, 
designed on their basis, secondary variables [1], which are 
necessary and sufficient to describe the known nature laws, 
as in physical content and quantitatively. SPV contains 
elements as a finite number of physical dimensional (DL) 
variables which have a potency to characterize the world’s 
physical properties and, in particular, observed MO 
qualitatively and quantitatively. So, an observation of MO 
and the process of modeling are framed by SPV. 

In turn, SPV includes the primary and secondary variables 
used for descriptions of different classes of phenomena 
(COP). In other words, the limits of the description of the 
studied MO are caused due to the choice of COP and the 
number of secondary parameters taken into account in the 
mathematical model [2]. For example, in mechanics SI uses 
the basis {L– length, M– weight, Т– time}. Basis accounting 
electromagnetism here adds the strength of electric current I. 
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Thermodynamics requires the inclusion of thermodynamic 
temperature Θ. For photometry it needs to add J– force of 
light. The latter basic value of SI is a quantity of substance F.  

Establishment of a specific SPV (like, for example, SI) 
means that we are talking about trying to restrict the set of 
possible variables by a smaller number of basic variables and 
the corresponding units. Then all the other required variables 
can be found or determined based on the basic variables. 

How many different SPV can be built? To answer this 
question it is necessary to clear what the general properties 
may be inherent in each SPV. It turns out, that following 
provisions/ axioms can be formulated [3].  

Let the different types of variables (dimensions) are 
denoted by A, B, C. Then the following relations are 
realized:  

a.  From A and B a new type of value is built C = A · B 
(multiplicative relationship);  

b.  There are unnamed numbers, denoted by (1) = (A°), 
which when multiplied by A do not change the 
dimensions of this type of variables. A · (1) = A (single 
item); 

c.  Any type of variables corresponds to the return type of 
variables 𝐴𝐴−1 for which 𝐴𝐴−1· A = (1);  

d.  The relation between the different types of variables is 
subordinated by:  
Associativity: A · (B · C) = (A · B) · C,  
Commutativity: A · B = (B · A);  

e.  For all A ≠ (1) and m∈ N\0 the expression 𝐴𝐴𝑚𝑚≠ 1 is 
right; 

f.  The complete set consisting of an infinite number of 
types of variables has a finite generating system. This 
means that there is a finite number of elements C1, 
C2… CH, through which any type of q variable can be 
represented as 

q כ 𝐶𝐶1
𝛕𝛕1· 𝐶𝐶2

𝛕𝛕2· …· 𝐶𝐶𝐻𝐻𝛕𝛕ℎ ,            (1) 
where the badge כ – means "corresponds to dimension"; τi – 
integer coefficients, i∈[1, H], τi ∈ Z, Z is the set of integers. 

The uniqueness of such representation is not expected in 
advance. 

Axioms “a-f” form a complete system of axioms of 
Abelian group. By taking into account the basic equations of 
the theory of electricity, magnetism, gravity and 
thermodynamics, they remain unchanged. 

Now we use the theorem that is holds for Abelian group: 
among H elements of the generating system C1, C2… CH 
there is a subset h≤H of elements B1, B2… Bh, with the 
property that each element can be uniquely represented in the 
form 

q כ 𝐵𝐵1
𝛽𝛽1· 𝐵𝐵2

𝛽𝛽2· …·𝐵𝐵ℎ
𝛽𝛽ℎ ,                (2) 

where 𝛽𝛽k – integers, k ∈[1, h], h<H; elements 𝐵𝐵1
 ·𝐵𝐵2

 ·…𝐵𝐵ℎ  
are called the basis of the group, and 𝐵𝐵𝑘𝑘 – the basic types of 
variables. ∏ 𝐵𝐵𝑘𝑘

𝛽𝛽𝛽𝛽𝒌𝒌
𝟏𝟏  is the product of the dimensions of the 

main types of variables 𝐵𝐵𝑘𝑘 . 
For the above stated conditions the following statement is 

fine: the group, which satisfies axioms a-f, has, at least, one 

basis 𝐵𝐵1
 ·𝐵𝐵2

 ·…𝐵𝐵ℎ . In the case h> 2, there are infinitely many 
equal bases.    

How to determine the number of elements of a basis? In 
order to answer on this question, let’s apply the approach 
formulated in [3] for SI. The entire above mentioned can be 
represented as follows:  

1. There are ξ = 7 primary variables: L– length, M– weight, 
Т– time, I– powered by electric current, Θ– 
thermodynamic temperature, J– force of light, F– the 
number of substances [4]; 

2. The dimension of any secondary variable q can only 
express a unique combination of dimensions of main 
primary variables in different degrees [1]:  

q כ Ll ⋅Mm ⋅Tt ⋅ Ii ⋅ ΘΘ ⋅ Jj ⋅Ff.               (3) 
3. l, m... f – integers, the range of each has maximum and 

minimum value; according to [5] integers are the 
following:  
-3 ≤ l ≤ +3,  -1 ≤ m ≤ +1,  -4 ≤ t ≤+4,  -2 ≤ i ≤ +2, 
-4 ≤ Θ ≤ +4,    -1 ≤ j ≤ +1,      -1 ≤ f ≤ + 1.     (4) 

4. The amount of elements of each integer according to (4) 
is the following: 
еl  = 7; еm  = 3; еt = 9; еi = 5; еθ = 9; еj  = 3; еf  = 3.   (5) 

5. The total number of dimension options of physical 
variables equals Ğ = ∏ 𝒆𝒆𝒇𝒇𝒍𝒍 i–1 

Ĝ =7 ⋅ 3 ⋅ 9 ⋅ 5 ⋅ 9 ⋅ 3 ⋅ 3-1=76,544,           (6) 
where "-1" corresponds to the occasion when all integers of 
primary variables in the formula (3) are treated to zero 
dimension.  

6. According to the axiom c, the value Ĝ includes both 
required, and backward variables (for example, L¹ – 
length, L-1 – running length), so the number of options 
of dimensions may be reduced in ω = 2 times. It means 
that the total number of dimension options of physical 
variables without backward variables equals G = Ĝ/2 = 
38,272.  

7. According to π-theorem [6], the number אSI of possible 
dimensionless (DS) complexes (criteria) with ξ = 7 
main dimensional (DL) variables will be אSI = G-ξ = 
38,265. The transition from DL physical quantities to 
the complex DS variables, which are composed of the 
same quantities, allows reducing of the number of 
variables. In addition, it is caused by the desire to 
generalize obtained results in the future for the different 
areas of physical applications. The numerical value of 
 SI can only increase with the deepening of knowledgeא
about the material world.  

It should be mentioned that set of DS variables אSI is a 
fictitious system, since it does not exist in the physical reality. 
At the same time, the actually existing MO may be expressed 
by this set. 

The relationships (3) - (6) are obtained on the basis of the 
axioms set forth in [3], and the principles of the theory of 
groups. The present results provide a basis for use of 
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information theory in application to thermodynamic with a 
view to formulating precise mathematical relationships to 
assess the minimum comparative error of PMM that 
describes the studied physical phenomenon or process.  

3. Applied Tools 
We suppose that the observed/recorded variables are 

random in terms of information complexity in SPV and each 
recorded variable is considered as a kind of readout [7]. This 
allows the conscious observer to get a certain amount of 
information about the studied MO in the frame of the chosen 
SPV (in our case, SI). The total number of variables/readouts 
can be calculated (אSI = 38,265), and it corresponds to the 
maximum amount of information contained in the SPV. It 
should be taken into account that the appearance (registration) 
of readouts is equiprobably. In addition, in the frame work of 
the suggested approach the human evaluation of information 
is completely ignored.   

Based on these assumptions, the lowest DS error Δupmm of 
PMM caused by the finite number of recorded variables can 
be obtained [8] 

Δupmm/S ≤ [(z'-β')/א SI + (z''-β'')/ (z'-β')],        (7) 
where Δupmm/S – comparative error [7]; 

S - DS interval of observation/supervision of DS variable 
u; 
z' – the number of physical DL variables in the selected 
COP; 
β' – the number of primary physical DL variables in the 
selected COP; 
z" – the number of physical DL variables recorded in 
physical-mathematical model (PMM);  
β" – the number of primary physical DL variables of the 
total number of variables recorded in PMM. 
The Equation (7) is correct for DL variable U as 

(Δupmm/S) = (ΔU/r*)/(S*/r*) = (ΔU/S*),         (8) 
where ΔU – error in determining the DL variable U; S*- DL 
range of values in which the DL variable U is 
measured/changed; r* - DL scale parameter with the same 
dimension that U and S* have. 

Factually, Equation (8) can be introduced as an 
uncertainty principle for the process of PMM formulation. 
Namely, any change in the level of detailed description of 
MO (z''-β''; z'-β') causes a change in the comparative error of 
PMM (Δupmm/S), and in the accuracy calculation of each 
main variable characterizing the features of the internal 
structure of MO or the interaction of MO with the 
environment.  

4. Application Studies 
In a lot of scientific publications the sufficient basic data 

needed for the calculation and verification of the results 

obtained by the equation (7) are not provided. 
In most cases, there is not factually and simultaneously 

provided the information about the value of the resulting 
total uncertainty and about the changes range of the main 
variable characterizing the studied MO. At this moment, here 
we attempt to analyze the known results and compare them 
with the data obtained according to the introduced approach. 

4.1. Heat- and Mass-Transfer 

The heat transfer to a thin layer of paste and 
minced-shaped material that is frozen on a moving cooled 
cylindrical wall is researched [9]. Due to analyzing of 
recorded variables dimensions, PMM is classified with COP 
≡ LMTΘ. Based on (4) and (5), we find z'-β' = 850. For this 
COP and following (4) – (6), the lowest comparative error 
can be reached at 19 DS variables. 

There were recorded 18 (z*) input DL parameters and 5 
(β*) primary physical variables, then there are z*- β* = 18-5 
= 13 DS criteria.  

The study of the developed PMM by computer experiment 
[10] realized with usage of random balance method [11] was 
conducted. As the objective function, the final DS 
temperature of the outer surface of the material 
𝜃𝜃s=(𝜃𝜃s-𝜃𝜃e)/(𝜃𝜃cr–𝜃𝜃e) was selected, where 𝜃𝜃cr, 𝜃𝜃s, 𝜃𝜃e are the 
DL temperatures, respectively, of freezing of a material, 
outer surface of a material layer and evaporating of the 
refrigerant. Δ𝜃𝜃cr, Δ𝜃𝜃s, Δ𝜃𝜃e are the DL errors of measurement 
of these temperatures. Then, one considers 𝜃𝜃 cr=272ºК, 
𝜃𝜃s=259ºК, 𝜃𝜃e= 243ºК, Δ𝜃𝜃cr=0.1ºК, Δ𝜃𝜃s=Δ𝜃𝜃e=0.5ºК. 

The achieved discrepancy between the experimental and 
computational data in the range of admissible values of the 
similarity criteria and dimensionless conversion factors did 
not exceed 8%. 

There was taken into account that the direct measurement 
errors are much smaller than the measured values, 
accounting for a few percent or less of them. The error can be 
considered formally as small increments of a measured 
variable. In practice, finite differences are used, rather than 
the differentials. So, in order to find the value of an absolute 
DS error (Δ𝜃𝜃s), the mathematical apparatus of differential 
calculus was applied [12]: 

Δ𝜃𝜃𝑠𝑠 = ∑ │ ∂𝜃𝜃𝑠𝑠
∂𝜃𝜃𝑖𝑖

1
𝑖𝑖 Δ𝜃𝜃𝑖𝑖│,              (9) 

where ∂𝜃𝜃
∂𝜃𝜃𝑖𝑖

 – partial derivatives of the function (Δ𝜃𝜃𝑠𝑠) with 

respect to one of the several variables 𝜃𝜃𝑖𝑖  that affect 𝜃𝜃𝑠𝑠; Δ𝜃𝜃𝑖𝑖- 
the uncertainty or error. 

For the present example, according to Equation (9), one 
can find an absolute total DS error of the indirect 
measurement (Δ𝜃𝜃s)exp, reached in the experiment:  

(Δ𝜃𝜃s)exp = (Δ𝜃𝜃 s+Δ𝜃𝜃 e) / (׀𝜃𝜃cr – 𝜃𝜃e׀) + 
 (10)  .0.066 ≈ (²׀𝜃𝜃cr– 𝜃𝜃e ׀∙ (Δ𝜃𝜃cr+Δ𝜃𝜃e)) /׀𝜃𝜃s– 𝜃𝜃e ׀+

From Equation (7), using calculated values אSI и z'-β', one 
gets a DS error value (Δ𝜃𝜃s)pmm for the chosen PMM:    
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 (Δ𝜃𝜃s)pmm ≤ 𝜃𝜃smax∙ ((z'-β')/אSI + (z''-β'')/(z'-β')) = 
= 0.93∙[850/38,265+13/850] = 0.038       (11) 

where 𝜃𝜃smax= 0.93 is a given range of changes of the DS final 
temperature [9] allowed by the chosen PMM.    

From (10) and (11), we get (Δ𝜃𝜃s)exp > (Δ𝜃𝜃s)pmm, i.e., an 
actual error in the experiment is 1.7 times (0.066/0.038) 
more than the possible minimum. It means, at the chosen 
number of DS criteria the existing accuracy of DL variable’s 
measurement is not enough. In addition, the number of the 
recorded DS variables z*-β*=13 is less than the 
recommended ≈19 that corresponds to the lowest 
comparative error.  

For further experimental work it is required to use devices 
of a higher class of accuracy sufficient to confirm/clarify a 
new PMM designed with lots of DS variables. 

In this example there is introduced a full explanation of the 
required steps in order to analyze experimental data and to 
compare it with results obtained by computer realization of 
PMM.  

4.2. Fine Structure Constant 
4.2.1. In [13] authors reported a new experimental scheme 

which combines atom interferometry with Bloch oscillations 
that leading to a new determination of the fine structure 
constant α−1 ₁ = 137.03599945(62) with a relative 
uncertainty r₁ of 4.6· 10−9 . It means that absolute 
uncertainty is Δ₁ = α−1₁· r₁ = 6.3037·10−7. The declared 
range S₁ of α−1₁ variations is 0.14·10−5 (see Fig. 4, [13]). 
Research is organized into the frame of COPSI ≡ LMТ.  

One can calculate the achieved comparative error  
ε₁ = Δ₁/S₁ = 6.3037·10−7/ 0.14· 10−5 = 0.4503.    (12) 

For the mechanics processes (COPSI ≡ LMТ), taking into 
account [8], the lowest comparative error can be reached at 
the following conditions: 

(z' - β') = (7·3·9 -1)/2 = 94,            (13) 
(z'' - β'') = (z' - β')²/א SI = 94² /38,265 = 0.2309< 1.   (14) 

And it equals   
(Δpmm/S)LMT = 94/38,265 + 0.2309/94 = 0.0049.  (15) 

The obtained comparative error ε₁ = 0.4503 is much 
higher than the recommended (see Equation (15)) according 
to the discussed approach. So, the above mentioned method 
and apparatus need to verify the fine structure constant value 
with a better accuracy. 

4.2.2. There are a recoil-velocity measurement of 
Rubidium and new determination of the fine structure 
constant α−1 ₂ = 137.035999037(91) with a relative 
uncertainty r₂ = 6.6· 10−10  [14]. It means that absolute 
uncertainty is Δ₂ = α−1₂·r₂ = 9.0444·10−8 . Following the 
description of the experimental unit and methods, COPSI ≡ 
LMТ. According to Equation (15), the lowest comparative 
error equals 0.0049. The range of variations S₂ of α−1₂ is 
6.0· 10−7(see Fig.1, [14]). In this case, the comparative error 
of the experimental method will be    

ε₂ = Δ₂/S₂ = 9.0444·10−8/ 6.0·10−7 = 0.1507.    (16) 

This value is larger than the lowest comparative error for 
COPSI ≡ LMТ calculated according to Equation (15). That is 
the reason the research team knows the limit value of the 
achievable accuracy and can try to find more perspective 
method for reaching the best results. 

Two above-stated studies differ from each other by the 
design of experimental facilities and methods of 
measurement. However, in the framework of the suggested 
approach it can be argued that a greater accuracy in the 
measurement of the fine structure constant was achieved in 
[14]. This conclusion is possible due the comparison of the 
value of the comparative errors made in these studies, with 
the comparative error that was chosen in accordance with the 
recommended approach and is calculated for the particular 
class of phenomena COPSI ≡ LMТ.  

4.3. Thermal Energy Storage Systems  

The similarity theory was applied for three types of energy 
storage systems [15]. The generalized governing equations 
and charts bearing curves for energy storage effectiveness 
against 4 (four) DS criteria were introduced. Total amount of 
DL variables is 45 including geometric, fluid and thermal 
storage material properties, as well as the operational 
conditions. Total amount of DS criteria and numbers used for 
analyzing working modes was 18. According to the 
modeler’s allegations, the built charts can help to design and 
calibrate the size of thermal storage tanks and operational 
conditions. At the same time, any validation or verification 
procedures and the comparison with experimental data were 
absent.  

By analyzing of dimensions of recorded variables, COP ≡ 
LMTΘ.  

According to Equations (4), (5) and (7), for SI and the 
chosen COPSI ≡ LMTΘ, a lowest comparative error can be 
reached at  

(z'' - β'') ≈ 19.                   (17) 

This value is closed to the number of DS criteria used in 
the reviewed article. It allows supposing that the constructed 
charts are reliable. More, than this if the spread of the 
experimental data in comparison with the results of computer 
simulation is in the range allowed by the researchers, it can 
be assumed that the selected PMM adequately describes the 
observed process. 

So, the introduced approach allows to conscious observer 
to find, during several minutes, the lowest value of the 
required/achievable experimental error in order to confirm 
the expediency of the chosen PMM. This error will 
correspond to the error inherent in the model and caused only 
by its finiteness (limited amount of recorded variables).  

5. Conclusions 
1.  To the best knowledge of author, none of the studies or 

procedures, known to scientific community, 
sufficiently defines recommendations in order to 
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achieve the highest accuracy or lowest discrepancy 
between the formulated physical-mathematical model 
and observed phenomena. Nonetheless, the developed 
concept allows for the first time to introduce a specific 
metric to estimate the a-priori achievable error for 
each formulated physical-mathematical model before 
starting computational modeling. Factually, this error 
is the "firstborn" uncertainty inherent to PMM after 
the choosing of recorded variables by the conscious 
observer. 

2.  For the user of the methodology developed in this 
research, we are proposing a method of defining the 
uncertainty limits for each given particular case. 

3.  Once the conscious observer selects his/her 
preferences and requirements for the chosen model, a 
recommendation on what level accuracy of the 
measurement equipment to monitor, can be provided. 

4.  During carrying out numerical experiments using the 
theory of planning experiment on computers, the error 
Δpmm calculated according to the described approach, 
can also be used. The feasibility of this approach is 
dictated by the need to calculate the reproducibility 
dispersion and the Fisher criterion. In turn, the Fisher 
criterion determines the times of cessation of 
screening influencing factors, which are important in 
the study. 

5.  The research approach discussed in this paper can be 
further refined by analyzing more datasets from 
actual physical and technological areas and of 
additional types of physical-mathematical models. 
The numerous other physical phenomena and 
industrial cases were not investigated in this research 
and could form a potential study for the future.  

6.  Within the proposed approach, the most attractive 
model describing a material object, on one hand, has 
the lowest comparative error that is calculated 
according to (7), on another hand, as possible, retains 
the details that are necessary to approach the specific 
goal function by which model is designed to examine. 
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