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Abstract  The aims of this paper are, firstly, to present four new twelfth order iterative methods for solving nonlinear 
equations and secondly, to introduce new formulas for approximating the multiplicity of the iterative method. It is proved that 
these methods have the convergence order of twelve requiring six function evaluations per iteration. Numerical comparisons 
are included to demonstrate exceptional convergence speed of the proposed methods. 
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1. Introduction 
Finding the root of nonlinear equations is one of important 

problem in science and engineering [1-28]. In this paper, we 
present four new multipoint higher-order iterative methods 
to find multiple roots of the nonlinear equation ( ) 0,f x =
where : R Rf I ⊂ →  for an open interval I is a scalar 
function. The multipoint root-solvers is of great practical 
importance since it overcomes theoretical limits of one-point 
methods concerning the convergence order and 
computational efficiency. In recent years, many 
modifications of the Newton-type methods for simple roots 
have been proposed and analysed [13] and little work has 
been done on multiple roots. Therefore, the prime motive of 
this study is to develop a new class of multi-step methods for 
finding multiple roots of nonlinear equations of a higher than 
the existing iterative methods. In order to construct the new 
twelfth order method for finding multiple roots we use the 
well-established fourth order method given in [15, 16, 17, 
20]. The purpose of this paper is to show further 
development of the ninth order methods and introduce new 
formulas for approximating the multiplicity of the iterative 
methods. This paper is actually a continuation of the 
previous study [23]. The extension of this investigation is 
based on the improvement of the ninth order method. In 
addition, the new iterative methods have a better efficiency 
index than the eight to ten convergence order methods    
[10, 23]. Hence, the proposed twelfth order methods are 
significantly better when compared with these established 
methods. 
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The structure of this paper is as follows. Some basic 
definitions relevant to the present work are presented in the 
section 2. In section 3 the new multi-point methods are 
defined and proved. In section 4 the new formulas for 
approximating the multiplicity of the iterative methods are 
described. In section 5, two well-established methods are 
stated, it will demonstrate the effectiveness of the new 
twelfth order iterative methods. Finally, in section 6, 
numerical comparisons are made to demonstrate the 
performance of the presented methods. 

2. Preliminaries 
In order to establish the order of convergence of the new 

twelfth order methods, we state some definitions: 
Definition 1 Let ( )f x  be a real-valued function with a 

root α  and let { }nx  be a sequence of real numbers that 
converge towards .α  The order of convergence p is given 
by 

( )
1lim 0,n

pn n

x

x

α
ζ

α
+

→∞

−
= ≠

−
           (1) 

where Rp +∈  and ζ  is the asymptotic error constant  
[6, 13, 27].  

Definition 2 Let k ke x α= −  be the error in the kth 
iteration, then the relation 

( )1
1 ,p p

k k ke e eζ +
+ = +Ο         (2) 

is the error equation. If the error equation exists, then p is the 
order of convergence of the iterative method [6, 13, 27]. 

Definition 3 Let r be the number of function evaluations 
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of the method. The efficiency of the method is measured by 
the concept of efficiency index and defined as 

 ,r p                    (3) 

where p is the order of convergence of the method [6]. 
Definition 4 Suppose that 2 1,n nx x− −  and nx  are three 

successive iterations closer to the root α . Then the 
computational order of convergence may be approximated 
by  

1

1 2

ln
COC

ln
n n

n n

δ δ
δ δ

−

− −

÷
≈

÷
,             (4) 

where ( ) ( ) ,i i if x f xδ ′= ÷  [23].   

3. Construction of the Methods and 
Convergence Analysis 

In this section we define new twelfth order iterative 
methods for finding multiple roots of a nonlinear equation. In 
order to construct new twelfth order methods, we use well 
known fourth order iterative methods, presented by Thukral, 
Sharma et al., Shengguo et al. and Soleymani et al., [15, 16, 
17, 20].  

3.1. Method 1 

It is well established that the first two step is the Thukral 
fourth order method [20] and the new third step is in the form 
of the Osada third order method [12]. Consequently, we 
obtain a new twelfth order method based on these two 
well-established method. The new scheme is given as 
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where Nn∈ , 0x  is the initial guess and provided that the 
denominator of (7) is not equal to zero.  
Theorem 1  

Let Iα ∈  be a multiple zero of a sufficiently 
differentiable function : R Rf I ⊂ →  for an open 

interval I with multiplicity m, which includes 0x  as an 

initial guess of .α  Then the iterative method defined by 
scheme (7) has twelfth order convergence. 
Proof 

Let α  be a multiple root of multiplicity m of a 
sufficiently differentiable function ( )f x  and ( ) 0.f α =  
We denote the errors given by each step as ,e x α= −  

e y α= −  and ˆ .e z α= −  
Using the Taylor series expansion of 
( ) ( ) ( ) ( ), , ,f x f x f y f y′ ′  about α , we have 
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Moreover by (5), we have 
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The expansion of ( )nf y  about α  and simplifying, 
yields 
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where 

( ) ( )3 2 2
1 23 3 3 , 2 3 2 .u m m m u m m= + + + = + + (15) 
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Substituting appropriate expressions in (6), we obtain  
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we obtain the asymptotic error constant 
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We progress to expand ( ) ( ) ( ),f z f z f z′ ′′  about α , 
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Substituting appropriate expressions in (7),  
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Simplifying (24), we obtain the asymptotic error constant 
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The expression (25) establishes the asymptotic error 
constant for the twelfth order of convergence for the new 
Newton-type method defined by (7). 

3.2. Method 2 

Another twelfth order iterative method is constructed by 
using a fourth order method presented by Shengguo et al. 
[15]. As before the first two steps is the Shengguo et al. 
method and third step is in the form of Osada third order 
method. The new twelfth-order iterative method is given as, 
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Theorem 2 
Let Iα ∈  be a multiple zero of a sufficiently 

differentiable function : R Rf I ⊂ →  for an open 

interval I with multiplicity m, which includes 0x  as an 
initial guess of .α  Then the iterative method defined by 
scheme (28) has twelfth order convergence. 
Proof 

Using appropriate expressions in the proof of the theorem 
1 and substituting them into (28), we obtain the asymptotic 
error constant 
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The expression (29) establishes the asymptotic error 
constant for the twelfth order of convergence for the new 
Newton-type method defined by (28). 

3.3. Method 3 

The third twelfth order iterative method is based on the 
Sharma et al. fourth order method presented in [17]. Here 
also, the first two steps is the Sharma et al. method and third 
step is in the form of Osada third order method. The new 
twelfth order iterative method is given as, 
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Theorem 3 
Let Iα ∈  be a multiple zero of a sufficiently 

differentiable function : R Rf I ⊂ →  for an open 

interval I with multiplicity m, which includes 0x  as an 
initial guess of .α  Then the iterative method defined by 
scheme (34) has twelfth order convergence. 
Proof 

Using appropriate expressions in the proof of the theorem 
1 and substituting them into (34), we obtain the asymptotic 
error constant 
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The expression (37) establishes the asymptotic error 
constant for the twelfth order of convergence for the new 
Newton-type method defined by (34). 

3.4. Method 4 

The fourth twelfth order iterative method is based on the 
Soleymani et al. fourth order method presented in [16]. Here 
also, the first two steps is the Soleymani et al. method and 
third step is in the form of Osada third order method. The 
new twelfth order iterative method is given as, 
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Theorem 4 
Let Iα ∈  be a multiple zero of a sufficiently 

differentiable function : R Rf I ⊂ →  for an open 

interval I with multiplicity m, which includes 0x  as an 
initial guess of .α  Then the iterative method defined by 
scheme (42) has twelfth order convergence. 
Proof 

Using appropriate expressions in the proof of the theorem 
1 and substituting them into (42), we obtain the asymptotic 
error constant 
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The expression (45) establishes the asymptotic error 
constant for the twelfth order of convergence for the new 
Newton-type method defined by (42). 

4. New Formulas for Approximating the 
Multiplicity 

In this section, we derive some new formulas to 

approximate the multiplicity m of the method. In [26] 
Thukral presented a new formula for approximating the 
multiplicity m as 
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In fact this formula was discovered by Lagouanelle in [9] 
and apparently Thukral rediscovered this formula. However, 
empirically we have found that the formula should be 
expressed as 

( )
( ) ( ) ( )

2
1

1 2
1 1 1

,n

n n n

f x
m

f x f x f x
−

− − −

′
≈

′ ′′−



   (49) 

The approximations obtained by the new and old formulas 
are based on the Schroder second order method [14], given 
as 

( ) ( )
( ) ( ) ( )

1 1
1 2

1 1 1

.n n
n n

n n n

f x f x
x x

f x f x f x
− −

−
− − −

′
= −

′ ′′−
 (50) 

Definition 5 Suppose that 1,n nx x−  and 1nx +  are three 
successive iterations closer to the root α . Then the 
computational order of convergence may be approximated 
by the following; 
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This formula was actually presented by Traub [27] and the 
following new formulas are actually the improvements of the 
above formulas; 

( ) ( ) ( ) 1
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where 
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The errors of the above approximants are given by 

ne m m= −                 (58) 

The performance of these formulas are displayed in the 
table 4. 

5. The Established Methods 
For the purpose of comparison, two iterative methods 

presented in [10, 23] are considered.  Since these methods 
are well established, the essential formulas are used to 
calculate the approximate solution of the given nonlinear 
equations and thus compare the effectiveness of the new 
twelfth order method.  

The first of the method is in fact an eighth order method 
presented in [23] and is expressed as 

( )
( )

,n
n n

n

f x
y x m

f x
= −

′
           (59) 

( )
( )

,n
n n

n

f y
z y m

f y
= −

′
           (60) 

( )
( )1 .n

n n
n

f z
x z m

f z+ = −
′

          (61) 

The second method is by Mir et al. and is presented in [10]. 
This method is actually a tenth order and is expressed as 

( )
( )

,n
n n

n

f x
y x m

f x
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′
              (62) 
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  (63) 
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f z f z
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 (64) 

6. Numerical Results 
In this section, we shall present the numerical results 

obtained by employing the iterative methods (7), (28), (34), 
(42), (61) and (64) to solve some nonlinear equations with 
known multiplicity m. To demonstrate the performance of 
the new higher order iterative methods, we use ten particular 
nonlinear equations. We shall determine the consistency and 
stability of results by examining the convergence of the new 
iterative methods. The findings are generalised by 
illustrating the effectiveness of the higher order methods for 
determining the multiple root of a nonlinear equation. 
Consequently, we give estimates of the approximate solution 
produced by the methods considered and list the errors 
obtained by each of the methods. The numerical 

computations listed in the tables were performed on an 
algebraic system called Maple. In fact, the errors displayed 
are of absolute value and insignificant approximations by the 
various methods have been omitted in the following tables. 

The new twelfth order method requires six function 
evaluations and has the order of convergence twelve. To 
determine the efficiency index of the new methods, we shall 
use the definition 3. Hence, the efficiency index of the new 

methods given by (7), (28), (34), and (42) is 6 12  whereas 
the efficiency index of the eighth and tenth order methods 

(61) and (64) is given by 6 8  and 6 10  respectively. We 
can see that the efficiency index of the new twelfth order 
method has better efficiency index than the eighth and tenth 
order method. The test functions with known multiplicities m 
and their exact root α  are displayed in table 1. The 
difference between the root α  and the approximation nx  

for test functions with initial guess 0x  are displayed in 
table 2. Table 2 shows the absolute errors obtained by each of 
iterative methods described, we see that the new twelfth 
order methods are producing better results than the 
established methods. Furthermore, the computational order 
of convergence (COC) are displayed in table 3. From the 
table 3, we observe that the COC perfectly coincides with the 
theoretical result. In addition, the difference between the 
multiplicity m and the approximation m  with initial guess 

0x  are displayed in table 4. In table 4 we observe that there 
is no significant difference between the Lagouanelle formula 
(48) and the recently introduced formulas (52)-(56), whereas 
the Traub’s method (51) is performing poorly. In fact, nx  is 
calculated by using the same total number of function 
evaluations (TNFE) for all methods, which is after three 
iterations. 

7. Conclusions 
In this paper, four new twelfth order iterative methods for 

solving nonlinear equations with multiple roots have been 
introduced. Convergence analysis proves that the new 
methods preserve their order of convergence. Simply 
combining the two well-established methods, we have 
achieved a twelfth order of convergence. The prime motive 
of presenting these new methods was to establish a higher 
order of convergence method than the existing methods 
[1-28]. The effectiveness of the new twelfth order methods is 
examined by showing the accuracy of the multiple roots of 
several nonlinear equations. After an extensive 
experimentation, it can be concluded that the convergence of 
the tested multipoint methods of the twelfth order is 
remarkably fast. The main purpose of demonstrating the new 
methods for different types of nonlinear equations was 
purely to illustrate the accuracy of the approximate solution, 
the stability of the convergence, the consistency of the results 
and to determine the efficiency of the new iterative methods. 
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We have shown numerically, and verified, that the new 
iterative methods converge to the order twelfth. Empirically, 
we have found, in many cases that the new formulas for 
approximating the multiplicity m are performing better than 

the established methods. Finally, we have constructed new 
higher order iterative methods, but unfortunately these new 
methods are not of optimal order, hence further investigation 
is essential. 

Table 1.  Test functions, multiplicity m, root α  and initial guess 0x  

Functions m Roots Initial guess 

( ) ( )3 2
1 4 10= + −

m
f x x x  501=m  1.365230...=α  0 1.7x =  

( ) ( ) ( )
2 2

2 sin 3cos 5
m

xf x xe x x = − + + 
 

 10=m  1.207647...= −α  0 1.5x = −  

( ) ( )( )3
3 1 1

m
f x x= − −  111=m  2α =  0 2.1x =  

( ) ( )( )2
4 exp 7 30 1

m
f x x x= + − −  50=m  3α =  0 3.1x =  

( ) ( )( )5 cos mf x x x= +  99=m  0.739085...= −α  0 0.8x = −  

( ) ( )( )2 2
6 sin 1

m
f x x x= − +  20=m  1.404491...=α  0 1.8x =  

( )
2 2 8

7 10
m

x xf x e e x− = − − + 
 

 5m =  1.239417...=α  0 1.4x =  

( ) ( )5 4 3 2
8 6 5 4 3 2 1

m
f x x x x x x= + − + − +  100=m  1.57248...= −α  0 1.8x = −  

( ) ( )( )9 tan 1
mxf x x e= − −  71=m  1.371045...=α  0 1.5x =  

( ) ( )( )2
10 ln 3 5 2 7

m
f x x x x= + + − +  1000=m  5.469012...=α  0 5.9x =  

Table 2.  Comparison of multipoint iterative methods 

if  (61) (64) (28) (42) (34) (7) 

1f  0.186e-427 0.775e-759 0.198e-1198 0.248e-1241 0.198e-1198 0.318e-1284 

2f  0.216e-201 0.120e-372 0.582e-642 0.850e-710 0.270e-636 0.196e-592 

3f  0.213e-526 0.146e-940 0.251e-1534 0.912e-1536 0.265e-1534 0.659e-1624 

4f  0.345e-148 0.190e-267 0.739e-425 0.292e-435 0.113e-424 0.296e-419 

5f  0.227e-964 0.271e-1706 0.118e-2706 0.468e-2707 0.120e-2706 0.453e-2920 

6f  0.612e-319 0.774e-561 0.152e-834 0.255e-840 0.405e-834 0.162e-904 

7f  0.829e-240 0.194e-434 0.882e-724 0.243e-778 0.438e-712 0.298e-684 

8f  0.295e-223 0.289e-398 0.501e-604 0.174e-606 0.539e-604 0.577e-634 

9f  0.103e-86 0.132e-159 0.170e-279 0.317e-135 0.260e-279 0.159e-247 

10f  0.759e-1216 0.331e-2095 0.105e-2998 0.105e-2998 0.105e-2998 0.137e-3484 
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Table 3.  Performance of COC 

if  (61) (64) (28) (42) (34) (7) 

1f  8.0000 9.9506 11.960 11.966 11.960 12.021 

2f  8.0001 10.357 12.536 12.426 12.542 12.667 

3f  8.0000 9.9802 11.989 11.989 11.989 12.022 

4f  8.0007 10.336 12.487 12.458 12.487 12.718 

5f  8.0000 9.9905 11.993 11.993 11.993 11.996 

6f  8.0000 9.8320 11.868 11.868 11.868 11.954 

7f  8.0000 10.054 12.161 12.122 12.165 12.266 

8f  8.0000 9.8930 11.910 11.909 11.910 12.089 

9f  8.0149 13.292 15.398 24.916 15.402 16.374 

10f  8.0000 9.9889 11.989 11.989 11.989 11.992 

Table 4.  Performance of new formulas for approximating multiplicity m 

if  (56) (49) (55) (53) (54) (52) (51) 

1f  0.392e-49 0.392e-49 0.860e-51 0.860e-51 0.700e-51 0.392e-49 36.11 

2f  0.285e-14 0.285e-14 0.389e-14 0.389e-14 0.370e-14 0.285e-14 1.36 

3f  0.246e-62 0.246e-62 0.122e-62 0.122e-62 0.124e-62 0.246e-62 4.22 

4f  0.507e-6 0.507e-6 0.467e-6 0.467e-6 0.469e-6 0.507e-6 13.59 

5f  0.114e-118 0.114e-118 0.374e-118 0.374e-118 0.369e-118 0.114e-118 1.79 

6f  0.563e-40 0.563e-40 0.186e-40 0.186e-40 0.222e-40 0.563e-40 0.81 

7f  0.181e-21 0.181e-21 0.144e-21 0.144e-21 0.145e-21 0.181e-21 10.96 

8f  0.140e-20 0.140e-20 0.173e-20 0.173e-20 0.173e-20 0.140e-20 14.95 

9f  0.137e-10 0.137e-10 0.148e-10 0.148e-10 0.149e-10 0.137e-10 8.89 

10f  0.121e-149 0.121e-149 0.589e-149 0.589e-149 0.588e-149 0.121e-149 21.07 
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