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Abstract  In this paper, a modification of a macroscopic traffic flow model has been presented. In most cases, the source 
terms that have been appeared in traffic flow equations, represent inflow and outflow in a single-lane highway. So, to 
demonstrate the effect of inflow, a constant source term has been introduced in a first-order traffic flow equation. Inserting a 
linear velocity-density relationship, the model is presented. In order to incorporate initial and boundary data, the model is 
treated as an Initial Boundary Value Problem (IBVP). We describe the derivation of a finite difference scheme of the IBVP 
which leads to a first order explicit upwind difference scheme. Rigorous well-posedness results and numerical investigations 
are presented. This paper contains the implementation of the numerical schemes by developing computer programming code 
and numerical simulation. Numerical schemes are implemented in order to bring out a variety of numerical results and to 
visualize the significant effects of constant rate inflow.  
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1. Introduction 
As the world’s population grows, traffic management is 

becoming a mounting challenge for many cities and towns 
across the globe. Increasing attention has been devoted to 
the modeling, simulation, and visualization of traffic flows. 
In an effort to minimize congestion, an accurate method for 
modeling the flow of traffic is imperative. There is a vast 
amount of literature on modeling and simulation of traffic 
flows.  

Many research groups are involved in dealing with the 
problem with different kinds of traffic models (like 
fluid-dynamic models, kinetic models, microscopic models 
etc.) for several decades. E.g. In [1], the author shows that if 
the kinematic wave model of freeway traffic flow in its 
general form is approximated by a particular type of finite 
difference equation, the finite difference results converge to 
the kinematic wave solution despite the existence of shocks 
in the latter. In [2], the author develops a finite difference 
scheme for a previously reported non-equilibrium traffic 
flow model. This scheme is an extension of Godunov's 
scheme to systems. It utilizes the solutions of a series of 
Riemann problems at cell boundaries to construct 
approximate solutions of the non-equilibrium traffic flow  
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model under general initial conditions. 
In [3], the authors consider a mathematical model for 

fluid dynamic flows on networks which is based on 
conservation laws. The above discussion motivates us to the 
study in investigating efficient finite difference scheme to 
visualize the effect of inflow in a traffic flow simulation. 

Mainly two approaches generally used in mathematical 
modelling of traffic flow. One approach, from a 
microscopic view, studies individual movements of vehicles 
and interactions between vehicle pairs. This approach 
considers driving behaviour and vehicle pair dynamics. The 
other approach studies the macroscopic features of traffic 
flows such as flow rate 𝑞𝑞 , traffic density 𝜌𝜌  and travel 
speed 𝑣𝑣. The basic relationship between the three variables 
is   𝑞𝑞 = 𝑣𝑣𝑣𝑣 . Macroscopic models are more suitable for 
modelling traffic flow in complex networks since less 
supporting data and computation are needed.  

In this paper macroscopic fluid dynamic models are 
studied both theoretically and numerically. This analysis is 
mainly focused on the visualization of a constant rate 
inflow in a single lane highway.  

The structure of this paper is as follows. In Section 2, we 
have developed a new model associated with a source term 
based on the classical LWR model. In Section 3, we derive 
an exact solution for our model using method of 
characteristics. In Section 4, based on the study of finite 
difference method from [4] we formulate explicit upwind 
difference scheme for the numerical solution of the traffic 
flow model in a single lane highway. The consequences are 
presented in Section 5 where different types of numerical 
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experiments show the effectiveness of the constant rate 
inflow in a single lane highway. 

2. Modeling of Vehicular Traffic with 
Source Term 

In the 1950s James Lighthill and Gerald Whitham in [5], 
and independently Richards in [6], proposed to apply fluid 
dynamics concepts to traffic flow. In a single road, this 
traffic flow model is based on the conservation of cars 
described by the scalar hyperbolic conservation law: 

    𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0                  (1) 

where 𝜌𝜌 = 𝜌𝜌(𝑡𝑡, 𝑥𝑥) is the density of cars and 𝑞𝑞 = 𝑞𝑞(𝑡𝑡, 𝑥𝑥) 
denote the traffic flow rate (flux) all of which are functions 
of space, 𝑥𝑥 ∈ ℝ  and time, 𝑡𝑡 ∈ ℝ+ . Flux 𝑞𝑞(𝑡𝑡, 𝑥𝑥)  can be 
written as the product of the density and of the average 
velocity 𝑣𝑣  of the cars, i.e.  𝑞𝑞 = 𝜌𝜌𝜌𝜌(𝜌𝜌) . Inserting this 
relationship in (1) , we obtain 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕
𝜕𝜕𝜕𝜕
�𝜌𝜌. 𝑣𝑣(𝜌𝜌)� = 0            (2) 

Introducing a source term based on [7] and [11], (2) 
becomes 

  𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕
𝜕𝜕𝜕𝜕
�𝜌𝜌. 𝑣𝑣(𝜌𝜌)� = 𝑠𝑠(𝑡𝑡, 𝑥𝑥, 𝜌𝜌)        (3) 

𝑠𝑠(𝑡𝑡, 𝑥𝑥, 𝜌𝜌)  is the source term denoting inflow or outflow in 
a particular location of a single lane highway. To avoid 
complexity of this model, we consider 𝑠𝑠(𝑡𝑡, 𝑥𝑥, 𝜌𝜌)  is a 
constant and writing 𝑠𝑠  instead of  𝑠𝑠(𝑡𝑡, 𝑥𝑥, 𝜌𝜌), equation (3) 
yields: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕
𝜕𝜕𝜕𝜕
�𝜌𝜌. 𝑣𝑣(𝜌𝜌)� = 𝑠𝑠            (4) 

The interpretation and construction of the velocity-density 
relationship plays a vital role in the macroscopic traffic flow 
model. The first steady-state speed-density relation is 
introduced by Greenshields [8], who proposed a linear 
relationship between speed and density that is as: 

𝑣𝑣(𝜌𝜌) = 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 �1 − 𝜌𝜌
𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚

�           (5) 

where 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚  is the maximum velocity and 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚  is the 
maximum density of the road. Inserting the linear 
velocity-density closure relationship (5) into (4), we obtain 
the specific first order non-linear partial differential equation 
of the form: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕
𝜕𝜕𝜕𝜕
�𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚  �𝜌𝜌 −

𝜌𝜌2

𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚
�� = 𝑠𝑠       (6) 

In this paper, we investigate the traffic flow equation 
given by (6). 

3. Analytical Solution of the Model 
The non-linear PDE (6) can be solved if we know the 

traffic density at a given initial time, i.e. if we know the 
traffic density at a given initial time 𝑡𝑡0, we can predict the 

traffic density for all future time 𝑡𝑡 ≥ 𝑡𝑡0, in principle. Then 
we have to solve an Initial Value Problem (IVP) of the form: 

�   
 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 + 𝜕𝜕

𝜕𝜕𝜕𝜕 �𝑣𝑣max �𝜌𝜌−
𝜌𝜌2

𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚
��=𝑠𝑠

𝜌𝜌(𝑡𝑡0,𝑥𝑥)=𝜌𝜌0(𝑥𝑥)
�          (7) 

The IVP (7) can be solved by the method of characteristics 
as follows. The PDE in (7) can be written as:  

       
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜕𝜕(𝜌𝜌)
𝜕𝜕𝜕𝜕

= 𝑠𝑠 where, 𝑞𝑞(𝜌𝜌) = 𝑣𝑣max �𝜌𝜌 −
𝜌𝜌2

𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚
�   

⟹
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑠𝑠                    

                   ⟹
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑣𝑣max �1 −
2𝜌𝜌
𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚

�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 = 𝑠𝑠            

           Again,  
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 = 𝑠𝑠                    

where 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑣𝑣max �1 − 2𝜌𝜌
𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚

�           (8) 

∴ 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=  𝑠𝑠                       (9) 

Integrating (9) we obtain 𝜌𝜌(𝑡𝑡, 𝑥𝑥) = 𝑠𝑠 𝑡𝑡 + 𝑐𝑐1 
where 𝑐𝑐1 is the constant of integration. Putting 𝑡𝑡 = 0 and 
𝑥𝑥 = 𝑥𝑥0 we have 

𝜌𝜌0 (𝑥𝑥0) =  𝜌𝜌(0, 𝑥𝑥0) = 𝑠𝑠. 0 + 𝑐𝑐1 = 𝑐𝑐1 
  ∴  𝜌𝜌(𝑡𝑡, 𝑥𝑥) = 𝑠𝑠 𝑡𝑡 + 𝜌𝜌0 (𝑥𝑥0)          (10) 

Again by integration from equation (8) we have 

𝑥𝑥(𝑡𝑡) = 𝑣𝑣max �1 − 2𝜌𝜌
𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚

� 𝑡𝑡 + 𝑐𝑐2        (11) 

where 𝑐𝑐2  is the constant of integration. Putting 𝑡𝑡 = 0 
equation (10) becomes 

𝑥𝑥(0) = 𝑥𝑥0 = 0 + 𝑐𝑐2 = 𝑐𝑐2 

∴ 𝑥𝑥(𝑡𝑡) = 𝑣𝑣max �1 − 2𝜌𝜌
𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚

� 𝑡𝑡 + 𝑥𝑥0     (12) 

This is the characteristic curve of the IVP (7). 
Now from (10) and (12) we have 

 𝜌𝜌(𝑡𝑡, 𝑥𝑥) = 𝑠𝑠 𝑡𝑡 + 𝜌𝜌0  �𝑥𝑥 − 𝑣𝑣max �1 − 2𝜌𝜌
𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚

� 𝑡𝑡�  (13) 

This is the solution of the Cauchy problem (7). 
However, in reality it is very complicated to approximate 

the initial density 𝜌𝜌0(𝑥𝑥) of the Cauchy problem (7) as a 
function of 𝑡𝑡 from given initial data, e.g. it may cause a huge 
error. Moreover, in the case of linear velocity-density 
relationship it might be such more difficult to solve the IVP 
by the method of characteristics. Also if we want to employ 
inflow source term in a particular position, then we can’t 
describe the effects using (13). 

Therefore, there is a demand of some efficient numerical 
methods for solving the traffic flow model (7) as initial value 
problem. 

4. Numerical Solution Using Explicit 
Upwind Difference Scheme  

In order to develop the EUDS (Explicit Upwind 
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Difference Scheme) we consider our specific non-linear 
traffic model problem as an Initial Boundary Value Problem 
(IBVP): 

�  

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕𝜕𝜕 (𝜌𝜌)
𝜕𝜕𝜕𝜕

=  𝑠𝑠, 𝑡𝑡0 ≤ 𝑡𝑡 ≤ 𝑇𝑇, 𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏
with I. C. 𝜌𝜌(𝑡𝑡0, 𝑥𝑥) = 𝜌𝜌0(𝑥𝑥);  𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏
and B. C. 𝜌𝜌(𝑡𝑡, 𝑎𝑎) = 𝜌𝜌𝑎𝑎(𝑡𝑡); 𝑡𝑡0 ≤ 𝑡𝑡 ≤ 𝑇𝑇  

�   (14) 

where,       𝑞𝑞(𝜌𝜌) =  𝜌𝜌. 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 �1 − 𝜌𝜌
𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚

�     (15) 

The IBVP in (14) is well-posed if the characteristic speed 
𝑞𝑞′(𝜌𝜌) ≥ 0 in the range of  𝜌𝜌. 

In order to develop the scheme, we discretize the space 
and time. We discretize the time derivative 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
 and space 

derivative 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 in the IBVP (14) at any discrete point (𝑡𝑡𝑛𝑛 , 𝑥𝑥𝑖𝑖) 
for 𝑖𝑖 = 1,2,3, … … ,𝑀𝑀  and  𝑛𝑛 = 0,1,2, … … ,𝑁𝑁 − 1 . We 
assume the uniform grid spacing 𝑡𝑡𝑛𝑛+1 = 𝑡𝑡𝑛𝑛 + 𝑘𝑘 and 𝑥𝑥𝑖𝑖+1 =
𝑥𝑥𝑖𝑖 + ℎ. 

The discretization of 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

  is obtained by first order forward 

difference in time and the discretization of  𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

  is obtained by 
first order backward difference in space.  
Forward Difference in time: 

From the Taylor’s series expansion we can write 

  𝜌𝜌(𝑥𝑥, 𝑡𝑡 + 𝑘𝑘) =  𝜌𝜌(𝑥𝑥, 𝑡𝑡) + 𝑘𝑘
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+
𝑘𝑘2

2!
𝜕𝜕2𝜌𝜌
𝜕𝜕𝑡𝑡2 + ⋯⋯⋯ 

⟹
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=
𝜌𝜌(𝑥𝑥, 𝑡𝑡 + 𝑘𝑘) − 𝜌𝜌(𝑥𝑥, 𝑡𝑡)

𝑘𝑘
− 𝑜𝑜(𝑘𝑘) 

⟹
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

≈
𝜌𝜌(𝑥𝑥, 𝑡𝑡 + 𝑘𝑘) − 𝜌𝜌(𝑥𝑥, 𝑡𝑡)

𝑘𝑘
 

  ∴ 𝜕𝜕𝜕𝜕 (𝑡𝑡𝑛𝑛 ,𝑥𝑥𝑖𝑖) 
𝜕𝜕𝜕𝜕

≈ 𝜌𝜌𝑖𝑖
𝑛𝑛+1−𝜌𝜌𝑖𝑖

𝑛𝑛

∆𝑡𝑡
                   (16) 

Backward Difference in space: 
From the Taylor’s series expansion we can write 

𝑞𝑞(𝑥𝑥 − ℎ, 𝑡𝑡) = 𝑞𝑞(𝑥𝑥, 𝑡𝑡) − ℎ
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+
ℎ2

2!
𝜕𝜕2𝑞𝑞
𝜕𝜕𝑥𝑥2 − ⋯⋯⋯ 

⟹
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=
𝑞𝑞(𝑥𝑥, 𝑡𝑡) − 𝑞𝑞(𝑥𝑥 − ℎ, 𝑡𝑡)

ℎ
− 𝑜𝑜(ℎ)  

⟹
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

≈
𝑞𝑞(𝑥𝑥, 𝑡𝑡) − 𝑞𝑞(𝑥𝑥 − ℎ, 𝑡𝑡)

ℎ
 

∴ 𝜕𝜕𝜕𝜕(𝑡𝑡𝑛𝑛 ,𝑥𝑥𝑖𝑖) 
𝜕𝜕𝜕𝜕

≈ 𝑞𝑞𝑖𝑖
𝑛𝑛−𝑞𝑞𝑖𝑖−1

𝑛𝑛

∆𝑥𝑥
                    (17) 

Inserting  (16), (17) in (15) and writing 𝜌𝜌𝑖𝑖𝑛𝑛  for 𝜌𝜌(𝑡𝑡𝑛𝑛 , 𝑥𝑥𝑖𝑖), 
the discrete version of the nonlinear PDE formulates the first 
order explicit upwind difference scheme of the form 

  𝜌𝜌𝑖𝑖𝑛𝑛+1 = 𝜌𝜌𝑖𝑖𝑛𝑛 + 𝑠𝑠∆𝑡𝑡 − ∆𝑡𝑡
∆𝑥𝑥

[𝑞𝑞(𝜌𝜌𝑖𝑖𝑛𝑛) − 𝑞𝑞(𝜌𝜌𝑖𝑖−1
𝑛𝑛 )]     (18) 

where, 𝑖𝑖 = 1, … ,𝑀𝑀; 𝑛𝑛 = 0, … ,𝑁𝑁 − 1 

and, 𝑞𝑞(𝜌𝜌𝑖𝑖𝑛𝑛) = 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 �𝜌𝜌𝑖𝑖𝑛𝑛 −
�𝜌𝜌𝑖𝑖

𝑛𝑛 �2

𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚
�        (19) 

In the finite difference scheme, the initial and boundary 
data  𝜌𝜌𝑖𝑖0  and  𝜌𝜌0

𝑛𝑛  for all 𝑖𝑖 = 1, … ,𝑀𝑀; 𝑛𝑛 = 0, … ,𝑁𝑁 − 1 are 
the discrete versions of the given initial and boundary values 

𝜌𝜌0(𝑥𝑥) and 𝜌𝜌𝑎𝑎(𝑡𝑡) respectively. 
A stencil is a geometrical arrangement of the nodal group 

which visualizes the flow of the scheme. The stencil for the 
explicit upwind difference scheme is presented below: 

 

Figure 1.  Stencil of the Explicit Upwind Difference Scheme (EUDS) 

4.1. Stability and Physical Constraint Condition 
The implementation of the EUDS scheme is not straight 

forward. Since vehicles are moving in only one direction, so 
the characteristic speed 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
 must be positive. Therefore one 

needs to ensure the well-posedness (physical constraint) 
condition: 

 𝑞𝑞′ (𝜌𝜌𝑖𝑖𝑛𝑛) = 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 �1 − 2𝜌𝜌𝑖𝑖
𝑛𝑛

𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚
� ≥ 0        (20) 

Since the maximum velocity 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 > 0, 

∴ 1 − 2𝜌𝜌𝑖𝑖
𝑛𝑛

𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚
≥ 0 ⟹ 2𝜌𝜌𝑖𝑖

𝑛𝑛

𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚
≤ 1 ⟹ 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚 ≥ 2𝜌𝜌𝑖𝑖𝑛𝑛     (21) 

which is the condition for well-posedness. 

∴  𝑞𝑞′ (𝜌𝜌𝑖𝑖𝑛𝑛) ≤ 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚               (22) 
Rewriting the non-linear PDE in (14) as 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑞𝑞′(𝜌𝜌)
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑠𝑠   

the explicit finite difference scheme (18) takes the form 

 𝜌𝜌𝑖𝑖𝑛𝑛+1 = 𝜌𝜌𝑖𝑖𝑛𝑛 −  𝑞𝑞′ (𝜌𝜌𝑖𝑖𝑛𝑛)
∆𝑡𝑡
∆𝑥𝑥

[𝜌𝜌𝑖𝑖𝑛𝑛 − 𝜌𝜌𝑖𝑖−1
𝑛𝑛 ] + 𝑠𝑠∆𝑡𝑡 

⟹  𝜌𝜌𝑖𝑖𝑛𝑛+1 = (1 − 𝜆𝜆)𝜌𝜌𝑖𝑖𝑛𝑛 + 𝜆𝜆 𝜌𝜌𝑖𝑖−1
𝑛𝑛 + 𝑠𝑠∆𝑡𝑡   (23) 

where, 

 𝜆𝜆 ≔  𝑞𝑞′ (𝜌𝜌𝑖𝑖𝑛𝑛) ∆𝑡𝑡
∆𝑥𝑥

               (24) 

Since we are considering the source term “s” to be a 
constant, so equation (23) implies that if  𝜆𝜆 ≤ 1  then the 
solution at the new time step is a weighted average of the 
solution at the old time step. So that this implies 

∴ 𝜆𝜆 ≔  𝑞𝑞′(𝜌𝜌𝑖𝑖𝑛𝑛) ∆𝑡𝑡
∆𝑥𝑥
≤ 1             (25) 

Then condition (25) can be guaranteed via (22) by 

𝛾𝛾 ≔ 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 ∆𝑡𝑡
∆𝑥𝑥

≤ 1              (26) 

which is the stability condition involving the parameter 
𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 . 

Thus whenever one employs the stability condition (26), 
the physical constraints condition (21) can be guaranteed 
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immediately by choosing 
   𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚 = 𝛼𝛼max𝑖𝑖 𝜌𝜌0(𝑥𝑥𝑖𝑖), 𝛼𝛼 ≥ 2         (27) 

4.2. Incorporation of Initial and Boundary Data 

In order to perform numerical simulation, we consider the 
exact solution: 

  𝜌𝜌(𝑡𝑡, 𝑥𝑥) = 𝑠𝑠 𝑡𝑡 + 𝜌𝜌0  �𝑥𝑥 − 𝑣𝑣max �1 − 2𝜌𝜌
𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚

� 𝑡𝑡�   (28) 

We consider the initial condition 𝜌𝜌0(𝑥𝑥) =  1
2
𝑥𝑥, then we 

have  

𝜌𝜌(𝑡𝑡, 𝑥𝑥) = 𝑠𝑠 𝑡𝑡 + 1
2

 �𝑥𝑥 − 𝑣𝑣max �1 − 2𝜌𝜌
𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚

� 𝑡𝑡�   (29) 

  ⟹ 𝜌𝜌(𝑡𝑡, 𝑥𝑥) = 𝑠𝑠 𝑡𝑡 +
1
2

 (𝑥𝑥 − 𝑣𝑣max 𝑡𝑡) +
𝑣𝑣max 𝜌𝜌𝜌𝜌
𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚

   

⟹ 𝜌𝜌(𝑡𝑡, 𝑥𝑥) = 𝑠𝑠 𝑡𝑡+(𝑥𝑥−𝑣𝑣max 𝑡𝑡)/2
1−𝑣𝑣max 𝑡𝑡/𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚

              (30) 

We prescribe the corresponding boundary value by the 
equation 

 𝜌𝜌𝑎𝑎(𝑡𝑡) =  𝜌𝜌(𝑡𝑡, 𝑥𝑥𝑎𝑎) = 𝑠𝑠 𝑡𝑡+(𝑥𝑥𝑎𝑎−𝑣𝑣max 𝑡𝑡)/2
1−𝑣𝑣max 𝑡𝑡/𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚

     (31) 

where 𝑥𝑥𝑎𝑎  denotes the position of the left boundary. To 
present the numerical solution we avoid the term 𝑠𝑠𝑠𝑠 from 

the right hand side of equation (31). Hence the boundary 
condition takes the following form: 

 𝜌𝜌𝑎𝑎(𝑡𝑡) =  𝜌𝜌(𝑡𝑡, 𝑥𝑥𝑎𝑎) = (𝑥𝑥𝑎𝑎−𝑣𝑣max 𝑡𝑡)/2
1−𝑣𝑣max 𝑡𝑡/𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚

       (32) 

To obtain the density profile we have used the EUDS. In 
order to use the relevant schemes we have made the 
following assumptions: 
• We have considered a highway in a range of 10 (ten) 

km. 
• Initially we perform numerical experiment for 

6 minutes. 
• We consider the number of vehicles of various points at 

a particular time as initial data and constant boundary 
data. 

• We have estimated maximum density which is 
parameterized by 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚  in the traffic flow model. To 
evaluate 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚  we have used the following equation 

𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚 = 𝛼𝛼 ∗ max𝜌𝜌(0, 𝑥𝑥) 
For this we use the initial density for 𝜌𝜌(0, 𝑥𝑥) and take 
𝛼𝛼 = 10 as a constant. 
Using initial and boundary value on EUDS scheme, we 

can forecast the traffic flow model. 

 

Figure 2.  Convergence of Explicit Upwind Difference Scheme 
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4.3. Error Estimation of the Numerical Scheme 
We compute the relative error in 𝐿𝐿1 norm defined by 

‖𝑒𝑒‖1 ∶=
‖𝜌𝜌𝑒𝑒−𝜌𝜌𝑛𝑛‖1
‖𝜌𝜌𝑒𝑒‖1

             (33) 

for all time where 𝜌𝜌𝑒𝑒  is the analytic solution (30) and 𝜌𝜌𝑛𝑛  is 
the numerical solution computed by the explicit upwind 
difference scheme. Figure 2 shows the relative error remains 
below 0.001 which is quite acceptable. It also shows a very 
good feature of convergence of the EUDS scheme. 

5. Numerical Experiments  
In this section we present numerical simulation results for 

some specific cases based on explicit upwind difference 
scheme (EUDS). 

5.1. Density Profile Using EUDS 

Initial density profile 

Initially we consider a highway of 10 kilometers. We 
choose the maximum velocity of cars is 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 = 0.167(0.1 
km/sec) = 60.12  km/hour. We consider the maximum 
density 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚 =  550 cars/km and we perform numerical 
experiment for  6 minutes with temporal grid size ∆𝑡𝑡 =
0.1 second and spatial grid size ∆𝑥𝑥 = 100 meters= 0.25. 

We consider the initial condition given by: 

𝜌𝜌(0, 𝑥𝑥) = 25 ∗ sin �𝑥𝑥
4
� + 30         (34) 

as presented in figure 3 and the constant one sided boundary 
value for EUDS is 𝜌𝜌(𝑡𝑡, 0) = 21/0.1 km. 

Initial and 6 minutes density profile for different 
maximum velocities with an inflow at 5th km 

Now we investigate the performance of the EUDS for 
simulation of a 10  km-freeway with an inflow which is 
located at 5th km. We consider the initial condition given by 
equation (34). The constant boundary condition adopted for 
our numerical simulation is   𝜌𝜌(𝑡𝑡, 0) = 21/0.1 km. We 
consider constant rate inflow 𝑠𝑠 = 5 in the interval [5km, 
5.1km]. 

 

Figure 3.  Initial traffic density for 10 km highway in case of Explicit Upwind Difference Scheme 

 

Figure 4.  Layout of a freeway with an inflow 
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We know that extremely high densities can bring traffic on 
a roadway to a complete stop and the density at which traffic 
stops is called the jam density. Figure 5 shows the 

comparative position of cars between initial and 6 minutes 
when 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 = 30 km/hr. 

 

Figure 5.  Comparative position of cars between initial and six minutes in case of EUDS when 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 = 30 km/hr 

 

Figure 6.  Comparative position of cars between initial and six minutes in case of EUDS when 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 = 60 km/hr 
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The curve marked by “dash line” represents the density 
profile for 6 minutes. Since a constant rate inflow is acting 
on the 5th km position and the maximum velocity is very low 
(30 km/hr only), so at that point traffic density 𝜌𝜌 exceeds 
the jam density 𝜌𝜌𝑗𝑗𝑗𝑗𝑗𝑗  i.e. 𝜌𝜌 > 𝜌𝜌𝑗𝑗𝑗𝑗𝑗𝑗 = 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚  which leads us 
to the condition of saturated traffic termed as traffic 
congestion.  

Figure 6 and 7 represent the initial position of cars as well 

as the position after 6  minutes with maximum velocity 
𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 = 60 km/hr and 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 = 90 km/hr respectively. We 
observe that, when 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 = 90 km/hr that is in figure 7 the 
traffic waves are moving faster than the case of figure 6 and 5. 
In all cases mentioned in this section, we take an inflow 
source term at 5th km position of our considered 10 km 
highway where some vehicles enter so that the density of 
traffic considerably increases at inflow position. 

 

Figure 7.  Comparative position of cars between initial and six minutes in case of EUDS when 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 = 90 km/hr 

 

Figure 8.  Velocity profile for car positions at 6th minute in case of EUDS when 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 = 30 km/hr 
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5.2. Velocity Profile Using EUDS 

The following figures show the velocity profile for car 
positions at 6 minute with different maximum velocity level 
consideration. The velocity is computed by the specific 
linear velocity-density relationship according to 
Greenshields. This specific relation is of the following form: 

  𝑣𝑣(𝜌𝜌) = 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 �1 −
𝜌𝜌

𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚
�  

We consider constant rate inflow 𝑠𝑠 = 5 in the interval 
[5km, 5.1km]. 

Figure 8, 9 and 10 represent the velocity profile of cars for 
6  minute with 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 = 30  km/hr, 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 = 60  km/hr and  
𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 = 90 km/hr respectively. According to the behaviour 
of car velocity marked by “dot-dash line” in the following 
velocity profile diagrams we see that a constant rate inflow is 
acting on the 5th km position, so that for high density at that 
position, the velocity of cars suddenly decreases in all cases. 

 

Figure 9.  Velocity profile for car positions at 6th minute in case of EUDS when 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 = 60 km/hr 

 

Figure 10.  Velocity profile for car positions at 6th minute in case of EUDS when 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 = 90 km/hr 
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6. Conclusions 
In this paper, a constant source term in the classical LWR 

model has been introduced to represent constant rate inflow 
in a single lane highway. Analytical solution for our model 
based on linear velocity-density relationship has been 
presented. We have derived explicit upwind difference 
scheme and for our model. We have also established the 
stability and physical constraints conditions of these 
schemes. Finally we have presented numerical results for 
density and velocity to visualize the effect of constant rate 
inflow and outflow in a particular position of our considered 
single lane highway. 

The significant effect of inflow was visualized by plotting 
the densities with respect to the distance for various times. 
We have predicted the velocity with respect to the distance 
and these results are very much consistent with the values of 
the parameters as chosen. This motivates us to extend the 
numerical schemes for further modification of our model. 
The approach of this research still has some drawbacks 
which are proposed as topics of our future research. 
 The performance of the model in this paper has been 

evaluated under limited conditions. The model should 
be tested with more traffic data collected under various 
conditions considering even more congestion types, 
geometric and weather conditions and driver’s 
efficiency. 

 We have described the analytical solution of our model 
with initial condition in infinite space. But in reality it is 
impossible to approximate the initial density for infinite 
space. It will be our future work to find out the better 
analytical techniques to solve our model with two sided 
boundary conditions and initial condition in finite 
space. 

 In our model, we have discussed the effect of inflow in a 
single lane highway. For a more detailed simulation of 
traffic flow for multilane highway, a more 
differentiated traffic behavior should be considered i.e. 
the lane changing effects, which we left as our future 
research work. 
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