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Abstract  The author generalizes the traditional Gaussian Elimination (GE) technique to resolve the feasibility of any 
system of linear inequalities or equalities. Any linear system consists of either equalities and/or inequalities or mixed of both 
equalities and inequalities is converted to its homogeneous linear feasibility standard form (HLSF). Variable substitution (VS) 
in the original Gaussian Elimination is replaced by variable transition (VT) to eliminate a specific variable of choice in a 
recursive fashion such that at the end only one single variable left to yield the feasible interval for the selected variable if such 
an interval exists. Note that the feasible interval of a specific variable can be null, single value, bounded below and above, 
bounded below only, bounded above only, or both unbounded above and below. Furthermore, the feasible interval of a given 
variable if it exists must also include its integer or binary solution or solutions. It is further shown that the original GE is 
indeed a special case of the GGE and both GE and GGE share Identical computational complexity that is bounded by the 
worst case of 2O n m   . GGE is applicable to any linear system with a finite number of variables, n, and m, a finite number 

of equalities, inequalities, or mixed constraints. GGE can be used to resolve the feasibility of a given linear system with 
number of variables and constraints over millions or more. The validity of GGE in dealing very large linear system not only 
addresses the feasibility of linear systems, it may also resolve the computational complexity of the class of NP-complete 
(NPC) mystery. This innovative GGE technique is applied to various linear programs with unique solution, unbounded 
solution, or no solution to illustrate its correctness and applicability. GGE is also shown to be applicable in resolving 
differential variational inequalities (DVI) for both scientific and engineering applications.    

Keywords  Homogenerous Linear Systems, Linear Inequalities, Feasibility, Feasible Interval, Gaussian Elimination, 
Differential Variation Inequalities, Linear Programs, Computational Complexity 

 

1. Introduction 
Very large system of linear inequalities with thousands or 

millions of variables and/or constraints are very tough to 
resolve. Typically, linear inequalities are solved with the 
famous Simplex method [1-4] the ellipsoid method [6], or 
the interior points method [7, 11]. Whether or not a linear 
system is solvable or whether or not a feasible linear system 
contains integer or binary solution is one of the most 
challenging questions known as NP-complete (NPC) for 
applications in operstions research (OR) [10]. In this paper, 
the author proposes an innovative approach that generalizes 
the well known Gaussian Elimination (GE) for linear 
equalities to resolve the feasibility problem of a system of 
linear inequalities. Instead of variable subsittution, it is 
replaced by variables transition to eliminate recursively 
variables of choice until only one single variable is left to 
determine the feasible intervl associated of the specific  
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variable. The technique is coined as the Generalized 
Gaussian Elimination (GGE) for linear systems. Furthermore, 
it is shown that GE is simply a special case of GGE and that 
both GE and GGE share the same computational complexity. 
Simple LPs are used to illustrate for all possible cases of 
feasibble intervals such as single value (unique), infinite 
many solutions with distinct upper and lower bounds, or both 
bounded and unbounded cases.    

2. Homogeneous Linear Systems 
Feasibility (HLSF) with New 
Notations [17-19] 

Given any system of linear inequalities or equalities in 
vector and matrix form, 

 where  is an n by m matrix,  and  are 
m by 1 and n by 1 column vectors respectively. 

We define the homogeneous linear system feasibility 
(HLSF) for  as follows  

 where 

bxA ≥ A x b

bxA ≥
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 and            (1) 

The vector  is referred to as the feasibility 

vector of the original linear system of inequalities . 
Note that any system or subsystem of linear equalities 

 can always be converted into a system or 
subsystem of linear inequalities as 

. 

The author adopted the following new notations to 
simplify the illustration of GGE: 

Let  be an 1 
by n row vector, and let

 be the 1 by 

n-1 sub-vector of . 
With such a new notation, it is clear that for the dot 

product of two vectors  and , 
we have, 

(2) 

For a linear inequality converted to dot product 
, we have  

Given the following homogenous linear inequality (HLI): 

 where 

  and           (3) 

Let   where 

             (4) 

We also adopt the notation,  to highlight 

the nonexistence or absence of the variable, , from the 
function (either an equality or an inequality) for 

. 

2.1. A Literature Overview and Motivation 

Traditionally, linear inequalities are resolved as linear 
programs using either the Simplex methods (Dantzig, 1947), 
Crisis Cross algorithms (Fukuda & Terlaky, 1997), interior 
point method (Khachiyan, 1979), projective algorithms 
(Strang, 1987), path-following algorithms (Gondzio & 
Terlaky, 1996), and penalty or barrier functions (Nocedal 
and Wright, 1999). Most approaches centered on iterative 
searching for feasible points within the n dimensional 
polytope, i.e., the n-polytope, defined by the constraint linear 
inequalities. The author with his colleagues [18] proposed a 
new approach that recursively reduces the worst infeasibility, 
the sum of all infeasibility, and the number of constraints 
with the worst infeasibility based upon nonzero coefficients 
or a subset of the nonzero coefficients that defines the given 
system of linear inequalities [18]. Such an approach is 
capable of finding the exact solution if such a feasible 
solution is unique, a feasible solution if there are more than 
one solution. For linear system that does not have a feasible 
solution, this approach is capable of minimizing the sum of 
all infeasibility or the worst infeasibility, and pinpointing to 
the relevant coefficients to reveal true conflicts of the linear 
system [18]. 

Over a five years period from 2009 to 2014 the author 
presented three new techniques in dealing with linear 
systems with both equalities and inequalities were propose 
by the author and his colleagues during the past few years. 
The first technique (LIS-I) that examines the atomic 
components of system of linear inequalities is a set of 
algorithms that recursively reduce the sum of all infeasibility, 
maximum infeasibility, and the number of constraints with 
the maximum infeasibility [17, 18], This paper details a 
generalized Gaussian Elimination (GGE) to obtain the 
feasible interval of individual variable as LIS-II. A third 
technique as LS-III utilizes both projective and orthogonal 
geometry of unit vectors over the surface an n-dimensional 
hyperspace as the unit-shell and the concepts of equal 
distanced points to selected set of points on the unit shell 
with increasing rank recursively to locate a solution if such a 
solution does exists [19]. 

3. The Generalized Gaussian 
Elimination (GGE) Algorithm for 
HLSF  

Let a HLSF in its standard form as (1) 

 where the 

constraint matrix, Let the HLSF  with n 
constraints and m variables , then , is an n by m+1 matrix 
with n linear constraints and variables with
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. We have the i-th column of , 

, and the j-th row of ,  is respectively: 

 and  

 

To eliminate a specific variable,  from , 
GGE requires the following steps: 

Step 1: normalization; 
Step 2: rows permutation by sign; 
Step 3: sorting of rows by decreasing number of nonzero 

coefficients; 
Step 4: replacing rows using binding transition;  
Steps 1 to 4 are repeatedly applied to eliminate other 

variables until only the desirable variable left. 
When only one variable is left, the final HLSF uniquely 

defines both an upper bound and a lower bound as the 
feasible interval for remaining variable that is not eliminated. 

Note that the feasible interval  with
may have the following 6 possible cases: 

(i) no solution such that  with 

 

(ii) unique solution with , i.e., we 

have  
(iii) bounded interval with infinite many solutions as 

 such that with   

 

(iv) bounded above as  such that 

 

(v) bounded below as  such that 

 

(vi) unbounded above and below as  such 

that  
Note: (vi) may not exist; it is listed for completeness. 
Assume that a selected column variable, , is to be 

eliminated, the detailed description of each step for the GGE 
is provided as follows: 
Step 1: Normalization: Normalization of column  

associated with the variable  is to force all nonzero 

coefficients of  has value of 1 for all positive numbers 
and -1 for all negative numbers and zero otherwise. It is 
equivalent to construct a diagonal matrix 

 

where  if  and   if  

such that . 

Note that Multiplying  by  is simply dividing the 

k-th row of  by 1 if and the j-th row of  by 

 if . In other words, we have: 

 

11 11 12 11 1 11 1( 1) 11

21 22 22 22 2 22 2( 1) 22

31 33 32 33 3 33 3( 1) 33

( 1)1 ( 1)( 1) ( 1)1 ( 1)( 1) ( 1) ( 1)( 1) ( 1)( 1)
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/ / ... / ... /

/ / ... / ... /
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 
 
 
 
 
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 
 
 
 
 

 

Note that we have the i-th column of  is  

=  

where  if ,  if , and  if , for . 
Upon the completion of Step 1, the i-th column, associated with the variable,  consists of only three values, 1, -1, or 0. 

Step 2 is needed to group rows in  by the signs in  in its i-th column and also sort rows in each group by decreasing 
number of nonzero coefficients (nzc) of the associated row. In equation notations,  
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We are rearranging the rows of  into three parts by a row permutation matrix, , such that  

 where  and the i-th column of  is  

the i-th column of = , and the i-th column of = .  Furthermore, we have 

Step 3. Identifying most and least binding rows: Both  and  are sorted in decreasing order of  such that 

if  where  is defined as the number of nonzero coefficients of the r-th row of . We 

refer to rows in  or  with the maximum nzc(r) as binding rows. Two cases of binding rows must be separated 

properly to locate the least and most binding rows. Let row r in  be, we have 

   

It is possible that another binding row s in  as: 

, we have  

Note that if , we have  

 and , hence, the most lower binding (MLB) row 

for  is row j such that . 

Similarly, let row r in  be , we have 

 
  

It is possible that another binding row s in  as:
 
 

, we have  

Note that if , we have  

 and , hence, the least upper binding (LUB) 

row for  is row k such that . 

Elimination of the variable  must preserve the most and/or least binding rows with respect to all the connected variables 
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included and accounted for. 

Step 4. Note that each row in  uniquely defines a lower bound of  with respect to all other variables in 

. Similarly, each row in  uniquely define an upper bound of  with respect to all 

other variables in .    

Select distinct binding rows from  and  such that we have: 

 if row r in  

and  if row u in  

Consequently, we have a lower bound for  from a binding row in  as 

 

and an upper bound for  from a binding row in  as 

 

As shown in Step 3, a unique most lower binding (MLB) row and least upper binding (LUB) row for  may be identified 
if such binding relationship exists. 

From this two extreme binding rows, the variable, , can be safely and successfully eliminated as: 

 

For each row  within  we have 
 

i.e.,                   

Consequently, we have   i.e., 0)()()( ≥=− −−−−−− iiiiii xsxvxf   

Similarly, for each row  within  we have 
 

i.e.,                    

Consequently, we have  i.e.,   

Note that rows in  do not contain the variable, . In other words, we have shown that the variable,  may be 

eliminated completely and safely from every row in  without loss of all the binding inequalities that include all possible 

lower or upper bounds in terms of the remaining variables,  
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Note that steps 1 to 4 may be applied recursively to eliminate any specific ordering of variables in  such that only a 
specific variable,  left such that we have the final inequalities: 

                      (5) 

Inequalities (5) define all possible upper bounds and lower 
bounds for the select variables, . 

In other words, we have: 
 

where  is the number of rows in  and  is the 

number of rows in  

Let , 

then  uniquely defines a feasible interval for 

the variable, . Consequently, we may have the following 

6 possible cases for . 

(i)  no solution such that   if  

(ii)  unique solution with  with 

 i.e., we have .  
(iii) bounded interval with infinite many solutions as 

 if .  

(iv)  bounded above only as  if  

. 

(v)  bounded below only as  if .  

(vi) unbounded above and below as  if 

 and . 

4. Examples 
To illustrate the validity, capability, and correctness of 

GGE, we provide feasible intervals for simple inequalities 

computed by GGE that are easily verifiable and sample 
linear programs covering with unique solution, no solution, 
or unbounded cases as follows: 
Example #1 

L1:         

L2:                  (6) 

L3:         

The homogeneous  is: 

     (7) 

Eliminating x, we have the following inequalities 

     (8) 

This provides the feasible interval for x as 
 

Eliminating y, we have the following inequalities 

  (9) 

This provides the feasible interval for y as 
 

63 ≤− yx
1243 ≤+ yx
42 ≥+ yx

]5/12,7/8[−=yF

]13/60,5/4[=xF
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Example #2 

L1:   

L2:    

L3:             (10) 

L4:    

L5:    

L6:     

The homogeneous  is: 

  (11) 

Eliminating variables y and z with (11), we have the 
following inequalities: 

 

 

Figure 1.  Feasible Intervals  and 
 

  (12) 

This provides the feasible interval for x as  
Eliminating variable x and y with (11), we have the following inequalities: 

532 ≤+ zy
42 ≤++ zyx

732 ≤++ zyx
0≥x
0≥y
0≥z

xF yF

]4,0[=xF
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     (13) 

This provides the feasible interval for z as  
Eliminating variables x and z with (11), we have the following inequalities: 

       (14) 

This provides the feasible interval for y as  

Figure 6 illustrates the feasible region for these feasible intervals. 

 

Figure 6.  Feasible Intervals for , , and  

Example #3 a linear program with unique solution: 
Consider the following pair of primal and dual linear programs: 

]3/5,0[=zF

]2/5,0[=yF

xF yF zF
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The self-dual LP as Homogeneous Liner Inequalities (HLI) (Wang, 2013): 

 

Consider the primal and dual LP pair: 

 
The corresponding HLFS for this LP as self-dual form [18, 19] is: 
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               (15) 

Applying GGE to eliminate , normalize column  we have: 
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1 2               

1

2

3

5

6

11

12

0 0 2 4 3 32
0 0 1 2 4 32
1 3 / 4 0 0 0 13

. 1 3 / 4 0 0 0 9 / 4
1 2 0 0 0 5 / 2

1 3 / 2 3 /16 9 / 32 15 / 64 0
. 1 3 / 2 3 /16 9 / 32 15 / 64 0
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0 0 0 0 1 0
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            (16) 

Select distinct binding rows, LUB  and MLB  to eliminate , we Have 
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            (17) 

After normalization for of 2th column for , we have: 
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             (18) 

Select distinct binding rows, MLB  and LUB  to eliminate , we have 
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 After normalization for of 3rd column and the removal of 
identical rows, we have: 

1 2 1 2 3                                           1

1

2

3

6

7

8

9

0 0 1 2 3 / 2 16
0 0 1 2 4 32
0 0 1 3 / 2 5 / 4 72 / 5

. 0 0 1 3 / 2 5 / 4 64 / 5

. 0 0 1 3 / 2 5 / 4 17
0 0 1 3 / 2 5 / 4 40 / 3
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

y y x x x

r y
r
r

r
r
r
r

∗ 
− 

 −
 

− − − 
 − − − 

− − − 
 − − − 
 
 
 
  

2

1

1

2

3

 
0
0
0
0
0

1 0
0
0
0

y
x
x
x

≥   
   
   
   
   
   
   
   
   
   

 
 
 
  

 (20) 

Select distinct binding rows, MLB  and LUB  to 

eliminate , we have 

1 2 1 2 3                                      

1

2

3

6

7

8

9

0 0 0 1/ 2 1/ 4 16 / 5
0 0 0 1/ 2 11/ 4 96 / 5
0 0 0 1/ 2 1/ 4 8 / 5

. 0 0 0 1/ 2 1/ 4 16 / 5

. 0 0 0 1/ 2 1/ 4 1
0 0 0 1/ 2 1/ 4 8 / 3
0 0 0 3 / 2 5 / 4 64 / 5
0 0 0 1 0 0
0 0 0 0 1 0

y y x x x

r
r
r

r
r
r
r

 
− 

 −
 

− 
 − 
 
 − 
 − −
 
 
  

   1

2

1

1

2

3

  
0
0
0
0
0

1 0
0
0

 

0

y
y
x
x
x

∗ ≥   
   
   
   
   
   
   
   
   
   

 
 
 
  

(21) 
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After normalization for of 4th column for  and the 
removal of identical rows, we have: 

1 2 1 2 3                                         1

1 2

2 1

3

6

7

8

9

0 0 0 1 1/ 2 32 / 5
0 0 0 1 11/ 2 192 / 5
0 0 0 1 1/ 2 16 / 5

. 0 0 0 1 1/ 2 32 / 5

. 0 0 0 1 1/ 2 2
0 0 0 1 1/ 2 16 / 3
0 0 0 1 5 / 6 128 /15
0 0 0 1 0 0
0 0 0 0 1 0

y y x x x

r y
r y
r

r
r
r
r

∗ 
− 

 −
 

− 
 − 
 
 − 
 − −
 
 
  

1

2

3

 
0
0
0
0
0

1 0
0
0
0

x
x
x

≥   
   
   
   
   
   
   
   
   
   

 
 
 
  

(22) 

Select distinct binding rows, MLB  and LUB  to 

eliminate , we have  

1 2 1 2 3                                                         1         

1

2

3

4

5

6

7

0 0 0 0 2 / 6 32 /15
0 0 0 0 7 / 3 224 /15
0 0 0 0 2 / 6 16 / 3
0 0 0 0 2 / 6 98 /15
0 0 0 0 2 / 6 32 /15
0 0 0 0 5 / 6 128 /15
0 0 0 0 1 0

y y x x x

r
r
r
r
r
r
r

 
− 

 −
 

− 
 − 

− 
 − 
  

2

1

1

2

3

 
0
0
0
0
0

1 0
0

 
y
y
x
x
x

∗ ≥   
   
   
   
   
   
   
   
   
   

  

(23) 

After normalization for of 5th column for  and the 
removal of identical rows, we have: 

1 2 1 2 3                               1 

1 2

2 1

3 1

4 2

5 3

6

 
0 0 0 0 1 32 / 5 0
0 0 0 0 1 32 / 5 0
0 0 0 0 1 16 0
0 0 0 0 1 98 /15 0
0 0 0 0 1 128 /15 0
0 0 0 0 1 0 1 0

y y x x x

r y
r y
r x
r x
r x
r

∗ ≥     
−     

     −
     

−     
     −     

−     
     
     

(24) 

Hence the MLB is obtained from row  and the LUB is 
obtained from row  such that  

}5/32,0max{MLB = and 

}16,5/128,5/98,5/32min{LUB = = 6.4 
Since MLB=LUB=6.4, we conclude that the variable  

has unique solution with   
From (21) with  = 6.4, for the MLB is

 and LUB =3.2   
Hence,  has unique solution = 3.2 
Substituting  and = 3.2 into (19), we obtain 

the MLB and LUB for  as MLB = 0 and  
LUB = ; Hence,  

has unique solution . 
Substituting , = 3.2 and = 0 into (17), we 

obtain the MLB and LUB for as 
MLB = and LUB =

; Hence,  has the unique 
solution = 0.2. 

Substituting, = 3.2, , and = 0.2 
into (15), we obtain the MLB and LUB for  as  

MLB = and LUB = 
= 2.1; Hence,  has unique solution

. 
Consequently, both the primal and the dual LPs are 

resolved by applying the GGE algorithm to (15) with the 
unique optimal solution of 

    

Example #4 LP with no solution 
Consider the LP:     

 
The corresponding HLFS for this LP as self-dual form [19] 

is: 

 

1 2 1 2                   1

1 1

2 2

3 1

4 2

5

6

7

8

9

10

0 0 1 2 6 0
0 0 2 1 4 0
1 2 0 0 1 0

2 1 0 0 1 0
6 4 1 1 0 1 0
6 4 1 1 0 0

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

y y x x

r y
r y
r x
r x
r
r
r
r
r
r

∗ ≥    
− −    

    − −
    
− −    
    −    

−     
  − − −  
  
  
  
  
  
    


















  (25) 

Applying the GGE algorithm to normalize the first column, 
we have 
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1 2 1 2                 1

1 1

2 2

3 1

4 2

5

6

7

8

9

10

0 0 1 2 6 0
0 0 2 1 4 0
1 2 0 0 1 0

1 1/ 2 0 0 1/ 2 0
1 2 / 3 1/ 6 1/ 6 0 1 0
1 2 / 3 1/ 6 1/ 6 0 0

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

y y x x

r y
r y
r x
r x
r
r
r
r
r
r

∗ ≥    
− −    

   − −
   
− −   
   −   

−    
 − − − 
 
 
 
 
 
   




 
 
 
 
 
 
 
 
 
 
 
 
 
 

(26) 

Eliminate variable  by rows  and , we have  

1 2 1 2 1

1 1

2 2

3 1

4 2

5

6

7

0 0 1 2 6 0
0 0 2 1 4 0
0 5 0 0 3 0
0 7 1 1 3 0
0 1 1/ 4 1/ 4 0 1 0
0 0 1 0 0 0
0 0 0 1 0 0

y y x x

r y
r y
r x
r x
r
r
r

∗ ≥     
− −     

     − −
     

−     
     − − −     

− −      
   
   
      

  (27) 

The 2nd column for variable  are all positive, hence 

 is only bounded below, the dual LP is unbounded above. 
For the primal LP, it is reduced to the following linear 
inequalities: 

1 2 1

1 1

2 2

3

4

1 2 6 0
2 1 4 0

1 0 0 1 0
0 1 0 0

x x

r x
r x
r
r

∗ ≥     
− −     

     − −
     

     
   
   

      (28) 

Using GGE from rows  and , we can eliminate  

to obtain the both MLB and LUB for  as

; Consequently, the feasible 

interval for  is , i.e., the primal LP has no 
solution ! 

Example #5 LP with unbounded solution 
Consider the LP:     

 
The corresponding HLFS for this LP as self-dual form [18] 

is: 

1 2 1 2        1

1 1

2 2

3 1

4 2

5

6

7

8

9

10

0 0 1 1 1 0
0 0 2 1 6 0
1 2 0 0 2 0
1 1 0 0 1 0
1 6 2 1 0 1 0

1 6 2 1 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

y y x x

r y
r y
r x
r x
r
r
r
r
r
r

∗ ≥     
−     

     −
     

− −     
     − −     
− −      
   − −   
   
  
  
  
  
     







   (29) 

Using GGE from  and , we can eliminate  and 
obtain   

1 2 1 2         1

1 1

2 2

3 1

4 2

5

6

7

8

0 0 1 1 1 0
0 0 2 1 6 0
0 4 2 1 2 0
0 3 0 0 1 0
0 6 2 1 0 1 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

y y x x

r y
r y
r x
r x
r
r
r
r

∗ ≥     
−     

     −
     

− −     
     − −     

−      
   
   
   
   
   

   (30) 

Normalize the 2nd column for , we have 

1 2 1 2         1

1 1

2 2

3 1

4 2

5

6

7

8

0 0 1 1 1 0
0 0 2 1 6 0
0 1 1/ 2 1/ 4 1/ 2 0
0 1 0 0 1/ 3 0
0 1 1/ 3 1/ 6 0 1 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

y y x x

r y
r y
r x
r x
r
r
r
r

∗ ≥     
−     

     −
     

− −     
     − −     

−      
   
   
   
   
   

(31) 
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Regardless the primal variables  and , the 2nd 

column for and the last column for MLB and LUB, 

We obtain the feasible interval  (i.e., 

) from rows  and  as 

 and  

Eliminate  by rows and  and excluding the 

rows with dual variables  and only, we have 

inequalities for the primal variables  and  as: 

1 2                        1

1 1

2 2

3

4

5

6

1 1 1 0
2 1 6 0

1/ 2 1/ 4 5 / 6 1 0
1/ 3 1/ 6 1/ 3 0

1 0 0 0
0 1 0 0

x x

r x
r x
r
r
r
r

∗ ≥     
−     

     −
     

− −      
   − −   
   
   
   

    (32) 

Normalize the 3rd column for , we have: 

1 2                        1

1 1

2 2

3

4

5

6

1 1 1 0
1 1/ 2 3 0
1 1/ 2 5 / 3 1 0
1 1/ 2 1 0
1 0 0 0
0 1 0 0

x x

r x
r x
r
r
r
r

∗ ≥     
−     
     −
     

− −      
   − −   
   
   
   

   (33) 

Eliminate  from rows  and , we have  

1 2    1

1 1

2

4

0 3 / 2 2 0
0 1/ 2 2 / 3 0
0 1 1 1 0
0 1 0

x x

r x
r x
r
r

∗ ≥     
−     

     −
     

        
 
 

    (34) 

Normalize 2nd column for , we have  

1 2    1

1 1

2

4

0 1 4 / 3 0
0 1 4 / 3 0
0 1 1 1 0
0 1 0

x x

r x
r x
r
r

∗ ≥     
−     

     −
     

        
 
 

     (35) 

From (33), it is clear that is bounded below only with 

MLB= . 

Also  is not bounded above with LUB = . Hence, 

the feasible interval for  is .  

5. GGE for Differential Varitional 
Inequalities (DVI) 

GGE may also be applied to linear space as a normed 
Banach space with an inner-product operator <u,v> with 
norm �|𝑢𝑢|� = √< 𝑢𝑢,𝑢𝑢 > for solving variational inequalities 
(VI) or differential variational inequalities (DVI) as follows 
[15 and 16] or Variational-like Inequalities in Banach space 
[25 to 29]: 

Let 𝜙𝜙 = {𝐵𝐵𝐵𝐵 ≤ 𝑏𝑏}, where B is an 𝑚𝑚 × 𝑛𝑛  matrix as a 
nonempty convex compact polyhedron in 𝑅𝑅𝑛𝑛  

Let 𝐹𝐹 be a continuously differentiable function from 𝜙𝜙 
into 𝑅𝑅𝑛𝑛  with Jacobian 𝐹𝐹′ . 

The variational inequality problem (VIP) associated with 
𝐹𝐹  and 𝜙𝜙  is to locate a solution 𝑥𝑥∗  in 𝜙𝜙  satisfying the 
variational inequality (VI): (𝑥𝑥∗ − 𝑥𝑥)𝑇𝑇𝐹𝐹(𝑥𝑥∗) ≤ 0∀ 𝑥𝑥  in 𝜙𝜙 . 
Note that in 𝐸𝐸𝑛𝑛 , we have �|𝑥𝑥|� = √< 𝑥𝑥, 𝑥𝑥 >=  √𝑥𝑥𝑇𝑇𝑥𝑥 

Let the gap function associated with a VIP be defined for 
𝑥𝑥 in 𝜙𝜙 as: 

𝑔𝑔(𝑥𝑥) =  max
𝑦𝑦∈𝜙𝜙

(𝑥𝑥 − 𝑦𝑦)𝑇𝑇𝐹𝐹(𝑥𝑥) 

While the dual gap function associated with a VIP is 
defined as 𝑔̅̅𝑔(𝑥𝑥) = max𝑦𝑦∈𝜙𝜙(𝑥𝑥 − 𝑦𝑦)𝑇𝑇𝐹𝐹(𝑦𝑦) 

Using Newton’s first order Taylor linear approximation 
around a point 𝑥𝑥𝑘𝑘  in 𝜙𝜙, a linearized VIP as LVIP can be 
computed iteratively for 𝑘𝑘 = 0,1,2, … ., as: 

(𝑥𝑥𝑘𝑘+1 − 𝑦𝑦)𝑇𝑇(𝐹𝐹(𝑥𝑥𝑘𝑘) + 𝐹𝐹′(𝑥𝑥𝑘𝑘)(𝑥𝑥 − 𝑥𝑥𝑘𝑘)) ≤ 0∀𝑦𝑦 ∈ 𝜙𝜙. 
Consider the following nonconvex, nonlinear constrained 

mathematical program: 

min𝑥𝑥 ,𝜆𝜆 ℎ(𝑥𝑥, 𝜆𝜆) 𝜆𝜆𝑇𝑇(𝑏𝑏 − 𝐵𝐵𝐵𝐵) = 𝑥𝑥𝑇𝑇𝐹𝐹(𝑥𝑥) + 𝑏𝑏𝑇𝑇𝜆𝜆  subject 
to 𝐹𝐹(𝑥𝑥) + 𝐵𝐵𝑇𝑇𝜆𝜆=0, 𝐵𝐵𝐵𝐵 ≤ 𝑏𝑏, 0 ≤ 𝜆𝜆. 

Note that optimality occurs at: 
min
𝐵𝐵𝐵𝐵≤𝑏𝑏

𝑦𝑦𝑇𝑇𝐹𝐹(𝑥𝑥) = max
𝐵𝐵𝑇𝑇𝜇𝜇=𝐹𝐹(𝑥𝑥)

𝜇𝜇≤0

𝑏𝑏𝑇𝑇𝜇𝜇 

subject to: 𝐵𝐵𝐵𝐵 ≤ 𝑏𝑏,𝐵𝐵𝑇𝑇𝜇𝜇 = 𝐹𝐹(𝑥𝑥), & 𝜇𝜇 ≤ 0 
Consequently, we have the following homogeneous linear 

feasible system of inequalities 𝑓𝑓 = 𝐿𝐿𝐿𝐿 ≥ 0 

Where  and  

Note that 𝑓𝑓 = 𝐿𝐿𝐿𝐿 ≥ 0 can be resolved effectively for the 
feasible intervals of  derived from 𝐿𝐿 as described and 
demonstrated by the proposed GGE algorithm illustrated in 
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6. Conclusions and Future Work  
In conclusion, the author proposes a generalization of the 

traditional Gaussian elimination (GE) for solving system of 
linear equalities to compute the feasible intervals of all 
variables to resolve the feasibility of all linear systems with 
both equalities and/or inequalities included. This 
Generalized Gaussian Elimination (GGE) for linear systems 
is applicable to a wide range of engineering and scientific 
applications and is related closely to the NPC mystery of the 
operations research and solvability of differential variation 
inequalities (DVI). Furthermore, it can be shown that GGE is 
indeed a special case of GE and that both GGE and GE do 
share the same worst case computational complexity of 

2O n m    where n is the number of variables and m is the 

number of constraints. This is accomplished by replacing the 
variable substitution of the Gaussian elimination method by 
variable transition such that a specific variable may be safely 
and recursively eliminated without losing its binding 
inequalities and preserving both the most lower bounds 
(MLB) and the least upper bound (LUB). It is shown that any 
system of linear system with mixed linear equalities and 
inequalities may be converted into its standard homogeneous 
form such that the proposed GGE algorithm may be applied 
to obtain the feasible interval of any variable of choice. From 
the feasible intervals of all the variables of a given linear 
system, one may determine whether or not it contains binary, 
integers, or mixed solutions. The correctness and validity of 
GGE is illustrated by solving sample linear programs with 
unique solution, unbounded solution, and no solution. 

Future work of this research includes the implementation 
of GGE as java code and Excel VB functions for very large 
system of linear inequalities or mixed of linear equalities and 
inequalities with millions of variables and/or constraints. 
The author is currently verifying a parameterized GGE 
algorithm for solving the linear Integer programming (LIP) 
problem as a potential alternative or replacement for the well 
known branch and bound (B&B) technique.  

A draft paper will be available for external review later. 
Funding from NSF or private foundations will be pursued to 
speed up the development of Java or VB functional codes for 
solving eigenvector systems, computing orthogonal basis, 
and DVI applications. GGE may also be applied to problems 
in operations research to reveal the availability of integer or 
binary solutions encountered in the NPC mystery as open 
issues. 
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