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Abstract  In this paper, we employed the use of Standard Integral Collocation Approximation Method to obtain numerical 
solutions of special higher orders linear Fredholm-Volterra Integro-Differential Equations. Power Series, Chebyshev and 
Legendre's Polynomials forms of approximations are used as basis functions. From the computational view points, the 
method is efficient, convenient, reliable and superior to many existing methods. Two examples each of first and second 
orders and one of third order linear Fredholm - Volterra Integro-Differential Equations are considered to illustrate the method. 
We observed from the results obtained that the method performed better when compared with the results obtained in Mustafa 
and Yalcin (2012). 
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1. Introduction 
Integro-Differential Equations have been discussed in 

many applied fields such as Biology, Physical and 
Engineering problems. These equations are either Fredholm 
or Volterra or Fredholm- Volterra Integro Differential 
Equations are contained in many mathematical formulations 
of physical phenomena.Therefore, their numerical treatment 
is desired. .Although, it is generally difficult in finding exact 
solutions of Fredholm- Volterra Integro Differential 
Equations (FVIDE) especially when it is nonlinear. Several 
numerical methods have been used to solve FVIDE among 
them are Approximation Method (Ezzati and Najafalizadeh, 
2011) and (Salih and Mehemet, 2000). Meanwhile, in recent 
years, the matrix method has been developed to solve 
Fredholm - Volterra Integral Equations For example, the 
method is used to solve system of Differential Equations 
(Akyuz and Sezer, 2003) and Differential Algebraic 
Equation (Karamete and Sezer, 2002). Other methods 
include Block Pulse function and Operational Matrices 
(Leyla, Bijan and Mohammed, 2011), Chebyshev 
polynomials approach is used in (Yuksel, Gulsu and Sezer, 
2012) to mention just a few. In this research work, the work 
and idea of (Aliyu, 2012) is revisited and modified as our  
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new proposed numerical method to solve the nth order linear 
Fredholm-Volterra Integro-Differential Equations. The 
general nth order linear Volterra - Fredholm Integro 
Differential Equations considered in this work are in two 
types given as: 

 𝐿𝐿𝐿𝐿(𝑥𝑥) ≡ ∑ �𝑃𝑃𝑖𝑖𝑥𝑥𝑖𝑖
𝑑𝑑𝑖𝑖

𝑑𝑑𝑥𝑥𝑖𝑖
� 𝑦𝑦(𝑥𝑥)𝑛𝑛

𝑖𝑖=0 = 𝑓𝑓(𝑥𝑥) 

+𝜆𝜆1 ∫ 𝐾𝐾1
𝑥𝑥
𝑎𝑎 (𝑥𝑥, 𝑡𝑡)𝑦𝑦(𝑡𝑡)𝑑𝑑𝑑𝑑 + ∫ 𝐾𝐾2(𝑥𝑥, 𝑡𝑡)𝑦𝑦(𝑡𝑡)𝑑𝑑𝑑𝑑𝑏𝑏

𝑎𝑎     (1) 

And, 

  𝐿𝐿𝐿𝐿(𝑥𝑥) ≡ ∑ �𝑃𝑃𝑖𝑖𝑥𝑥𝑖𝑖
𝑑𝑑𝑖𝑖

𝑑𝑑𝑥𝑥𝑖𝑖
� 𝑦𝑦(𝑥𝑥)𝑛𝑛

𝑖𝑖=0 = 

𝑓𝑓(𝑥𝑥) + 𝜆𝜆 ∫ ∫ 𝐾𝐾𝑏𝑏𝑎𝑎
𝑥𝑥
𝑎𝑎 (𝑥𝑥, 𝑡𝑡)𝑦𝑦(𝑡𝑡)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑    (2) 

Thus, equation (1) contains disjoint integrals while 
equation (2) contains mixed integrals. Here, both equations 
(1) and (2) are subjected to the conditions 

𝐿𝐿𝐿𝐿(𝑥𝑥) ≡ ∑ 𝑎𝑎𝑖𝑖𝑦𝑦𝑖𝑖(𝑥𝑥𝑖𝑖) = 𝛼𝛼𝑘𝑘𝑛𝑛
𝑖𝑖=0              (3) 

In equations (1), (2) and (3), 𝑃𝑃𝑖𝑖 , 𝜆𝜆1, 𝜆𝜆2 are real numbers, 
𝑓𝑓(𝑥𝑥),𝐾𝐾1(𝑥𝑥, 𝑡𝑡)  and 𝐾𝐾2(𝑥𝑥, 𝑡𝑡)  are known given smooth 
functions and 𝑦𝑦(𝑥𝑥)  is the unknown function to be 
determined. 

For the purpose of our discussion, we let 

�𝑘𝑘… .�𝑔𝑔(𝑥𝑥)𝑑𝑑𝑑𝑑 

denote the indefinite integration applied to 𝑔𝑔(𝑥𝑥)  k-times  
and is denoted by  

 𝐼𝐼𝐿𝐿 = ∭𝑘𝑘… . . .∫𝐿𝐿(. )𝑑𝑑𝑑𝑑           (4) 
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2. Description of Numerical Method of 
Solution 

In this section, we discussed Standard Integral Collocation 
Method to solve equations (1) and (2) using the following 
basis functions: 

* Power Series 
* Chebyshev Polynomials 
* Legendre's Polynomials 

 

This method used the idea reported in (Aliyu, 2012) as 
applied to solve non over determined differential equation. 
The method was proposed and used by (Taiwo and Abubakar, 
2013) to find numerical solutions to first and second orders 
linear and non-linear integro-differential equations. 

2.1. Method of Solution by Power Series 

In order to apply this method, we integrated both sides of 
equation (1) to have: 

𝐼𝐼𝐿𝐿 = ∭…𝑛𝑛… .∫ �𝑓𝑓(𝑥𝑥) + 𝜆𝜆1 ∫ 𝐾𝐾1(𝑥𝑥, 𝑡𝑡)𝑦𝑦(𝑡𝑡)𝑑𝑑𝑑𝑑 + 𝜆𝜆2 ∫ 𝐾𝐾2(𝑥𝑥, 𝑡𝑡)𝑦𝑦(𝑡𝑡)𝑑𝑑𝑑𝑑𝑏𝑏
𝑎𝑎

𝑥𝑥
𝑎𝑎 � 𝑑𝑑𝑑𝑑            (5) 

This implies 

 ∭𝑛𝑛… …∫∑ �𝑃𝑃𝑖𝑖𝑥𝑥𝑖𝑖
𝑑𝑑𝑖𝑖

𝑑𝑑𝑥𝑥𝑖𝑖
� 𝑦𝑦(𝑥𝑥)𝑛𝑛

𝑖𝑖=0 𝑑𝑑𝑑𝑑 = ∭…𝑛𝑛… .∫ �𝑓𝑓(𝑥𝑥) + 𝜆𝜆1 ∫ 𝐾𝐾1(𝑥𝑥, 𝑡𝑡)𝑦𝑦(𝑡𝑡)𝑑𝑑𝑑𝑑 +   𝜆𝜆2 ∫ 𝐾𝐾2(𝑥𝑥, 𝑡𝑡)𝑦𝑦(𝑡𝑡)𝑑𝑑𝑑𝑑𝑏𝑏
𝑎𝑎

𝑥𝑥
𝑎𝑎 � 𝑑𝑑𝑑𝑑  (6) 

We assumed an approximate solution of the form 
 𝑦𝑦(𝑥𝑥) = 𝑦𝑦𝑁𝑁(𝑥𝑥) = ∑ 𝑎𝑎𝑟𝑟𝑥𝑥𝑟𝑟𝑁𝑁

𝑟𝑟=0                                          (7) 
Thus, equation (7) is substituted into equation (6) to have 

∭𝑛𝑛… …∫∑ �𝑃𝑃𝑖𝑖𝑥𝑥𝑖𝑖
𝑑𝑑𝑖𝑖

𝑑𝑑𝑥𝑥𝑖𝑖
� 𝑦𝑦𝑁𝑁(𝑥𝑥)𝑛𝑛

𝑖𝑖=0 𝑑𝑑𝑑𝑑 =  ∭…𝑛𝑛… .∫ �𝑓𝑓(𝑥𝑥) + 𝜆𝜆1 ∫ 𝐾𝐾1(𝑥𝑥, 𝑡𝑡)𝑦𝑦𝑁𝑁(𝑡𝑡)𝑑𝑑𝑑𝑑 + 𝜆𝜆2 ∫ 𝐾𝐾2( 𝑥𝑥, 𝑡𝑡)𝑦𝑦𝑁𝑁(𝑡𝑡)𝑑𝑑𝑑𝑑𝑏𝑏
𝑎𝑎

𝑥𝑥
𝑎𝑎 � 𝑑𝑑𝑑𝑑 (8) 

This implies 

 ∭𝑛𝑛… …∫∑ �𝑃𝑃𝑖𝑖𝑥𝑥𝑖𝑖
𝑑𝑑𝑖𝑖

𝑑𝑑𝑥𝑥𝑖𝑖
� ∑ 𝑎𝑎𝑟𝑟𝑥𝑥𝑟𝑟𝑁𝑁

𝑟𝑟=0
𝑛𝑛
𝑖𝑖=0 𝑑𝑑𝑑𝑑 = 

∭…𝑛𝑛… .∫ �𝑓𝑓(𝑥𝑥) + 𝜆𝜆1 ∫ 𝐾𝐾1(𝑥𝑥, 𝑡𝑡)∑ 𝑎𝑎𝑟𝑟𝑡𝑡𝑟𝑟𝑁𝑁
𝑟𝑟=0 𝑑𝑑𝑑𝑑 + 𝜆𝜆2 ∫ 𝐾𝐾2(𝑥𝑥, 𝑡𝑡)∑ 𝑎𝑎𝑟𝑟𝑡𝑡𝑟𝑟𝑁𝑁

𝑟𝑟=0 𝑑𝑑𝑑𝑑𝑏𝑏
𝑎𝑎

𝑥𝑥
𝑎𝑎 � 𝑑𝑑𝑑𝑑         (9) 

Thus, we collocated equation (9) at the point x = x k to obtain 

 ∭𝑛𝑛… …∫∑ �𝑃𝑃𝑖𝑖𝑥𝑥𝑘𝑘𝑖𝑖
𝑑𝑑𝑖𝑖

𝑑𝑑𝑥𝑥𝑘𝑘
𝑖𝑖 � ∑ 𝑎𝑎𝑟𝑟𝑥𝑥𝑘𝑘𝑖𝑖𝑁𝑁

𝑟𝑟=0
𝑛𝑛
𝑖𝑖=0 𝑑𝑑𝑥𝑥𝑘𝑘 = 

 ∭…𝑛𝑛… .∫ �𝑓𝑓(𝑥𝑥𝑘𝑘) + 𝜆𝜆1 ∫ 𝐾𝐾1(𝑥𝑥𝑘𝑘 , 𝑡𝑡)∑ 𝑎𝑎𝑟𝑟𝑡𝑡𝑟𝑟𝑁𝑁
𝑟𝑟=0 𝑑𝑑𝑑𝑑 + 𝜆𝜆2 ∫ 𝐾𝐾2(𝑥𝑥𝑘𝑘 , 𝑡𝑡)∑ 𝑎𝑎𝑟𝑟𝑡𝑡𝑟𝑟𝑁𝑁

𝑟𝑟=0 𝑑𝑑𝑑𝑑𝑏𝑏
𝑎𝑎

𝑥𝑥
𝑎𝑎 � 𝑑𝑑𝑥𝑥𝑘𝑘        (10) 

Where, 

 𝑥𝑥𝑘𝑘 = 𝑎𝑎 + (𝑏𝑏−𝑎𝑎)𝑘𝑘
𝑁𝑁+1

, 𝑘𝑘 = 1,2, … . .𝑁𝑁 + 1                                  (11) 

Thus, equation (11) gives (N+1) algebraic linear system of equations in (N+1) unknown constants 𝑎𝑎𝑟𝑟(𝑟𝑟 ≥ 0). These  
(N+1) algebraic linear system of equations are then solved by Gaussians Elimination Method to obtain the unknown 
constants 𝑎𝑎𝑟𝑟(𝑟𝑟 ≥ 0) which are then substituted back into equation (7) to obtain the approximate solution for case N. (the 
degree of the approximant) 
 
REMARK: 1: 

We demonstrated this method further by choosing 1=n , thus, putting n = 1 in equation (1), we have: 

 𝑃𝑃0𝑦𝑦(𝑥𝑥) + 𝑃𝑃1𝑡𝑡𝑦𝑦′(𝑥𝑥) = 𝑓𝑓(𝑥𝑥) + 𝜆𝜆1 ∫ 𝐾𝐾1
𝑥𝑥
𝑎𝑎 (𝑥𝑥, 𝑡𝑡)𝑦𝑦(𝑡𝑡)𝑑𝑑𝑑𝑑 + ∫ 𝐾𝐾2(𝑥𝑥, 𝑡𝑡)𝑦𝑦(𝑡𝑡)𝑑𝑑𝑑𝑑𝑏𝑏

𝑎𝑎               (12) 

We integrated equation (12) to have 

∫ 𝑃𝑃0𝑦𝑦(𝑡𝑡)𝑑𝑑𝑑𝑑𝑥𝑥
0 + ∫ 𝑃𝑃1𝑦𝑦′(𝑡𝑡)

𝑥𝑥
𝑎𝑎 𝑑𝑑𝑑𝑑 = ∫ 𝑓𝑓(𝑧𝑧)𝑑𝑑𝑑𝑑𝑥𝑥

0 + 𝜆𝜆1 ∫ ∫  𝐾𝐾1(𝑧𝑧, 𝑡𝑡)𝑦𝑦(𝑡𝑡)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 +𝑧𝑧
𝑎𝑎  𝑥𝑥

0 𝜆𝜆2 ∫ ∫  𝐾𝐾2(𝑧𝑧, 𝑡𝑡)𝑦𝑦(𝑡𝑡)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑   𝑏𝑏
𝑎𝑎  𝑥𝑥

0     (13) 

This implies 

𝑃𝑃0 ∫ 𝑦𝑦(𝑡𝑡)𝑑𝑑𝑑𝑑 + 𝑃𝑃2 ∫ 𝑡𝑡𝑦𝑦′(𝑡𝑡)𝑑𝑑𝑑𝑑 =𝑥𝑥
0

𝑥𝑥
0  ∫ 𝑓𝑓(𝑧𝑧)𝑑𝑑𝑑𝑑𝑥𝑥

0 + 𝜆𝜆1 ∫ ∫  𝐾𝐾1(𝑧𝑧, 𝑡𝑡)𝑦𝑦(𝑡𝑡)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 +𝑧𝑧
𝑎𝑎  𝑥𝑥

0 𝜆𝜆2 ∫ ∫  𝐾𝐾2(𝑧𝑧, 𝑡𝑡)𝑦𝑦(𝑡𝑡)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  𝑏𝑏
𝑎𝑎  𝑥𝑥

0  

After simplification, we have 

𝑃𝑃0 ∫ 𝑦𝑦(𝑡𝑡)𝑑𝑑𝑑𝑑 + 𝑃𝑃1�𝑥𝑥𝑥𝑥(𝑥𝑥) − ∫ 𝑦𝑦(𝑡𝑡)𝑑𝑑𝑑𝑑𝑥𝑥
0 �𝑥𝑥

0 = ∫ 𝑓𝑓(𝑧𝑧)𝑑𝑑𝑑𝑑𝑥𝑥
0 + 𝜆𝜆1 ∫ ∫  𝐾𝐾1(𝑧𝑧, 𝑡𝑡)𝑦𝑦(𝑡𝑡)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 +𝑧𝑧

𝑎𝑎  𝑥𝑥
0 𝜆𝜆2 ∫ ∫  𝐾𝐾2(𝑧𝑧, 𝑡𝑡)𝑦𝑦(𝑡𝑡)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑏𝑏

𝑎𝑎  𝑥𝑥
0  (14) 

Substituting the approximate solution given in equation (7) into (14), we have 
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 𝑃𝑃0 ∫ ∑ 𝑎𝑎𝑟𝑟𝑡𝑡𝑟𝑟𝑁𝑁
𝑟𝑟=0 𝑑𝑑𝑑𝑑 + 𝑃𝑃1�𝑥𝑥 ∑ 𝑎𝑎𝑟𝑟𝑥𝑥𝑟𝑟𝑁𝑁

𝑟𝑟=0 − ∫ ∑ 𝑎𝑎𝑟𝑟𝑡𝑡𝑟𝑟𝑁𝑁
𝑟𝑟=0 𝑑𝑑𝑑𝑑𝑥𝑥

0 �𝑥𝑥
0 = 

  ∫ 𝑓𝑓(𝑧𝑧)𝑑𝑑𝑑𝑑𝑥𝑥
0 + ∫ ∫  𝐾𝐾1(𝑧𝑧, 𝑡𝑡)∑ 𝑎𝑎𝑟𝑟𝑡𝑡𝑟𝑟𝑁𝑁

𝑟𝑟=0 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 +𝑧𝑧
𝑎𝑎  𝑥𝑥

0 𝜆𝜆2 ∫ ∫  𝐾𝐾2(𝑧𝑧, 𝑡𝑡)∑ 𝑎𝑎𝑟𝑟𝑡𝑡𝑟𝑟𝑁𝑁
𝑟𝑟=0 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑                    𝑏𝑏

𝑎𝑎  𝑥𝑥
0  

This implies, 

 𝑃𝑃0 ∑ 𝑎𝑎𝑟𝑟 𝑥𝑥
𝑟𝑟+1

𝑟𝑟+1
+ 𝑃𝑃1[∑ 𝑎𝑎𝑟𝑟𝑥𝑥𝑟𝑟+1 −𝑁𝑁

𝑟𝑟=0
𝑁𝑁
𝑟𝑟=0 ∑ 𝑎𝑎𝑟𝑟 𝑥𝑥

𝑟𝑟+1

𝑟𝑟+1
]𝑁𝑁

𝑟𝑟=0 = 

 ∫ 𝑓𝑓(𝑧𝑧)𝑑𝑑𝑑𝑑𝑥𝑥
0 + 𝜆𝜆1 ∫ ∫  𝐾𝐾1(𝑧𝑧, 𝑡𝑡)∑ 𝑎𝑎𝑟𝑟𝑡𝑡𝑟𝑟𝑁𝑁

𝑟𝑟=0 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 +𝑧𝑧
𝑎𝑎  𝑥𝑥

0 𝜆𝜆2 ∫ ∫  𝐾𝐾2(𝑧𝑧, 𝑡𝑡)∑ 𝑎𝑎𝑟𝑟𝑡𝑡𝑟𝑟𝑁𝑁
𝑟𝑟=0 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑     𝑏𝑏

𝑎𝑎  𝑥𝑥
0  

Further simplification gives 

 𝑃𝑃0 ∑ 𝑎𝑎𝑟𝑟 𝑥𝑥
𝑟𝑟+1

𝑟𝑟+1
𝑁𝑁
𝑟𝑟=0 + 𝑃𝑃1[∑ 𝑎𝑎𝑟𝑟((𝑟𝑟+1)𝑥𝑥𝑟𝑟+1−𝑥𝑥𝑟𝑟+1

𝑟𝑟+1
)] =𝑁𝑁

𝑟𝑟=0  

 ∫ 𝑓𝑓(𝑧𝑧)𝑑𝑑𝑑𝑑𝑥𝑥
0 + 𝜆𝜆1 ∫ ∫  𝐾𝐾1(𝑧𝑧, 𝑡𝑡)∑ 𝑎𝑎𝑟𝑟𝑡𝑡𝑟𝑟𝑁𝑁

𝑟𝑟=0 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 +𝑧𝑧
𝑎𝑎  𝑥𝑥

0 𝜆𝜆2 ∫ ∫  𝐾𝐾2(𝑧𝑧, 𝑡𝑡)∑ 𝑎𝑎𝑟𝑟𝑡𝑡𝑟𝑟𝑁𝑁
𝑟𝑟=0 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑     𝑏𝑏

𝑎𝑎  𝑥𝑥
0  

 𝑃𝑃0 ∑ 𝑎𝑎𝑟𝑟 𝑥𝑥
𝑟𝑟+1

𝑟𝑟+1
𝑁𝑁
𝑟𝑟=0 + 𝑃𝑃1 ∑ 𝑎𝑎𝑟𝑟(𝑟𝑟𝑥𝑥

𝑟𝑟+1

𝑟𝑟+1
)] =𝑁𝑁

𝑟𝑟=0   

 ∫ 𝑓𝑓(𝑧𝑧)𝑑𝑑𝑑𝑑𝑥𝑥
0 + 𝜆𝜆1 ∫ ∫  𝐾𝐾1(𝑧𝑧, 𝑡𝑡)∑ 𝑎𝑎𝑟𝑟𝑡𝑡𝑟𝑟𝑁𝑁

𝑟𝑟=0 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 +𝑧𝑧
𝑎𝑎  𝑥𝑥

0 𝜆𝜆2 ∫ ∫  𝐾𝐾2(𝑧𝑧, 𝑡𝑡)∑ 𝑎𝑎𝑟𝑟𝑡𝑡𝑟𝑟𝑁𝑁
𝑟𝑟=0 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑     𝑏𝑏

𝑎𝑎  𝑥𝑥
0  

This implies, 

 ∑ (𝑃𝑃0 + 𝑟𝑟𝑃𝑃1)𝑎𝑎𝑟𝑟𝑁𝑁
𝑟𝑟=0

𝑥𝑥𝑟𝑟+1

𝑟𝑟+1
− 𝐺𝐺1(𝑎𝑎, 𝑥𝑥) − 𝐺𝐺2(𝑎𝑎, 𝑥𝑥) = 𝐹𝐹(𝑥𝑥)                         (15) 

Where, 

 𝐺𝐺1(𝑎𝑎, 𝑥𝑥) = 𝜆𝜆1 ∫ ∫  𝐾𝐾1(𝑧𝑧, 𝑡𝑡)∑ 𝑎𝑎𝑟𝑟𝑡𝑡𝑟𝑟𝑁𝑁
𝑟𝑟=0 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑧𝑧

𝑎𝑎  𝑥𝑥
0  

 𝐺𝐺2(𝑎𝑎, 𝑥𝑥) = 𝜆𝜆2 ∫ ∫  𝐾𝐾2(𝑧𝑧, 𝑡𝑡)∑ 𝑎𝑎𝑟𝑟𝑡𝑡𝑟𝑟𝑁𝑁
𝑟𝑟=0 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑     𝑏𝑏

𝑎𝑎  𝑥𝑥
0  

And, 

 𝐹𝐹(𝑥𝑥) = ∫ 𝑓𝑓(𝑧𝑧)𝑑𝑑𝑑𝑑𝑥𝑥
0  

Thus from equation (14), we have 

 𝑃𝑃0𝑥𝑥 + (𝑃𝑃0 + 𝑃𝑃1)𝑎𝑎1
𝑥𝑥2

2
+ (𝑃𝑃0 + 2𝑃𝑃1)𝑎𝑎1

𝑥𝑥3

3
+ (𝑃𝑃0 + 3𝑃𝑃1)𝑎𝑎1

𝑥𝑥4

4
+ … … … …. 

+(𝑃𝑃0 + 𝑁𝑁𝑃𝑃1)𝑎𝑎1
𝑥𝑥𝑁𝑁+1

𝑁𝑁+1
− 𝐺𝐺1(𝑎𝑎, 𝑥𝑥) − 𝐺𝐺2(𝑎𝑎, 𝑥𝑥) = 𝐹𝐹(𝑥𝑥)                         (16) 

Thus, equation (16) is collocated at the point 𝑥𝑥 = 𝑥𝑥𝑘𝑘  to have    

 𝑃𝑃0𝑥𝑥𝑘𝑘 + (𝑃𝑃0 + 𝑃𝑃1)𝑎𝑎1
𝑥𝑥𝑘𝑘

2

2
+ (𝑃𝑃0 + 2𝑃𝑃1)𝑎𝑎1

𝑥𝑥𝑘𝑘
3

3
+ (𝑃𝑃0 + 3𝑃𝑃1)𝑎𝑎1

𝑥𝑥𝑘𝑘
4

4
+ … … … …. 

+(𝑃𝑃0 + 𝑁𝑁𝑃𝑃1)𝑎𝑎1
𝑥𝑥𝑘𝑘
𝑁𝑁+1

𝑁𝑁+1
− 𝐺𝐺1(𝑎𝑎, 𝑥𝑥𝑘𝑘) − 𝐺𝐺2(𝑎𝑎, 𝑥𝑥𝑘𝑘) = 𝐹𝐹(𝑥𝑥𝑘𝑘)                     (17) 

Where 

𝑥𝑥𝑘𝑘 = 𝑎𝑎 +
(𝑏𝑏 − 𝑎𝑎)𝑘𝑘
𝑁𝑁 + 1

, 𝑘𝑘 = 1,2, … . .𝑁𝑁 + 1 

Thus, equation (17) is put in matrix form as 
𝐴𝐴𝐴𝐴 = 𝑏𝑏, 

Where, 

 𝐴𝐴 = �

𝐴𝐴11 𝐴𝐴12  ⋯ 𝐴𝐴1𝑁𝑁
𝐴𝐴21

⋮
⋮

𝐴𝐴22  ⋯ 𝐴𝐴2𝑁𝑁

𝐴𝐴𝑁𝑁1 𝐴𝐴𝑁𝑁2 ⋯ 𝐴𝐴𝑁𝑁𝑁𝑁

�  ,𝑋𝑋 = �

𝑎𝑎0
𝑎𝑎1
⋮
⋮

𝑎𝑎𝑁𝑁

�  𝑎𝑎𝑎𝑎𝑎𝑎 𝑏𝑏 =

⎣
⎢
⎢
⎢
⎡ 𝐹𝐹

(𝑥𝑥1)
𝐹𝐹(𝑥𝑥2)
⋮
⋮

𝐹𝐹(𝑥𝑥𝑁𝑁+1)⎦
⎥
⎥
⎥
⎤
  

Where, 
 𝐴𝐴11 = 𝑃𝑃0𝑥𝑥1 − 𝐺𝐺1(𝑥𝑥1) − 𝐺𝐺2(𝑥𝑥1) 

 𝐴𝐴12 = (𝑃𝑃0 + 𝑃𝑃1) 𝑥𝑥1
2

2
− 𝐺𝐺1(𝑥𝑥1) − 𝐺𝐺2(𝑥𝑥1) 
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  𝐴𝐴13 = (𝑃𝑃0 + 2𝑃𝑃1) 𝑥𝑥1
3

3
− 𝐺𝐺1(𝑥𝑥1) − 𝐺𝐺2(𝑥𝑥1)  

 𝐴𝐴1𝑁𝑁 = (𝑃𝑃0 + 𝑁𝑁𝑃𝑃1) 𝑥𝑥1
𝑁𝑁+1

𝑁𝑁+1
− 𝐺𝐺1(𝑥𝑥1) − 𝐺𝐺2(𝑥𝑥1)  

 𝐴𝐴21 = 𝑃𝑃0𝑥𝑥2 − 𝐺𝐺1(𝑥𝑥2) − 𝐺𝐺2(𝑥𝑥2)  

 𝐴𝐴22 = (𝑃𝑃0 + 𝑃𝑃1) 𝑥𝑥2
2

2
− 𝐺𝐺1(𝑥𝑥2) − 𝐺𝐺2(𝑥𝑥2)  

  𝐴𝐴23 = (𝑃𝑃0 + 2𝑃𝑃1) 𝑥𝑥2
3

3
− 𝐺𝐺1(𝑥𝑥2) − 𝐺𝐺2(𝑥𝑥2)  

 𝐴𝐴2𝑁𝑁 = (𝑃𝑃0 + 𝑁𝑁𝑃𝑃1) 𝑥𝑥2
𝑁𝑁+1

𝑁𝑁+1
− 𝐺𝐺1(𝑥𝑥2) − 𝐺𝐺2(𝑥𝑥2) 

  ⋮ 

  𝐴𝐴𝑁𝑁1 = 𝑃𝑃0𝑥𝑥𝑁𝑁 − 𝐺𝐺1(𝑥𝑥𝑁𝑁) − 𝐺𝐺2(𝑥𝑥𝑁𝑁)  

 𝐴𝐴𝑁𝑁2 = (𝑃𝑃0 + 𝑃𝑃1) 𝑥𝑥𝑁𝑁
2

2
− 𝐺𝐺1(𝑥𝑥𝑁𝑁) − 𝐺𝐺2(𝑥𝑥𝑁𝑁) 

 𝐴𝐴𝑁𝑁3 = (𝑃𝑃0 + 2𝑃𝑃1) 𝑥𝑥𝑁𝑁
3

3
− 𝐺𝐺1(𝑥𝑥𝑁𝑁) − 𝐺𝐺2(𝑥𝑥𝑁𝑁)  

 𝐴𝐴𝑁𝑁𝑁𝑁 = (𝑃𝑃0 + 𝑁𝑁𝑃𝑃1) 𝑥𝑥𝑁𝑁
𝑁𝑁+1

𝑁𝑁+1
− 𝐺𝐺1(𝑥𝑥𝑁𝑁) − 𝐺𝐺2(𝑥𝑥𝑁𝑁) 

Remark 2: 
The above matrix is solved by Gaussian Elimination Method to obtain the unknown 
Constants 𝑎𝑎𝑟𝑟(𝑟𝑟 ≥ 0) which are then substituted back into the approximate 
Solution given in equation (7) to obtain the approximate solution for case N. 

2.2. Method of Solution by Chebyshev Polynomials 

We demonstrated this method by assuming the approximate solution of the form 
 𝑦𝑦(𝑥𝑥) = 𝑦𝑦𝑁𝑁(𝑥𝑥) = ∑ 𝑎𝑎𝑟𝑟𝑇𝑇𝑟𝑟(𝑥𝑥)𝑁𝑁

𝑟𝑟=0 ,            𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏                        (18) 

Where, 𝑎𝑎𝑟𝑟 , 𝑟𝑟 = 0,1,2, … … …𝑁𝑁 are unknown constants and )(xTr  are the Chebushev Polynomial of degrees r of first the 
kind which is valid in the interval 1−≤ 𝑥𝑥 ≤ 1 and is defined by 

𝑇𝑇𝑟𝑟(𝑥𝑥) = 𝑐𝑐𝑐𝑐𝑐𝑐(𝑐𝑐𝑐𝑐𝑐𝑐−1𝑥𝑥), 
Here,  

 𝑇𝑇0(𝑥𝑥) = 1,𝑇𝑇1(𝑥𝑥) = 𝑥𝑥                                      (19) 
The recurrence relation is given by 

   𝑇𝑇𝑟𝑟+1(𝑥𝑥) = 2𝑥𝑥 𝑇𝑇𝑟𝑟(𝑥𝑥) −  𝑇𝑇𝑟𝑟−1(𝑥𝑥), 𝑟𝑟 ≥ 1                              (20) 

  𝑇𝑇𝑟𝑟(𝑥𝑥) = 𝑐𝑐𝑐𝑐𝑐𝑐 �𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟−1 �2𝑥𝑥−𝑎𝑎−𝑏𝑏
𝑏𝑏−𝑎𝑎

�� ,𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏                          (21) 

and this satisfies the recurrence relation 

  𝑇𝑇𝑟𝑟(𝑥𝑥) = 2 �2𝑥𝑥−𝑎𝑎−𝑏𝑏
𝑏𝑏−𝑎𝑎

� 𝑇𝑇𝑟𝑟(𝑥𝑥) − 𝑇𝑇𝑟𝑟−1(𝑥𝑥), 𝑟𝑟 ≥ 0,𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏                   (22) 

Substituting equation (18) into equation (6), we have 

      ∭𝑛𝑛… …∫∑ �𝑃𝑃𝑖𝑖𝑥𝑥𝑖𝑖
𝑑𝑑𝑖𝑖

𝑑𝑑𝑥𝑥𝑖𝑖
�∑ 𝑎𝑎𝑟𝑟𝑇𝑇𝑟𝑟(𝑥𝑥)𝑁𝑁

𝑟𝑟=0
𝑛𝑛
𝑖𝑖=0 𝑑𝑑𝑑𝑑 =  

∭…𝑛𝑛… .∫ �𝑓𝑓(𝑥𝑥) + ∫ 𝐾𝐾1(𝑥𝑥, 𝑡𝑡)∑ 𝑎𝑎𝑟𝑟𝑇𝑇𝑟𝑟(𝑡𝑡)𝑁𝑁
𝑟𝑟=0 𝑑𝑑𝑑𝑑 + 𝜆𝜆2 ∫ 𝐾𝐾2(𝑥𝑥, 𝑡𝑡)∑ 𝑎𝑎𝑟𝑟𝑇𝑇𝑟𝑟(𝑡𝑡)𝑁𝑁

𝑟𝑟=0 𝑑𝑑𝑑𝑑𝑏𝑏
𝑎𝑎

𝑥𝑥
𝑎𝑎 � 𝑑𝑑𝑑𝑑  )  (23) 

Hence, we collocated (23) at the point 𝑥𝑥 = 𝑥𝑥𝑘𝑘  to have 

       ∭𝑛𝑛… …∫∑ �𝑃𝑃𝑖𝑖𝑥𝑥𝑘𝑘𝑖𝑖
𝑑𝑑𝑖𝑖

𝑑𝑑𝑥𝑥𝑖𝑖
�∑ 𝑎𝑎𝑟𝑟𝑇𝑇𝑟𝑟(𝑥𝑥𝑘𝑘)𝑁𝑁

𝑟𝑟=0
𝑛𝑛
𝑖𝑖=0 𝑑𝑑𝑥𝑥𝑘𝑘 =  

∭…𝑛𝑛… .∫ �𝑓𝑓(𝑥𝑥𝑘𝑘) + 𝜆𝜆1 ∫ 𝐾𝐾1(𝑥𝑥𝑘𝑘 , 𝑡𝑡)∑ 𝑎𝑎𝑟𝑟𝑇𝑇𝑟𝑟(𝑡𝑡)𝑁𝑁
𝑟𝑟=0 𝑑𝑑𝑑𝑑 + 𝜆𝜆2 ∫ 𝐾𝐾2(𝑥𝑥𝑘𝑘 , 𝑡𝑡)∑ 𝑎𝑎𝑟𝑟𝑇𝑇𝑟𝑟(𝑡𝑡)𝑁𝑁

𝑟𝑟=0 𝑑𝑑𝑑𝑑𝑏𝑏
𝑎𝑎

𝑥𝑥
𝑎𝑎 � 𝑑𝑑𝑥𝑥𝑘𝑘    (24) 

Where 𝑥𝑥𝑘𝑘 = 𝑎𝑎 + (𝑏𝑏−𝑎𝑎)𝑘𝑘
𝑁𝑁+1

, 𝑘𝑘 = 1,2, … . .𝑁𝑁 + 1 
Thus, (24) gives (N + 1) algebraic linear system of equations in (N + 1) unknown constants 𝑎𝑎𝑟𝑟(𝑟𝑟 ≥ 0). The (N + 1) 
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algebraic system of linear equations are then solved by Gaussian elimination method to obtain the unknown constants 
𝑎𝑎𝑟𝑟(𝑟𝑟 ≥ 0) which are then substituted back into equation (18) to obtain the approximate solution for case N. 

2.3. Method of Solution by Legendre’s Polynomials 

The Legendre’s Polynomial is denoted and defined by 

Ρ𝑟𝑟+1(𝑥𝑥) = 1
𝑟𝑟+1

{(2𝑟𝑟 + 1)𝑥𝑥Ρ𝑟𝑟(𝑥𝑥) − 𝑟𝑟Ρ𝑟𝑟−1(𝑥𝑥)}                      (25) 

  Ρ𝑟𝑟(𝑥𝑥) = 1
2𝑟𝑟𝑟𝑟!𝑑𝑑𝑥𝑥𝑟𝑟

(𝑥𝑥2 − 1)𝑟𝑟 ; 𝑟𝑟 = 0,1, … ..                          (26) 

With,  

Ρ0(𝑥𝑥) = 1,Ρ1(𝑥𝑥) = 𝑥𝑥,Ρ2(𝑥𝑥) = 1
2

(3𝑥𝑥2 − 1) etc 

In this method, we assumed an approximate solution of the form 
𝑦𝑦(𝑥𝑥) = 𝑦𝑦𝑁𝑁(𝑥𝑥) = ∑ 𝑎𝑎𝑟𝑟Ρ𝑟𝑟(𝑥𝑥)𝑁𝑁

𝑟𝑟=0 ,            𝑎𝑎 ≤ 𝑥𝑥 ≤ 𝑏𝑏                      (27) 
This method is similar to the two methods discussed above (the same procedure discussed as in sections (2.1.1) and (2.1.2)). 

We have (N + 1) algebraic linear system of equations in (N + 1) unknown constants 𝑎𝑎𝑟𝑟(𝑟𝑟 ≥ 0). The (N + 1) algebraic system 
of linear equations are then solved by Gaussian elimination method to obtain the unknown constants 𝑎𝑎𝑟𝑟(𝑟𝑟 ≥ 0) which are 
then substituted back intoequation (27) to obtain the approximate solution for case N. 

3. Numerical Experiment 
In this section, we have demonstrated the Standard Integral Collocation Approximation Method on first, second and third 

orders Fredholm - Volterra Integro-Differential Equations using Power series, Chebyshev and Legendre's Polynomials as the 
basis functions. The examples are solved to illustrate the accuracy, efficiency and time of execution of the method. 

We have defined absolute error as  
𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬𝑬 = |𝒚𝒚(𝒙𝒙) − 𝒚𝒚𝑵𝑵(𝑿𝑿)|, 𝒂𝒂 ≤ 𝒙𝒙 ≤ 𝒃𝒃, 𝑵𝑵 = 𝟏𝟏,𝟐𝟐,𝟑𝟑, … … … … 

Example 1. 
We considered first order FVIDE given as  

𝑦𝑦′(𝑥𝑥) − 𝑦𝑦(𝑥𝑥) = 𝑒𝑒𝑥𝑥 − 𝑒𝑒 + � 𝑦𝑦(𝑡𝑡)𝑑𝑑𝑑𝑑 + � 𝑦𝑦(𝑡𝑡)𝑑𝑑𝑑𝑑;   0 ≤ 𝑥𝑥 ≤ 1
𝑥𝑥

0

1

0
 

With the mixed condition  

𝑦𝑦(0) + � 𝑦𝑦(𝑡𝑡)𝑑𝑑𝑑𝑑 = 𝑒𝑒
1

0
 

The exact solution is given as 𝑦𝑦(𝑥𝑥) = 𝑒𝑒𝑥𝑥  
Example 2. 

We considered second order FVIDE given as 

𝑦𝑦′′ (𝑥𝑥) = −8 + 6𝑥𝑥 − 3𝑥𝑥2 + 𝑥𝑥3 + � 𝑦𝑦(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑥𝑥

0
+ � (1 − 2𝑥𝑥𝑥𝑥)𝑦𝑦(𝑡𝑡)𝑑𝑑𝑑𝑑, −1 ≤ 𝑥𝑥 ≤ 1

1

−1
 

With the conditions 
𝑦𝑦(0) = 2,  𝑦𝑦′(0) = 6 

The exact solution is given as 𝑦𝑦(𝑥𝑥) = 2 + 6𝑥𝑥 − 3𝑥𝑥2  
Example 3. 

We considered the third order FVIDE given as 

𝑦𝑦′′′ (𝑥𝑥) =
1
2
𝑥𝑥2 + � 𝑦𝑦(𝑡𝑡)𝑑𝑑𝑑𝑑 + � 𝑥𝑥𝑥𝑥(𝑡𝑡)𝑑𝑑𝑑𝑑

𝜋𝜋

−𝜋𝜋

𝑥𝑥

0
 

With the conditions 
𝑦𝑦(0) = 𝑦𝑦′(0) = −𝑦𝑦′′(0) = 1 

The exact solution is given 𝑦𝑦(𝑥𝑥) = 𝑥𝑥 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
  



116 Abubakar A. et al.:  Integral Collocation Approximation Methods for the Numerical Solution   
of High-Orders Linear Fredholm-Volterra Integro-Differential Equations 

 

4. Table of Results 
Table 1.  Numerical results for example 1 

X 
Result by Mustafa and 

Yalcin, (2012) 
N=6 

Standard Integral Collocation Approximation Method, for case N=6 

Power Series Chebyshev Polynomial Legendre's Polynomial 

0 5.930E-5 4.570E-5 6.320E-6 2.630E-5 

-0.1 4.830E-5 3.780E-5 5.010E-6 2.630E-5 

-0.2 3.880E-5 3.060E-5 3.270E-6 7.310E-6 

-0.3 3.050E-5 2.990E-5 1.320E-6 4.070E-6 

-0.4 2.330E-5 6.450E-6 9.780E-7 3.400E-6 

-0.5 1.700E-5 3.720E-6 7.510E-7 1.730E-6 

-0.6 1.660E-5 2.480E-6 5.260E-7 8.620E-7 

-0.7 6.800E-6 8.610E-7 2.070E-7 5.370E-7 

-0.8 2.460E-6 5.030E-7 1.040E-7 4.110E-7 

-0.9 1.530E-6 3.720E-7 8.350E-8 1.080E-7 

-1.0 4.950E-6 1.790E-7 7.120E-8 8.640E-8 

Table 2.  Numerical results for example 2 

X Exact Solution 

Standard Integral Collocation Approximation Method 

Power Series Chebyshev Polynomial Legendre's Polynomial 

N=6 Error N=6 Error N=6 Error 

0.0 2.00000 2.00000 0.00000 2.00016 1.000 E-4 2.00251 2.510 E-3 

0.1 2.57000 2.55934 1.066 E-3 2.57014 1.400 E-4 2.57113 1.130 E-3 

0.2 3.08000 3.07856 1.440 E-3 3.08056 5.600 E-4 3.08164 1.640 E-3 

0.3 3.53000 3.55621 2.621 E-4 3.53027 2.700 E-4 3.54712 1.712 E-3 

0.4 3.92000 3.94830 2.830 E-3 3.91945 5.500 E-4 3.91867 1.400 E-3 

0.5 4.25000 4.28391 3.391 E-3 4.24932 6.800 E-4 4.24801 1.990 E-3 

0.6 4.52000 4.54167 2.167 E-3 4.51814 1.860 E-3 4.51772 2.280 E-3 

0.7 4.73000 4.74893 1.893 E-3 4.73004 4.000 E-5 4.73105 1.050 E-3 

0.8 4.88000 4.89642 1.642 E-3 4.88151 1.510 E-3 4.88240 2.400 E-3 

0.9 4.97000 4.98341 1.341 E-3 4.97793 7.930 E-3 4.97806 8.060 E-3 

1.0 5.00000 4.99672 3.280 E-3 4.99996 4.000 E-5 4.99507 1.930 E-3 

Table 3.  Numerical results for example 3 

X Exact Solution 

Standard Integral Collocation Approximation Method 

Power Series Chebyshev Polynomial Legendre's polynomial 

N=6 Error N=6 Error N=6 Error 

0.0 1.000000000 1.000000000 0.0000000 1.000000000 0.0000000 1.00000000 0.000000 

0.1 1.099998477 1.099816320 1.821 E- 4 1.099981301 1.718 E- 5 1.099871453 .270 E- 3 

0.2 1.199939080 1.198634511 1.305 E- 3 1.199947062 7.982 E- 6 1.199756321 1.828 E- 4 

0.3 1.299986292 1.299417352 5.689 E- 4 1.299941073 4.522 E- 5 1.299861415 1.249 E- 4 

0.4 1.399975631 1.399094514 8.811 E- 4 1.399949310 2.632 E- 5 1.399715631 2.600 E- 4 

0.5 1.499945169 1.497183216 2.779 E- 3 1.499960178 1.745 E- 6 1.499783118 1.788 E- 4 

0.6 1.599945169 1.587160052 2.785 E- 3 1.599945831 4.128 E- 6 1.598345142 1.600 E- 3 

0.7 1.699925370 1.693861451 6.064 E- 3 1.699951006 2,564 E- 5 1.699453417 1.472 E- 3 

0.8 1.799902524 1.798885324 1.017 E- 3 1.799960145 5.762 E- 5 1.799368164 5.344 E- 4 

0.9 1.899876632 1.889956321 9.920 E- 3 1.899916315 3.968 E- 5 1.898964154 9.125 E- 4 

1.0 1.999847695 1.998794562 1.053 E- 3 1.999970382 1.227 E- 4 1.995300161 4.550 E- 3 
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5. Conclusions 
We have demonstrated Standard Integral Collocation 

Approximation Method to solve special higher orders linear 
Fredholm - Volterra Integro Differential Equations by Power 
Series, Chebyshev and Legendre's Polynomials as the basis 
functions of approximations. The results obtained by 
Chebyshev and Legendres's Polynomials as basis functions 
proved superior than that of power series. 

However, this method yields the desired accuracy when 
the results obtained are compared with the exact solutions. 
The simplicity is an added advantage to the method and 
hence, it is reliable and a powerful tool for the classes of the 
problems considered. 
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