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Abstract  An Iterative Decomposition Method is applied to solve Fractional Quadratic Riccati Differential Equations in 
which the fractional derivatives are given in the Caputo sense. The method presents solutions as rapidly convergent infinite 
series of easily computable terms. Solutions obtained compared favorably with exact solutions and solutions obtained by 
other known methods. 
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1. Introduction 
Fractional Differential Equations, which are a 

generalization of differential equations have been applied to 
model many physical models very accurately. They have 
been used extensively in such areas as Thermal Engineering, 
acoustics, Electromagnetism, Control Theory of Dynamical 
Systems, Robotics, Viscoelasticity, Diffusion, Signal 
Processing, Population Dynamics and so on [4, 5, 13]. 

Riccati Differential Equations are named after the Italian 
Nobleman Jacapo Francesco Riccati (1676-1754) [4]. In [16], 
the fundamental theories of the Riccati equations, and 
diffusion processes are discussed. The one-dimensional 
Schrodinger equation is closely related to a Riccati 
Differential Equation [15]. Solitary wave solution of a 
nonlinear partial differential equation can be represented as a 
polynomial in two elementary functions satisfying a 
projective Riccati differential equation [7]. 

Riccati differential equations are known to be concerned 
with applications in pattern formation in dynamic games, 
linear systems with Markovian jumps, river flows, 
econometric models, stochastic systems, control theory, and 
diffusion problems [10, 15, 16]. 

Many authors and researchers have studied the analytical 
and approximate solutions of Riccati differential equations. 
Some approximate solutions have been obtained from 
Homotopy Perturbation method (HPM) [1, 2, 3, 12], 
Homotopy Analysis Method (HAM) [4] and the Variational  
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Iteration Method (VIM) [7]. 
In this paper, we consider the fractional quadratic Riccati 

differential equation  
2

* ( ) = ( ) ( ) ( ) ( ) ( ),  
,    0 < 1, > 0

D y x A x B x y x C x y x
x R x

α

α
+ +

∈ ≤
 (1) 

subject to the initial condition  
( ) (0) = ,     = 0,1,2, , 1k

ky y k n −

   (2) 

where α  is the order of the fractional derivative, x  is an 
integer, ( ), ( )A x B x  and ( )C x  are known functions, and 

ky  is a constant. The derivative is the Caputo-type 
derivatives. 

It is well known that most fractional differential equations 
do not have analytical solutions. Several authors have 
considered the approximate solution (1)-(2) using 
modifications of various methods, which have been applied 
successfully to integer-order differential equations. For 
instance, the Fractional Variational Iteration Method (FVIM) 
was applied in [8]. In [11], the well-known Adomian 
Decomposition Method (ADM) was considered for the same 
problems. In [12], the Homotopy Perturbation Method 
(HPM) was modified to solve fractional order quadratic 
Riccati differential equations. 

In [4], the HPM and ADM are compared for quadratic 
Riccati differential equations; and in [10], the Homotopy 
Analysis Method is applied to fractional Riccati equations. 
In [15], the Bernstein operational matrices are applied; 
motivated probably by the results in [5]. In [4], the 
Differential Transform Method (DTM) is applied. 

In this paper, we propose to apply the Iterative 
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Decomposition Method (IDM) which has been applied 
successfully for integer-order differential equations (see [16, 
17]). The success of the method for integer-order differential 
equations motivated [17, 18]. The method is devoid of any 
form of linearization or discretization. 

The rest of the paper is organized as follows: 
In section 2, we give briefly definitions related to the 

theory of fractional calculus. In section 3, we present the 
solution procedure of the Iterative Decomposition Method 
(IDM). Numerical examples are presented in section 4 to 
illustrate the efficiency and accuracy of the IDM. The 
conclusions are then given in the in the last section 5. 

2. Basic Definitions 
In this section, we give some definitions and properties of 

the fractional calculus. 
Definition 2.1: 

A real function ( ), > 0f x x , is said to be in the space 

,C Rµ µ ∈  if there exists a real number >p µ , such that 

1( ) = ( )pf x x f x , where 1( ) (0, )f x C∈ ∞ , and it is said 

to be in space nCµ  if and only if ( ) ,nf C n Nµ∈ ∈ . 

Clearly C Cµ β⊂  if β µ≤ . 

Definition 2.2: 

Let 0α ≥ , and < 1,n n n Nα ≤ + ∈ . The operator 

a tDα , defined by  

11( ) = ( ) ( ) ,
( )

n t n
a t n a

dD f t t x f x dx
n dt

a t b

α α

α
− −−

Γ −
≤ ≤

∫ (3) 

( ) = ( )a tD f t f tα  

is called the Riemann-Liouville Fractional derivative 
operator of order α . 
Definition 2.3: 

The Riemann-Liouville fractional integral operator 
defined on 1[ , ]L a b  of order 0α ≥  of a function 

, 1f Cµ µ∈ ≥ −  is defined as  

11( ) = ( ) ( ) , > 0, > 0
( )

x
J f x x t f t dt xα α α

α
−−

Γ ∫


(4) 

Definition 2.4: 

Let < 1,n n n Nα ≤ + ∈ , and ( )
1( ) [ , ]nf x L a b∈ . 

The operator *Dα  defined by  

1 ( )
*

1( ) = ( ) ( )
( )

t n n
a

D f t t x f x dx
n

α α

α
− −−

Γ − ∫ (5) 

is called the Caputo Fractional Derivative Operator of order 
α . 

Properties of the operator Jα
 is found in [7] and include 

the following  

( ) = ( )J f x f x              (6) 

( 1)=
( 1)

J x xα γ α γγ
α γ

+Γ +
Γ + +

     (7) 

( ) = ( )J J f x J f xα β α β+        (8) 

( ) = ( )J J f x J J f xα β β α        (9) 

Also, if 1 < < ,m m m Nα− ∈  and , 1mf Cµ µ∈ ≥ − , 
then  

* ( ) = ( )D J f x f xα α           (10) 

1
( )

*
=0

( ) = ( ) (0)
!

nm
n

n

xJ D f x f x f
n

α α
−

− ∑   (11) 

3. Iterative Decomposition Method 
For the fractional quadratic Riccati differential equation 

(1), 0 < 1α ≤ , with initial condition (0) =y a , by 

applying the operator Jα  to both sides of (1), we have  

{ }2( ) = ( ) ( ) ( ) ( ) ( )y x a J A x B x y x C x y xα+ + + (12) 

The Iterative Decomposition Method [17, 18] suggests 
that (12) is then of the form  

= ( )y f N y+             (13) 

The solution is decomposed into the infinite series of 
convergent terms  

=
( ) = ( )n

n
y x y x

∞

∑


          (14) 

Form (13), we have  

{ }2( ) = ( ) ( ) ( ) ( ) ( )N y J A x B x y x C x y xα + +  (15) 

The operator N  is then decomposed as  

{ }
{ }

1

1 2 1

( ) = ( ) ( ) ( )

( ) ( )

N y N y N y y N y

N y y y N y y

+ + −

            + + + − + +
  

 



 (16) 
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Let = ( )G N y
 

 

1

=0 =0
= ,       = 1,2,

n n

n i
i i

G N N y n
−   

−      
   
∑ ∑   (17) 

Then,  

=0
( ) = i

i
N y G

∞

∑  

set =y f


. From (13) and (14), we have  

1

1
= ,     = 1,2,n

n
n

Gy n
α

−

−
  

Then,  
1

=0
=

N

n
n

y y
−

∑                (18) 

We can then approximate the solution (14) by (18) as 
N → ∞ .  

4. Numerical Examples 
We now apply the method proposed in section 3 to solve 

some numerical examples to establish the accuracy and 
efficiency of the method. 
Example 4.1 [19] 

Consider the Riccati Differential equation  
2

* = 1 ,     0 < 1D y yα α+ ≤          (19) 

subject to the initial condition (0) = 0y . 
The exact solution for the case = 1α  is ( ) = tany x x . 
By the Iterative Decomposition Method (IDM),  

 

( ) = ,
( 1)
xy x

α

αΓ +

 

3

1 2
(2 1)( ) =

[ ( 1)] (3 1)
xy x

αα
α α
Γ +

Γ + Γ +
 

5 2 7

2 3 4 2
2 (2 1) (4 1) [ (2 1)] (6 1)( ) =

[ ( 1)] (3 1) (5 1) [ ( 1)] [ (3 1)] (7 1)
x xy x

α αα α α α
α α α α α α
Γ + Γ + Γ + Γ +

+
Γ + Γ + Γ + Γ + Γ + Γ +

 

2 9

3 5 2
4[ (2 1)] (4 1) (8 1)( ) =

[ ( 1)] [ (3 1)] (5 1) (9 1)
xy x

αα α α
α α α α

Γ + Γ + Γ +
Γ + Γ + Γ + Γ +

 

2 9

5 2
2[ (2 1)] (6 1) (8 1)

[ ( 1)] [ (3 1)] (7 1) (9 1)
x αα α α

α α α α
Γ + Γ + Γ +

+
Γ + Γ + Γ + Γ +

 

3 11

6 3
2[ (2 1)] (6 1) (10 1)

[ ( 1)] [ (3 1)] (7 1) (11 1)
x αα α α

α α α α
Γ + Γ + Γ +

+
Γ + Γ + Γ + Γ +

                        (20) 

2 2 11

6 2 2
4[ (2 1)] [ (4 1)] (10 1)

[ ( 1)] [ (3 1)] [ (5 1)] (11 1)
x αα α α

α α α α
Γ + Γ + Γ +

+
Γ + Γ + Γ + Γ +

 

3 13

7 3
2[ (2 1)] (4 1) (6 1) (12 1)

[ ( 1)] [ (3 1)] (5 1) (7 1) (13 1)
x αα α α α

α α α α α
Γ + Γ + Γ + Γ +

+
Γ + Γ + Γ + Γ + Γ +

 

4 2 15

8 4 2
[ (2 1)] [ (6 1)] (14 1)

[ ( 1)] [ (3 1)] [ (7 1)] (15 1)
x αα α α

α α α α
Γ + Γ + Γ +

+
Γ + Γ + Γ + Γ +
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Then, ( )y x  can be approximated as  

3 5

2 3
(2 1) 2 (2 1) (4 1)( ) =

( 1) [ ( 1)] (3 1) [ ( 1)] (3 1) (5 1)
x x xy x

α α αα α α
α α α α α α

Γ + Γ + Γ +
+ +

Γ + Γ + Γ + Γ + Γ + Γ +
 

2 7 7

4 2 4
[ (2 1)] (6 1) 4 (2 1) (6 1) (4 1)

[ ( 1)] [ (3 1)] (7 1) [ ( 1)] (3 1) (5 1) (7 1)
x xα αα α α α α

α α α α α α α
Γ + Γ + Γ + Γ + Γ +

+ +
Γ + Γ + Γ + Γ + Γ + Γ + Γ +

 

2 9 2 9

5 2 5 2
4[ (2 1)] (4 1) (8 1) 2[ (2 1)] (6 1) (8 1)

[ ( 1)] [ (3 1)] (5 1) (9 1) [ ( 1)] [ (3 1)] (7 1) (9 1)
x xα αα α α α α α

α α α α α α α α
Γ + Γ + Γ + Γ + Γ + Γ +

+ +
Γ + Γ + Γ + Γ + Γ + Γ + Γ + Γ +

 

3 11 2 2 11

6 3 6 2 2
2[ (2 1)] (6 1) (10 1) 4[ (2 1)] [ (4 1)] (10 1)

[ ( 1)] [ (3 1)] (7 1) (11 1) [ ( 1)] [ (3 1)] [ (5 1)] (11 1)
x xα αα α α α α α

α α α α α α α α
Γ + Γ + Γ + Γ + Γ + Γ +

+ +
Γ + Γ + Γ + Γ + Γ + Γ + Γ + Γ +

(21) 

3 13

7 3
2[ (2 1)] (4 1) (6 1) (12 1)

[ ( 1)] [ (3 1)] (5 1) (7 1) (13 1)
x αα α α α

α α α α α
Γ + Γ + Γ + Γ +

+
Γ + Γ + Γ + Γ + Γ +

 

4 2 15

8 4 2
[ (2 1)] [ (6 1)] (14 1)

[ ( 1)] [ (3 1)] [ (7 1)] (15 1)
x αα α α

α α α α
Γ + Γ + Γ +

+ +
Γ + Γ + Γ + Γ +

  

For the particular case = 1α ,  
3 5 7 9 11 13 152 29 157 134 2( ) =

3 15 630 11340 51975 12285 59535
x x x x x x xy x x + + + + + + + +      (22) 

Table 1.  Comparison of Solutions of Example 1 for = 1α  

x Exact Approx. Soln By IDM Error 

.0 0.0000000000 0.0000000000 0.0000000 

.1 0.1003346721 0.1003346713 8.162E-10 

.2 0.2027100355 0.2027099297 1.0580E-7 

.3 0.3093362496 0.3093343442 1.9050E-6 

.4 0.4227932187 0.4227777155 1.5500E-5 

.5 0.5463024898 0.5462212762 8.1210E-5 

.6 0.6841368083 0.6838056920 3.3110E-4 

.7 0.8422883805 0.8411449022 1.1430E-3 

.8 1.0296385570 1.0261001110 3.5380E-3 

.9 1.2601582180 1.2499664940 1.1090E-3 

1.0 1.5574077250 1.5293009690 2.8110E-3 

Example 4.2: [9] 
Consider the fractional Riccati Differential Equation  

2
* = ( ) 1,    0 < 1D y xα α− + ≤                                (23) 

with initial condition (0) = 0y . 

The exact solution for the case = 1α  is 
2

2
1( ) =
1

t

t
ey x
e

−
+

.  
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Applying the inverse operator to both sides of (23),  

 =
( 1)
xy

α

αΓ +

 

 
3

1 2
(2 1)( ) =

[ ( 1)] (3 1)
xy x

αα
α α
Γ +

−
Γ + Γ +

 

 
5 2 7

2 3 4 2
2 (2 1) (4 1) [ (2 1)] (6 1)( ) =

[ ( 1)] (3 1) (5 1) [ ( 1)] [ (3 1)] (7 1)
x xy x

α αα α α α
α α α α α α
Γ + Γ + Γ + Γ +

−
Γ + Γ + Γ + Γ + Γ + Γ +

 

 
7

3 4
4 (2 1) (4 1) (6 1)( ) =

[ ( 1)] (3 1) (5 1) (7 1)
xy x

αα α α
α α α α
Γ + Γ + Γ +

−
Γ + Γ + Γ + Γ +

 

{ }2 9

5 2
2[ (2 1)] (8 1) (5 1) (6 1) 2 (4 1) (7 1)

[ ( 1)] [ (3 1)] (5 1) (7 1) (9 1)
x αα α α α α α

α α α α α
Γ + Γ + Γ + Γ + + Γ + Γ +

+
Γ + Γ + Γ + Γ + Γ +

           (24) 

{ }2 2 2 11

6 3 2

[ (2 1)] [ (10 1)] (2 1)[ (5 1)] (6 1) 4[ (4 1)] (7 1)

[ ( 1)] [ (3 1)] [ (5 1)] (7 1) (11 1)

x αα α α α α α α

α α α α α

Γ + Γ + Γ + Γ + Γ + + Γ + Γ +
−

Γ + Γ + Γ + Γ + Γ +
 

   
3 13

7 3
4[ (2 1)] (4 1) (6 1) (12 1)

[ ( 1)] [ (3 1)] (5 1) (7 1) (13 1)
x αα α α α

α α α α α
Γ + Γ + Γ + Γ +

+
Γ + Γ + Γ + Γ + Γ +

 

   
4 2 15

8 4 2
[ (2 1)] [ (6 1)] (14 1)

[ ( 1)] [ (3 1)] [ (7 1)] (15 1)
x αα α α

α α α α
Γ + Γ + Γ +

−
Γ + Γ + Γ + Γ +

 

 
Then ( )y x  can be approximated as  

3 5

2 3
(2 1) 2 (2 1) (4 1)( ) =

( 1) [ ( 1)] (3 1) [ ( 1)] (3 1) (5 1)
x x xy x

α α αα α α
α α α α α α

Γ + Γ + Γ +
− +

Γ + Γ + Γ + Γ + Γ + Γ +
 

 
7

4
(2 1) (6 1) (2 1) (5 1) 4 (3 1) (4 1)

[ ( 1)] (3 1) (5 1) (7 1)
x αα α α α α α

α α α α
Γ + Γ + Γ + Γ + + Γ + Γ +

−
Γ + Γ + Γ + Γ +

 

 
{ }2 9

5 2
2[ (2 1)] (8 1) (5 1) (6 1) 2 (4 1) (7 1)

[ ( 1)] [ (3 1)] (5 1) (7 1) (9 1)
x αα α α α α α

α α α α α
Γ + Γ + Γ + Γ + + Γ + Γ +

+
Γ + Γ + Γ + Γ + Γ +

 

 
{ }2 2 2 11

6 3 2

[ (2 1)] [ (10 1)] (2 1)[ (5 1)] (6 1) 4[ (4 1)] (7 1)

[ ( 1)] [ (3 1)] [ (5 1)] (7 1) (11 1)

x αα α α α α α α

α α α α α

Γ + Γ + Γ + Γ + Γ + + Γ + Γ +
−

Γ + Γ + Γ + Γ + Γ +
 (25) 

 
3 13

7 3
4[ (2 1)] (4 1) (6 1) (12 1)

[ ( 1)] [ (3 1)] (5 1) (7 1) (13 1)
x αα α α α

α α α α α
Γ + Γ + Γ + Γ +

+
Γ + Γ + Γ + Γ + Γ +

 

 
4 2 15

8 4 2
[ (2 1)] [ (6 1)] (14 1)

[ ( 1)] [ (3 1)] [ (7 1)] (15 1)
x αα α α

α α α α
Γ + Γ + Γ +

− +
Γ + Γ + Γ + Γ +


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Table 2.  Approximate Solutions for Example 4.2 for the case = 0.5 1andα  

x Exact α=1 Approx. by IDM α=1 Approx.VIM [8] α=1 Approx. by IDM α=0.5 Approx by VIM [8] α=0.5 

.0 0.000000 0.000000 0.000000 0.000000 0.000000 

.1 0.099667 0.099668 0.099667 0.083613 0.086513 

.2 0.197375 0.197373 0.197375 0.152754 0.161584 

.3 0.291312 0.291295 0.291320 0.217856 0.238256 

.4 0.379948 0.379933 0.380005 0.300562 0.321523 

.5 0.462117 0.462417 0.462375 0.400376 0.413682 

.6 0.537049 0.536867 0.537923 0.509746 0.515445 

.7 0.604367 0.606782 0.606768 0.619649 0.626403 

.8 0.664036 0.667654 0.669695 0.737509 0.745278 

.9 0.716297 0.712766 0.728139 0.859919 0.870074 

1.0 0.761594 0.774428 0.784126 0.979442 0.998176 

 
For the particular case = 1α ,  

3 5 7 9 11 13 152 17 38 341 4( ) =
3 15 63 2835 1134000 12285 59535
x x x x x x xy x x − + − + − + − +             (26) 

Example 4.3 
Consider the Fractional Quadratic Riccati Differential Equation [5].  

2( ) = 2 ( ) ( ) 1,   < 1D y x y x y x oα α− + ≤                     (27) 

with initial condition (0) = 0y  
The exact solution for the case = 1α  is  

1 ( 2 1)( ) = 1 2 tanh 2 log
2 2 1

y x x
  − + +  

+   
 

Applying the inverse operator to both sides of (27) and using the initial condition given  

{ }2( ) = 2 ( ) ( )
( 1)

xy x J y x y x
α

α

α
+ −

Γ +
 

Taking ( ) =
( 1)

xy x
α

αΓ +

, by the IDM, we have  

 
2 3

1 2
2 (2 1)( ) =
(2 1) [ ( 1)] (3 1)

x xy x
α αα

α α α
Γ +

−
Γ + Γ + Γ +

 

 
3 2

4
2 2

4 2[ (2 1)] 4 ( 1) (3 1)( ) =
(3 1) [ ( 1)] (2 1) (4 1)

xy x x
α

αα α α
α α α α

 Γ + + Γ + Γ + −  Γ + Γ + Γ + Γ +  
               (28) 

 
{ } 5

3
2 (2 1) (4 1) 1 2 (3 1)

[ ( 1)] (3 1) (5 1)
x αα α α

α α α
Γ + Γ + − Γ +

+
Γ + Γ + Γ +

 

 
6 2 7

2 4 2
4 (5 1) [ (2 1)] (6 1)

[ ( 1)] (3 1) (6 1) [ ( 1)] [ (3 1)] (7 1)
x xα αα α α

α α α α α α
Γ + Γ + Γ +

+ −
Γ + Γ + Γ + Γ + Γ + Γ +

 

   
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Then, ( )y x  can be approximated as 

𝑦𝑦(𝑥𝑥) =
𝑥𝑥𝛼𝛼

Γ(𝛼𝛼 + 1) +
2𝑥𝑥2𝛼𝛼

Γ(2𝛼𝛼 + 1) −
Γ(2𝛼𝛼 + 1)𝑥𝑥3𝛼𝛼

[Γ(𝛼𝛼 + 1)]2Γ(3𝛼𝛼 + 1) +
4𝑥𝑥3𝛼𝛼

Γ(3𝛼𝛼 + 1) 

−�
2[Γ(2𝛼𝛼 + 1)]2 + 4Γ(𝛼𝛼 + 1)Γ(3𝛼𝛼 + 1)

[Γ(𝛼𝛼 + 1)]2Γ(2𝛼𝛼 + 1)Γ(4𝛼𝛼 + 1) � 𝑥𝑥4𝛼𝛼 +
2Γ(2𝛼𝛼 + 1)Γ(4𝛼𝛼 + 1){1 − 2Γ(3𝛼𝛼 + 1)}

[Γ(𝛼𝛼 + 1)]3Γ(3𝛼𝛼 + 1)Γ(5𝛼𝛼 + 1) 𝑥𝑥5𝛼𝛼  

+
4Γ(5𝛼𝛼 + 1)𝑥𝑥6𝛼𝛼

[Γ(𝛼𝛼 + 1)]2Γ(3𝛼𝛼 + 1)Γ(6𝛼𝛼 + 1) −
[Γ(2𝛼𝛼 + 1)]2Γ(6𝛼𝛼 + 1)𝑥𝑥7𝛼𝛼

[Γ(𝛼𝛼 + 1)]4[Γ(3𝛼𝛼 + 1)]2Γ(7𝛼𝛼 + 1) 

For the particular case = 1α , we have 

𝑦𝑦(𝑥𝑥) = 𝑥𝑥 + 𝑥𝑥2 +
𝑥𝑥3

3
−

2𝑥𝑥4

3
−

22
15

𝑥𝑥5 +
𝑥𝑥6

9
−
𝑥𝑥7

63
 

Table 3.  Approximate Solutions of Example 4.3 for values of α  

X y(x) Exact α=1 y(x) Approx.IDM 
α=1 y(x) IDM α=0.5 y(x) α=0.5 

[10] 
y(x) IDM 

α=0.75 
y(x) α=0.75 

[10] 

0.0 0 0 0 0 0 0 

0.1 0.110295 0.110267 0.494672 0.577431 0.233598 0.244460 

0.2 0.241976 0.241778 0.904529 0.912654 0.447051 0.469709 

0.3 0.395104 0.395002 1.154389 1.166253 0.654329 0.698718 

0.4 0.567812 0.566839 1.353673 1.353549 0.899065 0.924319 

0.5 0.756014 0.755839 1.483765 1.482633 1.134787 1.137952 

0.6 0.953566 0.953409 1.558548 1.559656 1.330745 1.331462 

0.7 1.152946 1.152645 1.579990 1.589984 1.470879 1.497600 

0.8 1.346363 1.344702 1.600439 1.578559 1.619521 1.630234 

0.9 1.526911 1.524688 1.671108 1.530028 1.699098 1.724439 

1.0 1.689498 1.683289 1.779976 1.448805 1.769830 1.776542 

Example 4.4 
Consider the Fractional Quadratic Riccati Differential Equation [5]  

2 2( ) = ( ),   < 1D y x x y x oα α+ ≤                              (29) 

with initial condition (0) = 1y  
The exact solution for the case = 1α  is  

2 2

3 3
4 4

2 2

1 1
4 4

1 3[ ( ) ( ) 2 ]
2 4 2 4

( ) =
1 3[ ( ) ( ) 2 ]

2 4 2 4

t tt J J

y x
t tt J J

−

−

   Γ + Γ       
   Γ − Γ       

 

Applying the inverse operator to both sides of (29),  

{ }
2

22( ) = 1 ( )
( 3)
xy x J y x

α
α

α

+
+ +

Γ +
                              (30) 

Taking  
22( ) = 1 ,

( 3)
xy x

α

α

+
+

Γ +
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we have  

{ }2
1( ) = ( )y x J y xα



 

 
2 2 3 4

2
4 4 (2 5)=

( 1) (2 3) [ ( 3)] (3 3)
x x xα α αα
α α α α

+ +Γ +
+ +

Γ + Γ + Γ + Γ +
              (31) 

2 3 3 2 3 2

2 2
2 (2 1) 8 4 (2 3)( ) =
(2 1) (3 3) ( 1) ( 3) (3 3)[ ( 1)] (3 1)

x x x xy x
α α α αα α

α α α α αα α

+ +Γ + Γ +
+ + +

Γ + Γ + Γ + Γ + Γ +Γ + Γ +
 

 
4 2 4 48 (3 3) 16 (3 5)

( 1) (2 3) (4 3) ( 3) (2 3) (4 5)
x xα αα α

α α α α α α

+ +Γ + Γ +
+ +

Γ + Γ + Γ + Γ + Γ + Γ +
 

 
4 4 5 4

2 2
8 (2 5) 16 (4 5)

[ ( 3)] (4 5) [ (2 3)] (5 5)
x xα αα α

α α α α

+ +Γ + Γ +
+ +

Γ + Γ + Γ + Γ +
 

 
5 4 5 6

2 2
8 (2 5) (4 5) 16 (2 5) (4 7)

( 1)[ ( 3)] (3 5) (5 5) [ ( 3)] (3 5) (5 7)
x xα αα α α α

α α α α α α α

+ +Γ + Γ + Γ + Γ +
+ +

Γ + Γ + Γ + Γ + Γ + Γ + Γ +
 

 6 6 2 7 8

2 4 2
32 (2 5) (5 7) 16[ (2 5)] (6 9)

[ ( 3)] (2 3) (3 5) (6 7) [ ( 3)] [ (3 5)] (7 9)
x xα αα α α α

α α α α α α α

+ +Γ + Γ + Γ + Γ +
+ +

Γ + Γ + Γ + Γ + Γ + Γ + Γ +
    (32)

 

 
Then, by the IDM, ( )y x  can be approximated as  

2 2 2 22 2 4( ) = 1
( 1) ( 3) (2 1) (2 3)
x x x xy x

α α α α

α α α α

+ +
+ + + +

Γ + Γ + Γ + Γ +
 

 
3 3 2 3 2

2
(2 1) 8 4 (2 3)

(3 3) ( 1) ( 3) (3 3)[ ( 1)] (3 1)
x x xα α αα α

α α α αα α

+ +Γ + Γ +
+ + +

Γ + Γ + Γ + Γ +Γ + Γ +
 

 
3 4 4 2

2
4 (2 5) 8 (3 3)

( 1) (2 3) (4 3)[ ( 3)] (3 3)
x xα αα α

α α αα α

+ +Γ + Γ +
+ +

Γ + Γ + Γ +Γ + Γ +
 

 
4 4 4 4

2
16 (3 5) 8 (2 5)

( 3) (2 3) (4 5) [ ( 3)] (4 5)
x xα αα α

α α α α α

+ +Γ + Γ +
+ +

Γ + Γ + Γ + Γ + Γ +
 

 
5 4 5 4

2 2
16 (4 5) 8 (2 5) (4 5)

[ (2 3)] (5 5) ( 1)[ ( 3)] (3 5) (5 5)
x xα αα α α

α α α α α α

+ +Γ + Γ + Γ +
+ + +

Γ + Γ + Γ + Γ + Γ + Γ +
 

 
5 6 6 6

2 2
16 (2 5) (4 7) 32 (2 5) (5 7)

[ ( 3)] (3 5) (5 7) [ ( 3)] (2 3) (3 5) (6 7)
x xα αα α α α

α α α α α α α

+ +Γ + Γ + Γ + Γ +
+ +

Γ + Γ + Γ + Γ + Γ + Γ + Γ +
 

 
2 7 8

4 2
16[ (2 5)] (6 9)

[ ( 3)] [ (3 5)] (7 9)
x αα α

α α α

+Γ + Γ +
+

Γ + Γ + Γ +
 

For the particular case = 1α ,  
3 4 5 6 7 8 9 11 12 15

2 2 5 2( ) = 1
3 6 5 18 63 56 756 2079 2268 59535
x x x x x x x x x xy x x x+ + + + + + + + + + + +
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x Exact Approx. Solution By IDM 

.1 0.110295 0.110265 

.2 0.241976 0.241564 

.3 0.395104 0.393354 

.4 0.567812 0.563330 

.5 0.756014 0.747445 

.6 0.953566 0.939972 

.7 1.152946 1.133622 

.8 1.346363 1.319708 

.9 1.526911 1.488325 

1.0 1.689498 1.628571 

 

5. Conclusions 
In this paper, the Iteration Decomposition Method has 

been successfully applied to find approximate solutions of 
fractional quadratic Riccati Differential Equations. 

The IDM is effective for Riccati differential equations, 
and hold very great promise for its applicability to other 
nonlinear fractional differential equations. The four 
examples used indicate the efficiency and accuracy of the 
method for fractional quadratic Riccati differential equations. 
The results obtained are in very acceptable agreement with 
those obtained by other known methods. 
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