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Abstract  This paper describes the turbulent flow of water through the orifice and double elbow using the Reynolds stress 
turbulence model. The characteristics of turbulent flow near the solid wall have been examined. The turbulent parameters 
such as velocity, kinetic energy and Reynolds stresses are analyzed in terms of the non-dimensional wall d istance parameter 
y+ values (0 < y+ < 650) fo r three different Reynolds numbers (Re) at the critical location of the corresponding components. 
These simulated results are validated with the literature results for each component, and are found to be in  good agreement. In 
general, for high Re number, inert ia forces dominated over viscous forces. It is observed from this analysis is that these 
inertial forces and other parameters attained their peak values in  the log law layer (30 < y+ < 500) or in  the outer layer (y+ > 50), 
whereas the minimum values of these parameters are observed in the viscous sub layer (y+ < 5) or in the viscous wall 
region (y+ < 50). 
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1. Introduction 
The study of turbulent flow parameters near the solid  

surface of p ipes has importance in various engineering 
disciplines and attracted many investigations. The orifice 
pipe and double elbow are most commonly used components 
in the pip ing system of many industries[1, 2]. For the safety 
of pip ing systems it is mandatory to analyze the flow, and the 
parameters which are lead ing to failu re in these components. 
Failures have occurred in the components in which the 
recircu lation regions exist, such as sudden expansion, orifice, 
elbows etc.[3]. The measurements of turbulent parameters in 
terms of non-dimensional wall d istance greatly assisted in 
correlating the experimental data[4].  

The present study is about the investigation of turbulent 
parameters in terms of non - dimensional wall distance para
meter, y+, in the orifice and double elbow. The downstream 
of the critical locations in the orifice and elbows are given 
prior importance in this study, since these are more critical 
regions susceptible to failures[3, 5]. Specifically, the region 
at the downst ream of the o rifice and  the reg ion at the 
downstream of the second elbow in the double elbow with 30 
< y+ < 500 are mainly  of concern. This study has been carried 
o u t  f o r  t he  th r ee  d i f f e r en t  Re yn o lds  nu mb e rs  
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(Re) values: 2e+4, 4e+4 and 6e+4. The turbulent parameters 
such as velocity, Reynolds stresses along with the turbulent 
kinetic energy are calcu lated in the region of interest. The 
behavior of these parameters in the various wall regions and 
layers in terms of y+ was investigated.  

In section 2, a detailed geometrical description about the 
proposed orifice and double elbow models are exp lained 
along with the governing equations, such as, mass, moment
um, turbulence, energy and species transportation of the 
incompressible flu id flow. In section 3, the grid generation 
and the numerical methods for solving the above governing 
equations are discussed. In section 4, the validation of the 
present results is shown. All the turbulent parameters in 
terms o f y+ values with respect to Re are p lotted and analyzed. 
Finally, the conclusions are given in section 5. 

2. The Problem Description and 
Governing Equations 

In the present study two-dimensional, turbulent, steady 
and fully  developed flow of water reaching the orifice and 
double elbow geometries with diameter (D) 0.0254m[1, 2] is 
considered. The geometry of physical problem considered in 
this study along with the coordinate system used is shown in 
Fig.1. The tube with a circular orifice is assumed to be of 
length 9D and is of height D as shown in Fig. 1(i). This 
orifice is assumed to be of thickness 0.0032m (B) and of 
diameter D/2. The angle of the bend is assumed to be 90o in 
the double elbow pipe (Fig. 1(ii)), and the pipe is of length 
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23D with a total height of 4D. The upstream and downstream 
lengths of crit ical locations such as flow singularity locations 
were chosen to be large. These considered lengths reduced 
the effect of inlet and outlet boundary conditions on the flow 
patterns in the v icin ity of the wall. At the flow singularity 
locations, these patterns are consistent with other studies in 
the literature and this validation is shown in section 4.1. 

The governing equations, along with  the boundary and 
flow conditions and the method of solution applied to model 
the turbulent flow of water in the considered geometries are 
described below. 

Governing equations 

The flow is governed by the basic equations such as the 
conservation of mass, momentum and energy together with 
the species transport. Also to model the turbulent flow, the 
equations of turbulent kinetic energy (TKE), and its 
dissipation rate (DR), are considered. The flow is considered 
as steady, thus, the temporal terms  have been eliminated. The 
flu id is assumed to be incompressible; hence the changes in 
the density are neglected. To illustrate the influence of 
turbulent fluctuations on the mean flow, the flow variab le 
𝑼𝑼 = (U1, U2) is considered to be the sum of mean velocity (𝒖𝒖) 
and fluctuating velocity (𝒖𝒖′) (i.e. 𝑼𝑼 =  𝒖𝒖 +  𝒖𝒖′ ). Then, the 
resultant equation for the conservation of mass is given by 

 
(i) 

 
(ii) 

Figure 1.  Computational geometries of the present study, with the diameter D = 0.0254m, the orifice thickness B = 0.0032m, UW is upper wall, LW is 
lower wall and x is the axial location at which Figs. 3-6 are drawn 

(ii) 
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 𝛁𝛁. 𝒖𝒖 = 0                      (1) 
The Reynolds time averaging equation for momentum is 

given by 
(𝒖𝒖. 𝛁𝛁)𝒖𝒖 =  − 𝛁𝛁𝑝𝑝

𝜌𝜌
 + ν  𝛁𝛁2𝒖𝒖 – 𝛁𝛁. (𝒖𝒖𝒊𝒊′𝒖𝒖𝒋𝒋′������)    (2) 

where ρ is the density, p is the static pressure, ν is the 
kinemat ic v iscosity of the fluid and 𝒖𝒖𝒊𝒊′𝒖𝒖𝒋𝒋′������ is the turbulent  
shear stress or Reynolds stress. The convention of this notat
ion is that i or j = 1 corresponds to the x-direction, i or j = 2 
for the y-direction. By using the Boussinesq theorem, 𝒖𝒖𝒊𝒊′𝒖𝒖𝒋𝒋′������ 
in Eq. (2) is proportional to the average velocity gradient, 
and can be calculated as  

𝒖𝒖𝒊𝒊′ 𝒖𝒖𝒋𝒋′������ = 𝜈𝜈𝑡𝑡 �
𝜕𝜕𝒖𝒖𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

 + 
𝜕𝜕𝒖𝒖𝑗𝑗
𝜕𝜕 𝑥𝑥𝑖𝑖
� = 𝜈𝜈𝑡𝑡𝐸𝐸𝑖𝑖𝑖𝑖        (3) 

where 𝜈𝜈𝑡𝑡  is the turbulent kinematic v iscosity. This viscosity 
was calculated using Reynolds stress model[4] and this 
model is discussed in the next subsection. Equations (1) and 
(2) were solved along with the following energy equation:  

(𝒖𝒖. 𝛁𝛁)𝑇𝑇 =  1
𝜌𝜌
 𝛁𝛁. (𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒  𝛁𝛁𝑇𝑇)            (4) 

where, T denotes the temperature,  𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒  is given by 𝑘𝑘𝑡𝑡ℎ + 
𝐶𝐶𝑝𝑝

𝜇𝜇𝑡𝑡
𝑃𝑃𝑃𝑃𝑡𝑡

, with turbulent Prandtl number  Prt = 0.85, kth denotes 
the thermal conductivity, 𝐶𝐶𝑝𝑝  is the specific heat at constant 
pressure and µ𝑡𝑡  is the turbulent eddy viscosity. 

The conservation equation of the chemical species, which 
predicts the local mass fraction of species (ferrous ions), 
takes the following general form: 

(𝒖𝒖. 𝛁𝛁)𝑌𝑌 = 𝛁𝛁.𝐽𝐽
𝜌𝜌

                   (5) 

where the mass diffusion flux of species is defined as 
𝐽𝐽 = �𝜌𝜌𝐷𝐷1 +

µt
Sc t
�𝜵𝜵𝑌𝑌 , with constant turbulent Schmidt 

number (Sct = 0.7); Y is the local mass fraction of the species 
and D1 is the diffusion coefficient of the species. 

To compute the turbulent kinematic viscosity, νt given in 
eq. (3), several turbulence closures and near-wall treatments 
are availab le in the Fluent CFD 12.1 software code ranging 
from k-ɛ type models to full Reynolds stress models[6]. The 
Reynolds stress turbulence model[4] is employed to predict 
the Reynolds stresses along with the TKE (k) and DR (ε).  

The turbulent kinemat ic viscosity, νt (= µ𝑡𝑡 /𝜌𝜌) given in 
Eq. (3), was computed by combining k and ε as  

𝜈𝜈𝑡𝑡 =  𝐶𝐶𝜇𝜇
𝑘𝑘2

𝜀𝜀
.                   (6) 

where Cµ = 0.09. 
Reynolds Stress Model  

The eddy-viscosity approximation ignores the effect of 
upstream history upon the Reynolds shear stress. Durbin[7] 
mentioned that, by carrying a differential equation for the 
Reynolds shear stress we can obtain considerably better 
results for the adverse-pressure-gradient boundary layer with 
large pressure rise. The most complex classical turbulence 
model is the Reynolds stress equation model, also called as 
the second-order or second moment closure model. The 
prediction of flows with complex strain fields or significant 
body forces leads to several major drawbacks by using the 
k-ε model. In  these conditions the individual Reynolds 
stresses are poorly represented by the following Boussinesq 

relationship even if the TKE is computed to reasonable 
accuracy.  

 𝒖𝒖𝒊𝒊′ 𝒖𝒖𝒋𝒋′������ = 𝜈𝜈𝑡𝑡𝐸𝐸𝑖𝑖𝑖𝑖 −  2
3

 𝜌𝜌𝜌𝜌𝛿𝛿𝑖𝑖𝑖𝑖             (7) 

where and Eij = �𝜕𝜕𝒖𝒖𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

 + 
𝜕𝜕𝒖𝒖𝑗𝑗
𝜕𝜕 𝑥𝑥𝑖𝑖
� and 𝛿𝛿𝑖𝑖𝑖𝑖 is Kronecker delta i.e., 

𝛿𝛿𝑖𝑖𝑖𝑖 = 1 for i=j and 𝛿𝛿𝑖𝑖𝑖𝑖= 0 fo r i j. 
The exact Reynolds stress transport equation on the other 

hand can account for the directional effects of the following 
Reynolds stress field equation[4]: 

(𝒖𝒖. 𝛁𝛁)𝑅𝑅𝑖𝑖𝑖𝑖  = 𝑃𝑃𝑖𝑖𝑖𝑖  + 𝐷𝐷𝑖𝑖𝑖𝑖  - 𝜀𝜀𝑖𝑖𝑖𝑖  + 𝛱𝛱𝑖𝑖𝑖𝑖        (8) 
where the Reynolds stress 𝑅𝑅𝑖𝑖𝑖𝑖  = - 

𝜏𝜏𝑖𝑖𝑖𝑖
𝜌𝜌

 = 𝒖𝒖𝒊𝒊′𝒖𝒖𝒊𝒊′������ . The above eq. 
(8) describes three partial differential equations: one for the 
transport of each of the three independent Reynolds stresses 
and these terms are expressed in the following equations (9) - 
(12): 

The production term (𝑃𝑃𝑖𝑖𝑖𝑖 ) in its exact form is  
𝑃𝑃𝑖𝑖𝑖𝑖 = - �𝑅𝑅𝑖𝑖𝑖𝑖

𝜕𝜕𝑈𝑈𝑖𝑖
𝜕𝜕𝑥𝑥𝑚𝑚

 + 𝑅𝑅𝑗𝑗𝑗𝑗
𝜕𝜕𝑈𝑈𝑖𝑖
𝜕𝜕𝑥𝑥𝑚𝑚

�          (9) 

The diffusion term ( 𝐷𝐷𝑖𝑖𝑖𝑖 ) can be modelled by the 
assumption that the rate of transport of Reynolds stresses by 
diffusion is proportional to the grad ients of Reynolds stresses 
as 

𝐷𝐷𝑖𝑖𝑖𝑖  = 𝜕𝜕
𝜕𝜕𝑥𝑥𝑚𝑚

 �𝜈𝜈𝑡𝑡
𝜎𝜎𝑘𝑘

𝜕𝜕𝑅𝑅𝑖𝑖𝑖𝑖
𝜕𝜕𝑥𝑥𝑚𝑚

�              (10) 
with 𝜎𝜎𝑘𝑘= 1.0. 

The dissipation rate(𝜀𝜀𝑖𝑖𝑖𝑖 ) is modeled by assuming isotropy 
of the model small dissipative eddies as 

 𝜀𝜀𝑖𝑖𝑖𝑖  = 2
3
 ε 𝛿𝛿𝑖𝑖𝑖𝑖                       (11) 

The transport of 𝑅𝑅𝑖𝑖𝑖𝑖  due to turbulent pressure strain 
interactions (𝛱𝛱𝑖𝑖𝑖𝑖 ) is given by 

𝛱𝛱𝑖𝑖𝑖𝑖=-𝐶𝐶1
𝜀𝜀
𝑘𝑘
�𝑅𝑅𝑖𝑖𝑖𝑖 −

2
3

 k 𝛿𝛿𝑖𝑖𝑖𝑖 � -𝐶𝐶2 �𝑃𝑃𝑖𝑖𝑖𝑖 −
2
3
P′𝛿𝛿𝑖𝑖𝑖𝑖 �(12) 

with 𝐶𝐶1 = 1.8, 𝐶𝐶2= 0.6 and P′ =  1
2

 𝑃𝑃𝑖𝑖𝑖𝑖 .  
Turbulent kinetic energy (k) is needed in the above 

formulae and can be found by adding the three normal 
stresses together i.e. 

k = 1
2
 ( 𝑢𝑢1

′2���� + 𝑢𝑢2
′2���� )              (13) 

The six equations for Reynolds stress transport are solved 
along with a model equation for the scalar dissipation rate ε. 
Again a more exact form is found by Launder et al.[8], but 
the following equation from the standard k-ε model is used in 
commercial CFD softwares for the sake of simplicity.  

(𝒖𝒖. 𝛁𝛁)𝜀𝜀 =  𝛁𝛁. �𝜈𝜈𝑡𝑡
𝜎𝜎ε
𝛁𝛁𝜀𝜀� + 𝐶𝐶1𝜀𝜀

𝜌𝜌
𝜀𝜀
𝑘𝑘
2𝜈𝜈𝑡𝑡𝐸𝐸𝑖𝑖𝑖𝑖 .𝐸𝐸𝑖𝑖𝑖𝑖  - 𝐶𝐶2𝜀𝜀

𝜀𝜀2

𝑘𝑘
   (14) 

where the adjustable model constants have the default values 
as C1ε=1.44, C2ε =1.92 and the Prandtl number of ε is 𝜎𝜎𝜀𝜀= 1.3.  

3. The Generated Mesh and the 
Computational Procedure 

The equations (1) - (5) which govern the two-dimensional 
pipe flow are analyzed using the well-developed 
commercially available software, namely, ANSYS. In the 
first analysis phase, the geometry of the flow model is 
constructed using the grid-generation software, namely, 
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ANSYS Workbench. The non-uniform grids are generated 
and clustered in the vicinity  of bounding walls. While 
generating this mesh, the distance between the first 
calculating node and the wall is chosen to be so small to have 
the distance from the wall measured in viscous lengths, 
< 500.  

First cell height = R.F. 

        (15) 

where the R.F. is refinement factor and it was considered to 
be one to create the fine mesh[6]. 

The flow volume, boundary and initial conditions for this 
model have been provided in the ANSYS FLUENT 12.1[6]. 
In the present study, some of the boundary conditions for the 
pipe failure conditions applied by Pietralik and Schefski[5] 
are considered. The uniform velocity is used as the inlet 
boundary condition. The boundary conditions imposed on 
the wall are no-slip for momentum, constant temperature for 
thermal and constant concentration for species. At the outlet, 
the zero-gradient properties are considered to be linear for 
the pressure. The critical temperature is considered as 310℃
[5], the constant wall roughness as 7.5e-5 m[5], the Schmidt 

number, Sc  as 9.2[5], the Prandtl number, Pr  

as 8.911. The moderate Re  values 2e+4, 4e+4 and 

6e+4[10] are considered to analyze the flow. 
The SIMPLE algorithm is used along with the staggered 

grid to simultaneously solve the velocity and pressure equat
ions. The second order upwind scheme was used fordiscreti
sing the convection and diffusion transports on a uniform 
grid. In all the investigations, the iterative calculations of the 
primitive variab les, such as u, k , ε, T and Y were terminated 
when the residual norm criteria of 1e-6 are reached. In the 
final stage, the predicted results were viewed and analyzed 
by the animated plotting tool, namely, FLUENT postproces
sing. The computations were carried out using the work 
station HP Z800 Intel Xeon Dual Core Processor. 

4. Results and Discussion 
We begin by presenting the numerical validation of the 

present study in the orifice and double elbow with previous 
results of Smith et al.[1] and Debnath et al.[2], respectively. 
Then, the distribution of turbulent parameters at the critical 
location of the corresponding component have been investig
ated in terms of fo llowing wall spacing parameter (ΔS) for 
different y+ values(0 < y+ < 650) and for d ifferent Re, 

ΔS =                     (16) 

where uf is the friction velocity, uf =  ,  = cf ρ  and 

cf is given by Schlichting skin-friction correlation[9] as 
 for Re  < 109. 

As wall spacing values (ΔS) is a function of y+ and Re, the 
dependency of these variables are analyzed in detail. From 
equation (16) it can be noted that the calculated ΔS values 
differ corresponding to the y+ values (0 < y+ < 650) for fixed 
Re. Also the range of ΔS for 0 < y+ < 650 varies for d ifferent 
Re values. Also the grid independency test has been carried 
out for three different grid sizes and the details are tabulated 
in Table 1. For the present study the grid size in bold  face in 
Table 1 are selected for the simulation. 

Table 1.  Grid Independence test 

Component Location of u 
in (x, y) (m) 

Total number 
of Nodes u(m/s) 

 
Orifice 

 
(0.1, -0.0127) 

64 672 1.8817 
130 610 1.8719 
253 019 1.8675 

 
Double elbow 

 
(0.05, 0.0127) 

163 688 11.751 
318 480 11.761 
580 886 11.7689 

It is observed that the different sizes of recirculation zones 
reside near the bend zones of the elbow. From Fig. 2, it  can 
be noted that, the present simulation results are in close 
agreement with the published numerical results in the 
literature. 

4.1. Turbulent Parameters 

As the considered Re values are high, the viscous stresses 
are negligib le everywhere in the computational region and 
small compared with the Reynolds stresses. Hence in the 
present study the turbulent parameters such as velocity, Rey
nolds stresses and kinetic energy are examined at the critical 
location of each component for different Re values in terms 
of y+ values. The critical locations in the orifice and double 
elbow were selected by the deep analysis of failures in these 
components as discussed by Ahmed et al.[3] and Pietralik 
and Schefski[5], respectively. At these critical locations the 
turbulent parameters are analyzed since these parameters 
will p lay a v ital role to study the failure analysis[3, 10]. The 
study of these parameters is examined in terms of y+, since 
this parameter g reatly assisted in correlat ing the experiment
al data[4]. The different layers are defined based on the y+ 

values such as viscous sub-layer (y+ < 5), viscous wall region 
(y+ < 50), log – law layer (30 < y+ < 500) and outer layer (y+ > 
50) are denoted as A, B, C and D, respectively in Figs. 3-6. 
The values in the orifice at x = 0.005m from the upper wall 
is shown in (i) and the values in the double elbow at x = 
0.385m from the lower wall for 0 < y+ < 650 are shown in 
Figs. 3-6 (i) and (ii), respectively. 
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i(a) 

 

i(b) 

 
ii(a) 

 
Ii(b) 

(i) Flow in the orifice. Comparison between the streamlines of (a) Smith et al. (2008) with those of (b) simulated results. 
(ii) Flow in the double elbow. Comparison between the streamline contours of (a) Debnath et al.(2010) with those of (b) 
simulated results. 

Figure 2.  Comparison of simulated results with the previous results 

  0 

  3  2   1 0 2.5 1.5  -1 
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0.5 0.5   3.5 1 3 3.5 
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(i)                                                     (ii) 

Figure 3.  Velocity magnitude in the (i) orifice at x = 0.005m (shown in Fig. 1(i)) from the upper wall (ii) double elbow at x = 0.385m (shown in Fig. 1(ii)) 
from the lower wall. A, B, C and D denotes the viscous sub layer (y+ < 5), viscous wall region (y+ < 50), log-law layer (30 < y+ < 500) and outer layer (y+ > 50), 
respectively. In the next Figs. 4 - 6 same notations are used for A-D and x 

 
Figure 4.  For Re = 2e+4 the simulated Reynolds stresses (ui

2, uj
2and uiuj) along with kinetic energy (k) (i) orifice at x = 0.005m from the upper wall (ii) 

double elbow at x = 0.385m from the lower wall. The other notations are same as in Fig. 3 

 
Figure 5.  For Re = 4e+4 the simulated Reynolds stresses (ui

2, uj
2and uiuj) along with kinetic energy (k) (i) orifice at x = 0.005m from the upper wall (ii) 

double elbow at x = 0.385m from the lower wall. The other notations are same as in Fig. 3 
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Figure 6.  For Re = 6e+4 the simulated Reynolds stresses (ui

2, uj
2and uiuj) along with kinetic energy (k) (i) orifice at x = 0.005m from the upper wall (ii) 

double elbow at x = 0.385m from the lower wall. The other notations are same as in Fig. 3 

Velocity 
Figure 3 presents the velocity magnitude for d ifferent Re 

values. In the orifice, it  was observed from the Fig. 3(i) that 
in all the layers the velocity increases with respect to 
increased Re and the velocity changes rapidly in 
30<y+<500. 

Also observed that velocity increases drastically with 
respect to Re in the log-law layer, since the inertial forces 
always dominate in this region, specifically for high Re[11]. 
In the double elbow, from Fig. 3(ii) similar observations are 
noted in the log-law layer with respect to Re. Also, the 
velocity magnitude increased with the increased Re values 
till y+ < 400. After that suddenly the velocity increases for 
Re value of 2e+4 due to the distance ΔS value very near to 
the center line. A lso this velocity value is more than that of 
other values of Re due to the decrease of wall d istance (ΔS) 
with the increased Re. 
Reynolds stresses and Kinetic energy 

Figures 4 – 6 present the Reynolds stresses (ui
2, uj

2 and 
uiuj) along with the kinetic energy (k) in d ifferent layers and 
for different Re. For Re = 2e+4 (Fig. 4) in the viscous wall 
region y+ < 50 (region B) all the parameters in orifice (Fig. 
4(i)) and double elbow (Fig. 4(ii)) are decreased, except 
shear stress in the orifice. After that, all the parameters, 
including the shear stress, are increasing with respect to y+ 

value and attain the peak value in the log law layer (region 
C) at  y+= 300 for orifice and at  y+= 500 for double elbow 
and then decreasing in the outer layer (region D). A lso 
observed that Reynolds normal stresses (ui

2, uj
2) have the 

higher values along with  turbulent kinetic energy (k) in 
comparison with the shear stress(ui uj). For orifice, the shear 
stress (uiuj) has the negative values only near the wall 
region (B), but for the double elbow, shear stress has the 
negative value through out the region y+ < 450. Similar 
observations are made for Re = 4e+4 and 6e+4 from Figs. 5 
and 6 with some variations with that of Re  = 2e+4. Those 
observations are: 
• shear stress is also decreasing in the viscous wall region 

(region B) of orifice (Figs. 5(i) and 6(i)). 

• shear stress is having the negative values in  the entire 
region (regions A-D) of double elbow (Figs. 5(ii) and 6(ii)) 
due to the flow reversal at h igher flow rates[12].  
• the increased Re results in increase of all the parameters, 

except the shear stress in the double elbow due to the 
negative stress. 
• all the parameters attain their peak values in the region 

away from the wall 
• from Figs. 4(i) - 6(i), for orifice as Re  increases these 

peak values exist in the log-law reg ion(C) and move to the 
outer region. From 4(ii) – 6(ii), for the double elbow as Re 
increases these peak values exists at the end of the log law 
region and move to the outer region. 

Thus it can be concluded that Reynolds stresses and 
turbulent kinetic energy behave differently with respect to 
y+. In  the orifice, shear stress behaviour is different with 
respect to all other parameters in the viscous wall region, 
but similar in the log-law layer (C) and outer layer (D) for 
all the considered Re values. In the double elbow, shear 
stress behaviour is different with all other parameters in the 
entire region of 0 < y+ < 650 due to negative shear stress in 
that region. 

5. Conclusions 
In the present study the steady, turbulent, two-dimensional 

flow of water in the two components  (the orifice and double 
elbow) are considered. The characteristics of turbulent flow 
near the solid wall was examined fo r three different  
Reynolds numbers (2e+4, 4e+4 and 6e+4) using the  
Reynolds stress model. The turbulent parameters such as 
velocity, kinetic energy and the Reynolds stresses are 
analysed in terms of the y+ values (0 < y+ < 650) at the critical 
location of the corresponding components. These simulated 
results are validated with the reported results from literature 
for each component, and are found to be in good agreement. 
It is observed from this analysis that since the considered Re 
values are high, inertial forces dominates than the viscous 
forces. Also observed that these inertial fo rces and other 
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parameters except shear stress in the double elbow are 
attaining the peak values in the log law layer (30 < y+ < 500) 
or in the outer layer (y+ > 50), since always the inertial forces 
dominate in this region especially for the high Re numbers. 
However, the min imum values of these parameters are 
observed in the viscous sub layer (y+ < 5) or viscous wall 
region (y+ < 50). In the orifice, shear stress behaviour 
differed with all other parameters in the viscous wall region, 
but showed a similar trend in the log-law layer and in the 
outer layer for all the considered Re values. In the double 
elbow, the shear stress behaviour differed with all other 
parameters in the entire region o f 0 < y+ < 650 due to 
negative shear stress in that region. In both the geometries, 
the increased Re resulted in increase of all the parameters in 
the double elbow due to the negative stress. 
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