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Abstract In this paper, we propose an easy and efficient way to analytically construct the solitary wave solutions of the
modified Sasa-Satsuma equation. This approach called Bogning-DjeumenTchaho-Kofané method is based on the good
management of the properties of the hyperbolic functions. First, we considera shape of solution to construct as a combination
ofthe functions oftype solitary wave whose coefficients must be determined according to the parameter ofthe studied system.
Thereafter, we obtain the equations of ranges of coefficients whose resolutions allow determining the values of the

coefficients and in occurrence the solutions of the nonlinear partial differential equation.
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1. Introduction

The dynamics of physical systems is in general described
by nonlinear partial differential equations (NPDE). If the
increase of non-linearity on the other hand gives
supplementary information in the understanding of the
system, it complicates the analytic resolution of these
equations. These NPDEs are seen in Mechanics of
continuous media, in fluid mechanics, in nonlinear optic, in
thermodynamics, kinetic chemistry... If the obtaining of
these equations is one’s in a while easy, the resolution is not
always easy and at times constituted a veritable challenge. It
is in this light that for the past years, researchers have been
working hard and also proposing solutions and methods of
resolution. In case of dynamics of solitary waves, many
efficient methods have been stated. We can mention among
others the tanh-sech method[1 -3], the homogeneous balance
method[4-7], the extended tanh method[8,9], the tanh-coth
method[10], the exp-function method[11-15], the jacobi’s
elliptic function method[16,17], the F-expansion method
[18-20]. Beyond a multitude of methods many results were
published in order to ameliorate the above mention methods
or to extend themto other forms of equations[21-28]. In this
work, we will use the principle that consists in decomposing
the equation that we want to construct the solutions under the
shape [22-26]
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,j) are functions of the coefficients &;; to determine.

The paper is organized as follows: In section 2, we look
for the ranges of equations, in section 3, we solve the
obtained ranges of equations and in section 4, we conclude

the work.

2. Implementations of Equations of
Coefficients

Sasa-Satsuma’s equation is a welldeveloped one of higher
order obtained in certain order of nonlinearity. This equation
is obtained principally in surface hydrodynamic wave
paquets when perturbation development extends to the 4
order. We obtain similar equations in optics for waves of
great velocity. The equation of Sasa-Satsuma presents itself
in two forms [27, 28], the form that interest us is the
modified one presented as follow
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where A, represents the first derivative of the envelope 4 ~ where @, b, €, d and @ can be real or complex.
Given that the choice of the exact solution form of equation

(2) is notalways easy, we suppose that all the coefficients are
the envelope A with respect to variable x and A stands complexes such that

for a conjugate complex of 4. We propose to construct a a=a, +ia, , b=b+ib , c=c +ic,

with respect to time, Ax represents the first derivative of

solution made up of a combination of analytic forms of — ;

, p : 4 d=d +id and where a., a, b., b, c., c,d,,
solitary waves. Not knowing the exact form capable of
producing good results, we opt for the construction of the d, and « are real constants and i> =—1. The choice of
solution of the form the solution in this form permits to have maximum

A(x,t)— which verifies best equation (2). Considering this, the

asec hax+ btanh ax + csec hzax} e possibilities as regard to the choice of the form of equation (3)
= expia
introduction of equation (3) in equation (2) gives

+d sinh axsec h*ax + ...

7

7
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where F;(ar,ai,b’,,bi,c’,,cl-,dr,di), Fﬂ(ar,a[,br,bi,cr,cl.,dr,d[), Gn (al”’ai’br’bi’cr’ci’d)"di)’ and
' ) . .
Gn (a,,ai,b,,bi,cr,ci,d,,di) are functions of the coefficients a., a;,, b., b., ¢, ¢;, d._, d, to determine.

Equation (4) is called the range equations of coefficients with factors sinh™ axsech"ax where m=0,1 and

n=1,2,...,7.This equation has areal part and the imag inary part. On identifying the two parts ofequation (4) equalto zero,
we obtain the following equations classified in order of priority [24,25]. Hence the real part of equation (4) gives

F (a,,a,b.b,c, c.d d)=0 as:

Termin goo }lz;ar),c )
12ve [d,. (c2+c?)+d,(d} +d? )} —12vad, (d} +d? ) +12vad,; (¢} —c? ) - 24vad,c.c; = 0. (5)
Termin sech’ax.,
l4a,c.d, +14a.cd, +7b,(c] +c] ) —4b,(d] +d] )+ 6c,ch, —3c}b, +3cb,
e ~12¢,a,a, +6cd,a, +6c,da,~3b,(b] +b ) +6d,db, —3d’b, +3bd]

+18vad, (a,c, +ac,)+18vad, (ac, —a.c,)

+24vad, (c,a, +c,a,)+24vad, (c.a, —c,a,)+6vab, (3¢} +3c] —3d] —3d) "
+12vab,d,d, - 6vab,(d’ —d} )+18vac,(a,d, +ad,)+18vac, (ad, —a,d,)

—12vab, (¢} — ¢ )+ 24vab,c,c, +2c, (] +c] ) —4c, (d} +d} )-2c,(d} —d] )+4dd,c, =0,

Termin sech’ax,

—3a’d, +6a,a,d, +3a’d, —6a,b,.c, +6abc, +6ab.c, +6abc, —5a.c.b +5a.ch, +5a.c.bh,

3va| +5ach, +5d,(a} +a’ |=Sab,c, +5b,ca, +5he,a, +5bca; +3b7d; — 6b,bd, ~3b7d,

_+di (br2 +bi2)+3cr2di —6c,.c.d, _3ci2di -7d, (cr2 +ci2)+ 2d, (a’l.2 + drz)+4(dr2 +di2)di
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+6vad,| a? +a? =3(02 +07 ) +3(d +d2)-3(c? +¢7) |

+18vac, (a,b; —ab, ) —18vac; (ab; + a,b, )+ 6vab, (c.a; — c;a, ) — 6vab; (c,a; +c,a, )

1

+ovad, (br2 — b} ) —12vad,b.b; + 6vad, (a,z —a’ ) —12vad,a,a, +12vad, (c,2 —c? ) —24vad,c,c;

1

+24va’d, +4(cr2 +ci2)a, —4(a’r2 +dl~2)ar 4—2(cr2 —cz)ar +4c,ca; —2(d,2 —diz)ar

—4d,d.a; —6(c.d, —cd; )b, —6(c;d, +c,d; )b, —4(b,c. —bc;)d, —4(b.c; + b, )d,;
—4(d,b, —d;b,)c, —4(d;b. +bd, )c; =0,
Termin sech'ax,

_4aral-b, - 2191.01,2 + 217[“52 +4b, (arz + a,-2 ) —-5a,c,d, —5a;c,d, +5a,c,d; —5a;c;d; —6a,d,c, |
3va| ~6a,d,c, +6a,d,c;~6a,d;c,~2b, (b + b7 ) +10b, (d] +d} )~ 6b, (c] +c7 ) ~4c,cpb,

+2¢2b, —2b,ct —5¢.d.a, —5¢,d.a, +5¢,d,.a, —5c,d,a; —4d db, +2bd> —2bd?

—6va (b +b] )b, +24va(d] +d] )b,
—12va(c} +c] )b, ~18vabd] +18vabd; +36vad,d,b, +12vad,a,c,

-12vad,a;c; —12vad;a,c, —12vad,.a;c, —18vad,c,.a, —18vad,c;a, —18vad,c;a;

1711 LrTr rerTr L rr [ e}

+18vad, c.a; —18vac;a,.d, —18vac,a;d, +18vac,a,.d; —18vac;a;d; —24vac,c;b,

i“r“r [

+12ve (c,2 — c,-2 )b[ + 6va3b[ + 2(ar2 —a? )c, +4a,a;c; — Z(bf - bl.2 )Cr

1

—4bbe, +2(d} —d} e, +4d,dic, +4(a} + a7 )c, —4(b] +b] )e, +2(d} +d} )e, —4(a,b, —ab,)d,

—4(a,b, +ab,)d, —4(a,d, —ad, )b, —4(a,d, +ad, )b, —4(d b, —db,)a, —4(db, +d,b,)a, —6a>c, =0,

Termin sech’ax,

133

)

®)

—da.ad +2a’d —2da’ —5abc, —5ab.c. +5cab —5abc,—3ach —3acb, +3a.cb —3ach,

rir roir Lror ror

3va
~4d,(a} +a] ) +8b,bd, —4d b} +4b}d, ~4c ba, —4cha, +4ac,b, —4ach -2d,(d] +d])

+H24va (b,2 +b; )d,- —12va (af +a’ )d,.
+12vab,bd, —6va (b} —b] )d, —6va(a] +a] )b, —6va(d} +d} )b,
+18vac,a b, —18vac,ab, —18avc,a b. —18vac.ab, —12vab.c.a, —12vab,c,a,

+12vab,c.a, —12vab.c.a, +12vaa.a.d, —6va (af —a’ )d,. —12vaa,a b,

+6var (a,2 —-a’ )b,. +6vaba,.c, +6vab.ac, —6vab.a.c, +6vabac, —2a’a, ©
+2a,(a} +a; )—4a, (b} +b)—4a,(d} +d})-2a, (b} -b])—4bba,+2(d} —d])a,
+4d.d a,+4(bc, —bc,)d, +4(bc,+bc,)d, +4(db, —db)c, +4(db, +bd,)c,
+4(c,d, —cd)b,+4(cd, +cd,)b, =0.
The imaginary part of equation (4) leads to the following equations G, (a,,a,,b,,b,,¢,,¢,,d,,d,)=0such as:
Termin sech’ax,
“3va [4dr (c2+c?)—a(d?+a?)d, ] +12vad, (d} +d} )+12va (e =7 )d,

+2vad,c,c; =0,
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Termin sech’ax,

Ta.cd —Tacd +7a.cd +7acd +7ad.c —Tadc, +7adc +7ad.c,

roror For1 1 rl

“3va|+7b, (¢} +c] )—4b, (d} +d] )+3c}b, —3c]b, +6c,cb, +6c,a; —6c,d,a,

+6¢,a; +6c,d,a, ~3b, (b +b] )+3d}b, —3d’b, +6d,db,
—18vad, (a,c, +a,c,)—18vad, (a,c, —a,,)
—24vad, (c,a, +ac,) - 24vad, (c,a,—ca,)—6vab,| 3(c] +c])=3(d} +d’) |
—6vab, (d} —d})+12vabd,d, —18vac, (a.d, + ad,)—18vac,(a,d, —ad,) (11)
—12vab, (¢} —c] )= 24vabc,c, +2(c] +c )c,—4(d] +d})c,
~2(d} —d})c,—4d,d,c, =0,

Termin sech’ax .,

3a’d, +6a.ad —3a’d, +6ab.c, +6abc, +6ab.c —6abc, +5a.cb, +5a.cbh +5ac.bh

1 r-i

—3va| —Sa,ch. +5d. (a +a, )+ S5b.c.a, +5b.ca, +5bc.a —5bca, —3b’d —6bbd +3bd,

+d, (b} +b))-3¢}d, —6c.cd, +3c]d, +4(d] +d} )d,~7d,(c] +c)+2d,(d] +d})
~6vad, (a; +a] —3b} —3b] —3d} —3d; -3¢} —3c] )
~18vac, (ab, —a,b ) +18vac, (a,b, + ab,)—6vab,(ca, —c,a,)
+6vab, (c,a, +ca,)+6vad, (b - b} )+12vadbb,
+6vad, (c,a, +c.a,)+6vad, (br2 -b} ) +12vadb,b, + 6vad, (af —a’ ) +12vad,aa, (12)
+12vad, (¢} —c} )+ 24vadcc, —24va’d, +4(c +c} )a,—4(d} +d} )a,

+4c,c.a —2(c —c; )ai +2(dr2 —diz)ai —4dd.a, +6c,d b, —6cdb —6(cd +cd,)b,

1 rr

+4(bc, —bc,)d,—4(b,c,+bc,)d, +4(db, —db)c,—4(db, +bd, )c, =0,

Termin sech'ax,

1 r

2afb,,—2ai2br+4aral.bl.+4br(af+al.) Sa,cd. +5acd —5acd —5acd —6ad.c,

=3va| +6a,d,c, —6a.d.c,—6ad c,—2b, (b2+b2)—10b (d2+d, )—6b (c +c; )—2cfbr

1rr

+2¢b, —4c.ch —5c.d.a, +5cda, —5cda —5cd.a —2bd’ +2bd’ —4d db

—~6vab, (a} +a’ )+ 6vab, (b} +b)
—24vab, (d} +d})+12vab,(c} +c )-18vab,d; +18vab,d’ -36vabd,d,

—12vad.a,c, +12vad a.c, +12vad,.a.c, +12vad, a.c, —18vad.c,a, +18vad c.a,
+18vad.c a, +18vad c,a, —18vac,a,d, +18vac.a d, +18vac,a d, +18vac.ad,

+12va (cr —c; )b,, +24vac,ch, —6va’h, +4a.ac, —2(ar —a )cl. + 2(bf —bf)ci (13)
+2(B} =] )¢, —4bbc, +4d,dc, -2(d} —d} )c,+4(a] +a )¢, - 4(b} +b] )c,
~4(d} +d])c,+4(a,b,—ab)d, ~4(a,b+ab,)d, +4(ad —ad)b-4(ad +ad,)b,

+4(d b, —bd,)a,—4(db, +bd,)a, —6a’c, =0,

ror
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Termin sech’ax,
—2a’d, +4a’d —4d.a.a —5ab.c +5abc, —5abc,—5ab.c,—3a.cb, +3ach, —3a.ch —3ac,b,
~4d, (a} +a] )+4b}d, —4b}d, +8b,bd, —4c.ab, +4a,ch, —4ac,b, ~4ach ~2d,(d} +d;)
—24va (br2 +b? )dr +12va (af +a’ ) d,

=3va

—6va (b} —b])d, —12vab,bd, + 6va(a; +a’ )b, +6va(d; +d} )b,

+18vac,a b, —18vac,a,b. +18vac,a b, +18vac,ab, +12vab,c.a, —12vab.c,a, (14)
+12vabc,a, +12vab.c.a, +6va (af -a’ )dr

+12vaa,a d, +6vab.a.c. —6vab.a.c, +6vaba.c, +6vab.ac,

+6va (af —a’ )br +12vaa,a b, —2a’a, = 0.
As mentioned above, the choice of the form of solution when we use the BDK method [34,35] is not always easy. In the

setting of this work, we wanted in a first time that the coefficients @, b, ¢ and d are complex (a=a, +ia,,
b= br + ibi, ¢ =c, +ic,); this in the goal to multiply the possibilities of obtaining the shape of the most suitable solution.
This being, the sets of equations (10), (11), (12), (13) and (14) possess 8unknowns a,, a,, b., b,, ¢, ¢,, d. and d,

whose resolution is not easy because of their nonlinearity. Of all considered hypotheses, we got two that allowed us to get
acceptable solutions.
The groups of equations (10), (11), (12), (13) and (14) lead to identities while the groups of equations (5), ..., (9) become

Termin sech ax,

o

adc’ =0, (15)

Termin sech’ax,
“24vab.c’ -15vabd’ -9vab’ +2¢) —6c,d’ =0, (16)

Termin sech’ax.,

18vad.a’ +30vaa,c.b, —30vad.b’ —18vad.c’ +36vad’ +24va’d,

(17)
+6a.c’ —2a,d’ —6¢c.db =0
Termin sech'ax,
6vab.a’ —30vac,a.d, —12vab’ +66vabd’ —12vab.c’ +6va’h,
(18)
+6¢.a’ —2c,b’ —8a,db —6a’c, =0,
Termin sech’ax, When d;, =0 and ¢, #0, the equations (16), (17),...,
—12vadiaf +30vaa,be, + 6V0£dl.3 (19) become respectively
24vab.c? +2¢} —9vab’ =0, 20
+30vad b’ —6vabd’ —2a’a, (19) VoOiC, T ae, mIva, 20
3 5 5 Svab, +c. =0, @21)
+2ar - 2arbj - 6ard1‘ - O. 3Vabiaf —6vabl3 —6Vabicf (22)

+3va’h, +3c.a’ —c,b? —3a’c, =0

15vabe, —a’ +a; —b’ =0. (23)

Taking into account of equation (21) in equation (20)

gives us the constraint vor = +4/9/350 and thereafter,
¢, =0 , and the case where d, =0 and ¢, #0. But in the combination of equations (20), (22)and (23) yields

the continuation we are going to be interested in the last two b =+a~3/20, (24)
quoted cases. !

First case ¢, =+15a+/21000/21000, 25)

3. Resolution of the Range Equations

The equation (15) imposes us three possibilities, the case
where d; =0and ¢, =0, the case where d, #0 and
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a, =+ta~121/70.

(26)

So when we consider equations (24), (25) and (26) in equation (3) we obtain the solution

A(x,t)= ia‘/Esechaxiia,/itanhaxiwsechzax expiat,
70 20 1400

While observing the solution equations (11), we note that
we should choose the constants of the initial solution (3) as

they verify the following criteria o =cste, a, #0 ,
b#0, ¢, #0 and q,=0=b =c,=d, =d, =0.
Second case: a#0, a #0, ¢, #0, d,#0 ,
b #0 and a,=b =c,=d =0.
The gotten below equations essentially come fromthe real

part of equation (4) because its imaginary part produced
merely identities. Thus, it follows:

Termin sech’ ax,

12vad,c =0, (28)

Termin sech’ax.
12va,d, +c’ —d? =0, (29)

Termin sech’ax,

18vaa’d, —18vad.c’ +36vad’ “
+24va’d, +6a,c’ —2a,d} =0, o

Termin sech'ax.,
-30vaa,d, +6a’ —6b? —6a” =0. (31)

From equation (28) we consider the case where dl. #0

and c, =0 . Hence, the equations (29), (30) and (31)

respectively write

12vaa, —d, =0, (32)
Yvaa’ +18vad’ +12va’ —a d, =0, (33)
~Svaa,d, +a’ —b’ —a’ =0. (34)

Solving the equations (32), (33) and (34) we obtain
a, =+,[4a’ /(4-864v°a’*), (35)
d, :J_r12va\/4a2 /(4-864v°at*), (36)
b =ta\[624via’ (4-864a?),  BT)

with —2/+/864 < va < 2/~/864 . Substituting
equations (35), (36) and (37) in equation (3) we obtain the

solution
+ [4a? /(4 —864v7a’ ) sec hax

A(x,t)= ioz\/624v2052 /(4 - 8641/20:2) tanh arx

+12iva, [4a? /(4 - 864\/2052) sinh axsec h’ax

According to the solution (38), one realizes that one
should have merely chosen to construct the solution of the
equation (2) under the shape of equation (3) as the following

(38)

expiat

(27)

conditions are verified: @ # 0, a, # 0, a,#+ 0, br #0

and a,=b =c,=c, =d, =0.

4. Conclusions

The Sasa-Satsuma equation under its modified shape as
considered in this work is not always easy to integrate. Not
knowing initially the shape of solution which is susceptible
to verify this equation, we proposed to construct a solution
that is the combination of the hyperbolic functions of type
solitary wave. The use of the BDK method allowed us to
obtain successfully the equations of range of coefficients that
allowed assigning some values to these coefficients. These
values of determined coefficients also permit to give some
particular solutions. We note that beyond the calculations
that require a lot of concentrations, the obtained solutions
confirm the fact that Sasa-Satsuma equation is integrable. It
is sufficient to really choose the shape of solution to
construct. Our satisfaction is especially due to the fact that
the obtaining of these solutions was possible thanks to the
choice of the method that we had used. This method is very
adapted to the greatly nonlinear partial differential equation
which present the scattering terms.
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