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Abstract  Throughout many disciplines, the question of which objects lie with in another particular object’s vicinity is of 
the upmost importance. The well-known 1st-order Voronoi diagram answers this question when a model can be represented 
in the Euclidean plane with objects as single points. As the phenomena that we model becomes more complex, the notion of 
distance, bisectors, and space changes accordingly. It will be shown that the Voronoi diagram can be generalized to many 
problems by modifying the underlying mechanisms to be representative of the aforementioned notions. 
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1. Introduction 
The Voronoi d iagram is often broadly described as the 

partitioning of the plane containing a set of sites into 
disjoint regions such that the area enclosed by each region 
is closest to its internal site (i.e ., each reg ion is closest to a 
single site). This instance of the Voronoi diagram is more 
known as the 1st-order Voronoi d iagram. The propert ies and 
computations of the 1st-order Voronoi d iagram of point sites 
are very well researched and provide the foundations to 
generalize the solution in more ways than this paper will 
cover[1,2]. The focus will be on elementary properties of 
the 1st-order Voronoi Diagram and generalization to 
different geometrical sites and distances. 

2. 1st-Order Voronoi Diagram 
Let P be a set of n points in the Euclidean plane. The 

1st-order Voronoi diagram, denoted VD(P), partit ions the 
plane into n disjoint  regions such that the area bounded by 
each region is closest to a single site p ∈ P than any other 
site q ∈ P. There are a variety of remarkable properties of 
the edges, vertices, and cells of the Voronoi diagram which 
will be examined  along with  a well known algorithm that is 
used to compute VD(P) known as Fortune’s algorithm. 

2.1. Voronoi Edge 
Every  Voronoi edge is the locus of points that are closest 

and equidistant to two sites 𝐩𝐩,𝐪𝐪 ∈ 𝐏𝐏. Let 𝐝𝐝(𝐩𝐩,𝐪𝐪) be the 
Euclidean distance between two  sites 𝐩𝐩 and 𝐪𝐪. Then the 
Vorono i edge c an  be def ined  by  𝐕𝐕𝐕𝐕(𝐩𝐩 ,𝐪𝐪) = {𝐫𝐫 ∈
𝕽𝕽𝟐𝟐: 𝐝𝐝(𝐩𝐩 , 𝐫𝐫) = 𝐝𝐝(𝐪𝐪 ,𝐫𝐫) ≤ 𝐝𝐝(𝐬𝐬 , 𝐫𝐫)∀ distinct 𝐩𝐩,𝐪𝐪, 𝐬𝐬 ∈ 𝐏𝐏}. T h e  
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equality represents the perpendicular bisector of the line 
segment 𝐩𝐩𝐩𝐩���� while the inequality restricts the Voronoi edge 
to be only the closest points on the perpendicular bisector. 
Hence every Voronoi edge is a line, a ray, or a line 
segment[1].  

Since the locus of points equidistant from a point 𝐱𝐱 lie  
on a circle centered at 𝐱𝐱, 𝐕𝐕𝐕𝐕(𝐩𝐩,𝐪𝐪) contains the centre of 
every empty circle passing through both 𝐩𝐩 and 𝐪𝐪[2]. 

 
Figure 1.  Voronoi diagram of 4 point sites. Note that the three Voronoi 
edges that intersect the border are rays 

2.2. Voronoi Vertex 
A Voronoi vertex is defined to be the centre of the largest 

empty circle circumscrib ing three sites 𝒑𝒑 ,𝒒𝒒 , 𝒓𝒓 ∈ 𝑷𝑷 . Figure 
2 displays the empty circumcircles of the Voronoi vertices. 
This definition requires that no four sites are co-circular. In 
the event that four sites are co-circu lar, two  Voronoi Vertices 
are created, each of degree 𝟑𝟑  containing a “zero-edge” 
between them[1]. Intuit ively, 𝒏𝒏  co-circu lar sites should 
have a Voronoi vertex of degree 𝒏𝒏, so the zero-edges are 
often removed after the init ial computation[1]. 
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2.3. Voronoi Cell  

The Voronoi cell of a site  𝒑𝒑 ∈ 𝑷𝑷, denoted 𝑽𝑽𝑽𝑽(𝑷𝑷) is the 
intersection of half-planes bounded by each 𝑽𝑽𝑽𝑽(𝒑𝒑,𝒒𝒒) for 
every nearest neighbour 𝒒𝒒 ∈ 𝑷𝑷. Hence there are exactly 𝒏𝒏 
cells. Each cell is convex but not necessarily  bounded. In fact,  
𝑽𝑽𝑽𝑽(𝑷𝑷) is unbounded if and only if 𝒑𝒑 is on the boundary of 
the convex hu ll of 𝑷𝑷[1]. 

 
Figure 2.  Circumcircle for each of the three Voronoi Vertices. Each green 
point is equidistant to the centre of the given circle 

A remarkable feature of the 1st-order Voronoi Diagram is 
its locality. That is, if a  Voronoi Diagram of a point set is 
known, then the addition of new sites into the original set 
results only in a change of the Voronoi cell in which the new 
site is located, and possibly to its adjacent Voronoi cells. 

2.4. Delaunay Triangulation 

The dual of the Voronoi diagram is obtained by creating 
segments between every pair of point sites that share an 
edge[2]. The result is the Delaunay triangulation of the point 
set. The Delaunay triangulation has an enormous amount of 
applications, and in itself exemplifies the usefulness of the 
Voronoi Diagram. See Figure 3 for an illustration. 

Applying Euler’s formula, an upper bound for the number 
of vertices and edges in  the Voronoi Diagram can  be derived. 
However, the Voronoi Diagram contains unbounded cells, so 
Eu ler’s formula is not applicable initially, but the dual is 
necessarily fin ite, connected and planar. Let 𝒏𝒏, 𝒆𝒆, 𝒇𝒇 denote 
the number of vertices, edges, and faces of the Delaunay 
triangulation of a set of points 𝑷𝑷 . By Euler’s formula, 
𝒏𝒏 − 𝒆𝒆 + 𝒇𝒇 = 𝟐𝟐. Since every edge is incident to two vertices, 
and every vertex has a degree of 𝟑𝟑, the fo llowing inequality 
holds: 𝟐𝟐𝟐𝟐 ≥ 𝟑𝟑𝟑𝟑 . By rearranging and substituting the first 
equation into the above inequality, an upper bound on the 
number of edges and faces can be derived; hence, the 
Delaunay triangulation has 𝟑𝟑𝟑𝟑 −𝟔𝟔 edges (which  dualize to 
𝟑𝟑𝟑𝟑 −𝟔𝟔 Voronoi edges) and 𝟐𝟐𝟐𝟐 − 𝟒𝟒 faces (which dualize to  
at most 𝟐𝟐𝟐𝟐 − 𝟓𝟓 Voronoi Vert ices)[2]. 

 
Figure 3.  Obtaining the Delaunay triangulation from the Voronoi diagram 

2.5. Fortune’s Algorithm 
There are many  algorithms that compute the 1st-order 

Voronoi diagram. For instance, the given definition of 
Voronoi cell immediately  suggests that we can compute the 
Voronoi cell of each site by intersecting half-planes 
bounded by perpendicular bisectors of segments adjoining 
two sites. Without using more sophisticated techniques 
(such as divide-and-conquer) this computation can result in 
a time complexity of 𝑶𝑶(𝒏𝒏𝟐𝟐 𝐥𝐥𝐥𝐥𝐥𝐥𝒏𝒏)[3]. 

Fortune’s algorithm uses a sweep line to compute the 
Voronoi diagram of a point set in 𝑶𝑶(𝒏𝒏 𝐥𝐥𝐥𝐥𝐥𝐥 𝒏𝒏) time[1]. A 
vertical (or horizontal) line sweeps the plane and determines 
when events are encountered and calls upon the necessary 
event-handler. Three main features characterize the 
algorithm: the beach line, site events, and circle events. 

Recall that the locus of points equidistant to a point 𝒑𝒑 
and a line 𝒍𝒍 is a parabola with focus 𝒑𝒑 and directrix 𝒍𝒍 . 
Now let  𝒍𝒍 be the sweep-line. Upon intersecting a point site, 
a parabola is created using the definit ion above. Init ially  a 
parabola will have zero -width – it is just a ray perpendicular 
to  𝒍𝒍. While the sweep-line proceeds, the parabola becomes 
wider and will be intersected by other parabolas as more 
point sites are intersected by  𝒍𝒍 . The intersections of 
parabolas are called breakpoints and they trace the edges of 
the Voronoi d iagram. The union of these parabolic arcs 
truncated at breakpoints compose the beach line and is the 
invariant throughout this algorithm. That is at any given time 
during the plane sweep, the beach line is equidistant to the 
line  𝒍𝒍 and some point site(s) in  the swept portion of the 
plane. It is represented by a binary search tree that stores the 
breakpoints as internal nodes and parabolic arcs as leaf 
nodes[1]. 

Site events are detected as the sweep line intersects a new 
point site. Hence there are exact ly 𝒏𝒏 site events. A new arc 
appears on the beach line only through site events. 
Furthermore, each new parabolic arc results in the splitting 
of at most one arc into two. Thus the beach line will consist 
of at most 𝟐𝟐𝟐𝟐 −𝟏𝟏 arcs[1]. 
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Every  Voronoi vertex is determined by a circle event[1]. A 
circle event occurs when the sweep line intersects an empty 
circle circumscribing three point sites at a single point – 
hence the circle is fully contained within the swept portion of 
the plane and will remain empty throughout the remainder of 
the sweep. This moment of tangency of the empty 
circumcircle coincides with the elimination of an arc on the 
beach line. As the sweep line reaches a circle event, two 
consecutive breakpoints on the beach line converge to a 
single point, eliminating an  arc. The intersection of these 
breakpoints is the centre of the circumcircle and is a Voronoi 
vertex by definit ion[1]. 

 
Figure 4.  Fortune’s algorithm. The red sweep line is the directrix for each 
parabolic arc on the beach line. Each breakpoint has been highlighted in 
brown 

 
Figure 5.  Circle events are realized and disregarded through site events. 
Notice at this point during the sweep, there are two possible circle events 

On a set of 𝒏𝒏 ≥ 𝟑𝟑 non-collinear point sites, the beach line 
will contain triples of consecutive arcs[1] as illustrated in  
Figure 4. Each site event introduces a new parabolic arc to 
the beach line, which results in the formation of new triples 
of consecutive arcs and in some cases the elimination of 
previous triples. Each trip le defines a potential circle event, 
but some of these may be false alarms and will therefore not 
be handled. Indeed, if a site event results in the new parabola 
intersecting a triple in its middle arc that triple ceases to exist 
and moreover, the site is necessarily inside the circumcircle 

associated with the previously existing triple. It  fo llows that 
the number of circle events processed corresponds exactly to 
the number of Voronoi Vertices in the diagram, 𝟐𝟐𝟐𝟐 − 𝟓𝟓[1]. 
Figure 5 shows an instance during the plane sweep where 
two possible circle events are in the event queue. 

If we enclose the set of points in a bounding box, then the 
infinite Voronoi edges will intersect the edges of the box and 
therefore the Voronoi d iagram can be stored as a fin ite 
subdivision in a doubly connected edge list. Because each 
site defines exactly one Voronoi cell, Fortune’s Algorithm 
uses 𝑶𝑶(𝒏𝒏) storage[1]. 

3. Generalization of the Sites 
Representing physical objects as point sites is appropriate 

in a lot of different contexts (e.g. industries, institutions, 
schools over a large geographical area) and is very  good for 
locational analysis. But perhaps the question we are 
interested in has to do with motion planning, in which case 
the path that is equidistant to two barriers determines an 
object’s ability to maneuver around them. Physical objects 
can be approximated well by polygons and conics. To this 
end, the Voronoi diagram of line segments and circles will be 
examined. 

3.1. Line Segments 

The notion of mid-set changes in regards to the 
geometrical structure of the sites in the Voronoi d iagram. 
Up until now the mid-set between any two sites was a line 
segment, a ray, or a line. As sites within this model have 
endpoints and interiors, we now must consider the locus of 
points equidistant to a point and a line segment, to two 
points, and to a point and a line segment. These are 
obviously a parabola, perpendicular bisector, and angular 
bisector respectively. If two sites share an endpoint, then 
their mid-set can have area. Th is has implications not only 
in the computation of the Voronoi diagram but it’s storage 
as well and is avoided by perturbing two site’s common 
endpoints by a small amount. To this end, the Voronoi 
diagram of a set of non intersecting, disjoint line segments 
will be detailed 

From the above discussion on mid-sets, it  is clear that 
Voronoi edges are now comprised of line segments, 
parabolic arcs, and rays. Despite the change in topology, the 
fundamental nature of these edges remains the same; that is 
they are locally furthest away from exactly two 
neighbouring sites. One final important consideration is the 
locus of points equidistant to a site endpoint and its interior. 
This is realized by the line through the site’s endpoint that 
is perpendicular to its interior. Even though this line is not a 
Voronoi edge (as only one site is involved), it is crucial to 
the construction of the line segment Voronoi diagram[1]. 

Fortune’s Algorithm can be refined to handle disjoint line 
segments. Similar to the case for point-sites, it is required 
that no four line segments are tangent to a common empty 
circle. At any moment, the beach line must be equidistant to 



94 Tzvetalin S. Vassilev et al.:  Generalizations of the Voronoi Diagram  
 

 

the sweep line and the closest sites that have already been 
swept. Hence, the beach line will consist of parabolic arcs 
and line segments. The breakpoints between arcs and line 
segments can be classified as one of two  types: those 
associated with two sites and those associated with one[1]. 

If a  breakpoint is equidistant to two sites then it either 
traces a line segment (i.e. the mid-set of two site endpoints, 
or two site interiors) or a parabolic arc (i.e . the mid-set of a 
site endpoint and another site’s interior). In either case, the 
breakpoints trace a Voronoi edge[1]. 

The second type of breakpoints trace line segments but 
are not Voronoi edges as they are equidistant to exactly one 
site. These breakpoints either trace the mid-set of a site’s 
endpoint and interior (as discussed above) or is the result of 
the sweep line intersecting a site’s interior, in which case 
the breakpoints trace the site’s interior and is incident to the 
sweep line[1]. 

Site events occur when the sweep line intersects a site’s 
endpoints. At an upper endpoint, an arc on the beach line is 
intersected by a degenerate parabola and is split into two. 
As the sweep line intersects the site’s interior three 
breakpoints of the second type split the parabola into 4 arcs 
(as a result of the distinction between points equidistant 
from a site and its interior). Finally, when the sweep line 
reaches the lower endpoint of a site, the breakpoint that 
traced the sites interior is rep laced by two breakpoints 
(equidistant from the site’s lower endpoint and interior) 
containing a parabola between them[1]. 

Circle events are anticipated in the same way  they were 
for point-sites (i.e. the convergence of breakpoints) but 
come in two fo rms. Note that the breakpoints that trace a 
site’s interior are not involved in  circle events. If two 
breakpoints of the first type converge towards a single point 
then this point is the centre of the empty circle tangent to 
three sites. However if either of these breakpoints are o f the 
second type then their intersection is the centre of the empty 
circle tangent to a site at its endpoint. In this case the 
Voronoi vertex has degree 𝟐𝟐 and is incident to a parabolic 
arc and line segment[1]. 

Despite the slightly  more complicated edges of the 
Voronoi diagram, it can still be computed in 𝑶𝑶(𝒏𝒏 𝐥𝐥𝐥𝐥𝐥𝐥 𝒏𝒏) 
time and can be stored in a doubly connected edge list, using 
𝑶𝑶(𝒏𝒏) storage[1]. 

3.2. Circles 

Generalizing the Voronoi diagram to a set of circle sites 
can be done in the same way it was done for line segments: 
with carefu l consideration of the mid -set of the sites. To be 
thorough, we must consider circles of d ifferent radii that are 
allowed to intersect one another. The locus of points 
equidistant to two non-intersecting circles is a hyperbola 
defined by the two centres of the circles as foci with the 
difference between the distances from the hyperbola to each 
of the foci equal to the difference of the radii of the two 
circles. Hence if the radii are equal then the hyperbola is a 
line. Moreover, if all the circles in the set have equal rad ii 

and do not intersect, then the Voronoi diagram corresponds 
to the point-site instance of the set (where the centres of the 
circles are the sites)[4]. 

If two circles intersect at more than one point then the 
mid-set has two parts: the hyperbola as defined above, and an 
ellipse that passes through the intersection of both circles and 
is internal to each[4]. The points on each circle that are 
closest to the other’s centre determine the foci of the ellipse. 
The area bounded by the hyperbola splits the ellipse into two 
disjoint areas. The area that is internal to one circle is closest 
to the other. Thus Voronoi edges are comprised of lines, line 
segments, rays, as well as hyperbolic and elliptical arcs. 
Voronoi cells are no longer one-to-one with the number of 
sites, as intersecting circles may have mult iple Voronoi 
cells[4]. 

Fortune’s algorithm can  be modified to handle circu lar 
sites[4]. In  this model it is required that no four circles are 
tangent to a common empty circle and that no three circles 
intersect at a common point. From the above discussion it is 
clear that the beach line will consist of hyperbolic and 
elliptical arcs. Four types of events occur during the sweep: 
site events, cross events, merge events, and circle events. 
Site events occur when the sweep-line first intersects a circle 
at a single point. As the sweep-line proceeds, it will intersect 
the circle at two points. These intersection points will 
traverse the arcs of the circle and meet at  a single point, 
which defines a merge event. If the sweep-line intersects two 
circles at a common point, then the point of intersection 
defines a cross event. Each of these three events corresponds 
to new arcs appearing on the beach line. Much like the 
Voronoi d iagram of line segments, some breakpoints do not 
trace Voronoi edges (e.g., the breakpoints of an arc inside an 
empty circle), but all Voronoi edges are traced by 
breakpoints. As always, every Voronoi vertex is detected by 
a circle event and is the result of two breakpoints converging 
on the beach line. The point  of intersection of the breakpoints 
is the centre of an empty circle tangent to three circles[4]. 

4. Generalizations of the Metrics 
Voronoi diagrams have been generalized to a variety of 

different distance functions. The additively weighted 
distance function is a generalization of the Voronoi diagram 
of circles wherein site  points are assigned weights and the 
distance between two sites is a function of their Euclidean 
distance and weight. In fact the discussion given on Voronoi 
diagrams of Circles in Section 3.2 can be interpreted as the 
Voronoi diagram of a set of point sites 𝑷𝑷 where each 𝒑𝒑 ∈ 𝑷𝑷 
is assigned a weight 𝒘𝒘(𝒑𝒑), and the distance function used is 
𝑫𝑫(𝒙𝒙,𝒑𝒑) = |𝒅𝒅(𝒙𝒙,𝒑𝒑) − 𝒘𝒘(𝒑𝒑)|  where 𝒅𝒅(𝒙𝒙,𝒑𝒑)  is the 
Euclidean distance. Similarly, Voronoi diagrams on 
multip licat ively weighted distances have also been studied 
and have numerous applications[3].  

We know turn our attention to a set of the Laguerre 
distance functions 𝑳𝑳𝒏𝒏 = �𝒅𝒅(𝒙𝒙,𝒑𝒑)𝒏𝒏𝒏𝒏 [5]. From this definit ion 
it is clear that the Euclidean metric corresponds to the 
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Laguerre metric when 𝒏𝒏 = 𝟐𝟐. The focus of this section will 
be on the 𝑳𝑳𝟏𝟏  metric (more commonly known as the Taxicab 
or Manhattan metric) and the additively weighted 𝑳𝑳𝟐𝟐  metric 
known as the power distance, which generalizes the Voronoi 
diagram to h igher dimensions[5]. The main features and 
properties of the Voronoi diagram will be discussed; 
however, their computations are omitted. 

4.1. Taxicab Metric 
The taxicab metric is motivated by the layout of streets in 

an urban area, which tend to form an orthogonal grid. In this 
model the distance between two sites is taken to be the 
absolute difference of their coord inates. That is, if 𝒑𝒑 =
(𝒙𝒙𝟏𝟏,𝒚𝒚𝟏𝟏) and 𝒒𝒒 = (𝒙𝒙𝟐𝟐, 𝒚𝒚𝟐𝟐) are points in the Euclidean plane, 
then their taxicab distance is defined by 𝑳𝑳𝟏𝟏(𝒑𝒑 ,𝒒𝒒) = |𝒙𝒙𝟏𝟏 −
𝒙𝒙𝟐𝟐| + |𝒚𝒚𝟏𝟏 − 𝒚𝒚𝟐𝟐|[6].  

 
Figure 6.  Boundedness of Voronoi cells in the Taxicab metric. Red points 
are sites, blue lines are Voronoi edges, the shaded grey lines are the 
coordinate axes, and the black dotted lines through 𝑃𝑃  have slope of 
magnitude ±1. Notice each point 𝐴𝐴,𝐵𝐵,𝐶𝐶,𝐷𝐷  lie in different half planes 
bounded by the black dotted lines, and in the first  picture, the Voronoi cell of 
𝑃𝑃 is bounded. The second picture illustrates how the removal of any of 
𝐴𝐴,𝐵𝐵,𝐶𝐶, or, 𝐷𝐷 results in an unbounded Voronoi cell (with respect to the half 
plane that the removed point was formally in) 

One way to visualize the Voronoi diagram of point sites in 
the Euclidean metric is to grow circles of equal radii centered 
at each point site. The intersection of the circles will then 

trace out the edges of the Voronoi d iagram. This stems from 
the fact that locus of points of equal distance to a single point 
𝒑𝒑 lie on a circle centred at 𝒑𝒑. Th is same concept can be 
applied in the Taxicab metric wherein a circle is defined as a 
square that is rotated 𝟒𝟒𝟒𝟒° to the coordinate axis[6]. 

The mid-set of two point sites in the Taxicab Metric takes 
one of three forms[6]. Let 𝒑𝒑𝒑𝒑���� be the line segment between 
two site points in  the Euclidean plane. If 𝒑𝒑𝒑𝒑���� is parallel to the 
coordinate axis, then the mid-set corresponds to the 
Euclidean perpendicular b isector and is either a vertical or 
horizontal line. If the absolute value of the slope of 𝒑𝒑𝒑𝒑���� is 
less than 𝟏𝟏, then the mid-set has three parts: two vertical 
opposite rays connected by a line segment that is 𝟒𝟒𝟒𝟒° to the 
coordinate axes. Symmetrically, if the absolute value of the 
slope is greater than 𝟏𝟏 then the mid-set is composed of two 
horizontal vertical rays connected by a line segment that is 
𝟒𝟒𝟒𝟒° to the coordinate axes. Finally, if the slope of 𝒑𝒑𝒑𝒑���� is 
exactly 𝟏𝟏  then the mid-set contains two disjoint areas 
connected by a line segment that is 𝟒𝟒𝟒𝟒° to the coordinate 
axis. Hence most algorithms that compute the Voronoi 
diagram using the Taxicab distance require that the segment 
between any two sites cannot have a slope of 𝟏𝟏. This can be 
done by perturbing two sites in the same way it was done for 
line segments sharing an endpoint.  

It is clear that the Voronoi diagram in the Taxicab metric 
will consist of lines and line segments that are either parallel 
or at a  𝟒𝟒𝟒𝟒° angle to the coordinate axis. Voronoi Vertices 
are the centres of Taxicab circles passing through exactly 
three sites (assuming that no four sites lie on the same empty 
Taxicab circle).  

While the point sites on the convex hull have unbounded 
cells in the Taxicab metric, point sites inside the convex hull 
aren’t necessarily bounded. Consider a site 𝒑𝒑 and the lines 
through 𝒑𝒑 with slope −𝟏𝟏 and 𝟏𝟏. These lines subdivide the 
plane into 𝟒𝟒 open regions. By the definit ion given above of 
mid-sets, it is clear that the Voronoi cell of 𝒑𝒑 is unbounded 
if and only if at least one of the open regions described above 
contains no other site 𝒒𝒒 . Otherwise 𝑽𝑽𝑽𝑽(𝒑𝒑)  is bounded. 
Figure 6 illustrates this property. 

4.2. Power Diagrams and Laguerre Geometry 

The Power d iagram is a very important generalizat ion of 
the Voronoi diagram of circular sites. In  this model we 
consider point sites 𝒑𝒑 ∈ 𝑷𝑷  with additive weights 𝒘𝒘(𝒑𝒑) 
(also known as a site’s generating circle). The distance 
function used is 𝑷𝑷𝑷𝑷𝑷𝑷(𝒙𝒙,𝒑𝒑) = 𝒅𝒅(𝒙𝒙,𝒑𝒑)𝟐𝟐 − 𝒘𝒘(𝒑𝒑) . Hence 
each site can be interpreted as a sphere: 
𝒔𝒔 = {𝒙𝒙 ∈ 𝕽𝕽𝒎𝒎: 𝒅𝒅(𝒙𝒙 ,𝒑𝒑) = �𝒘𝒘(𝒑𝒑)}[5]. 
Voronoi edges and Vert ices are defined in  terms of two  

circle’s rad ical axis and their radical centres respectively. 
The radical axis is the points of equal power-distance from 
two circles, and the radical centre is the intersection of three 
radical axes. It  fo llows that the Voronoi cell of a  site 𝒑𝒑 is 
𝑽𝑽𝑽𝑽(𝒑𝒑) = {𝒙𝒙 ∈ 𝕽𝕽𝟐𝟐:𝑷𝑷𝑷𝑷𝑷𝑷(𝒙𝒙,𝒑𝒑) ≤ 𝑷𝑷𝑷𝑷𝑷𝑷(𝒙𝒙,𝒒𝒒) ∀𝒒𝒒 ∈ 𝑷𝑷/
{𝒑𝒑}} [5]. If every site has equal weight, then the Power 
diagram corresponds to the Voronoi diagram of the point set. 

What is particularly n ice about the Power diagram is the 
fact that sets of points of equal distance between sites are 
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linear. The radical axis of two sites 𝒑𝒑  and 𝒒𝒒  is  
perpendicular to the segment 𝒑𝒑𝒑𝒑���� but is different from the 
perpendicular bisector due to the additive weights. If two 
generating circles intersect at one or two points then the 
radical axis will pass through their intersection points. 

There are a variety of notable attributes of Voronoi cells in 
the Power diagram. While the convexity of Voronoi cells is 
maintained in the Power diagram, some cells may  be empty 
(as a result of a  site’s generating circle being contained 
within the union of other site’s generating circles). Sites that 
have non-empty Voronoi cells generate substantial circles, 
while those that do not, generate trivial circles. While sites 
that generate substantial circles are internal to their Voronoi 
cell, parts of their generating circle may be external (e.g. in 
the case that two generating circles intersect). Finally, a 
non-empty Voronoi cell 𝑽𝑽𝑽𝑽(𝒑𝒑) is bounded if and only if 𝒑𝒑 
is on the boundary of the convex hull of 𝑷𝑷 . While the 
computation of the Power diagram will not be discussed here, 
it should be noted that it’s time complexity  in two 
dimensions is 𝑶𝑶(𝒏𝒏𝐥𝐥𝐥𝐥𝐥𝐥 𝒏𝒏), and there exists algorithms for 
higher dimensions ( 𝒎𝒎 ≥ 𝟑𝟑 ) that can be computed in 
𝑶𝑶(𝒏𝒏⌈𝒎𝒎/𝟐𝟐⌉ )[5]. 

5. Conclusions 
The 1st-order Voronoi diagram of a point set generalizes 

naturally to a variety o f d ifferent structures. The 
generalizations outlined in this paper are by no means an 
exhaustive list, but nevertheless serve to develop a flavour of 
the questions one must consider when  generalizing the 
Voronoi diagram’s elementary properties to different 
structures. The questions that arise in  almost all cases have to 
deal with the definition of mid-set between two objects. It 
has been shown that the mid-set can easily  become quite 
complex and imposes restrictions on the set of sites we are 

interested in. Likewise, the computation and storage of 
Voronoi d iagrams can become quite cumbersome which  give 
rise to simplification of some models and approximations of 
the Voronoi d iagram. 
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