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Abstract  Historically, malaria disease mapping has involved the analysis of disease incidence using a prevalence 
responsible variable often available as aggregate counts over a geographical region subdivided by admin istrative 
boundaries (e.g., districts). Thereafter, commonly, univariate statistics and regression models have been generated from the 
data to determine covariates (e.g., rainfall) related to monthly prevalence rates. Specific district-level p revalence measures 
however, can be forecasted using autoregressive specifications and spatiotemporal data collections for targeting districts 
that have higher prevalence rates. In this research, initially, case, as counts, were used as a response variable in a Poisson 
probability model framework for quantifying datasets of district-level covariates (i.e., meteorological data, densities and 
distribution of health centers, etc.) sampled from 2006 to 2010 in Uganda. Results from both a Poisson and a negative 
binomial (i.e., a  Poisson random variable with  a gamma d istrusted mean) revealed  that the covariates rendered from the 
model were significant, but furnished virtually no predict ive power. Inclusion of indicator variables denoting the time 
sequence and the district location spatial structure was then articulated with Thiessen polygons which also failed to reveal 
mean ingful covariates. Thereafter, an Autoregressive Integrated Moving Average (ARIMA) model was constructed which 
revealed a conspicuous but not very prominent first-order temporal autoregressive structure in the individual d istrict-level 
time-series dependent data. A random effects term was then specified  using monthly time-series dependent data. This 
specification included a district-specific intercept term that was a random deviation from the overall intercept term which 
was based on a draw from a normal frequency distribution. The random effects specification revealed  a non-constant mean 
across the districts. This random intercept represented the combined effect of all omitted covariates that caused districts to 
be more prone to the malaria prevalence than other districts. Additionally, inclusion of a random intercept assumed random 
heterogeneity in the districts’ propensity or, underlying risk of malaria prevalence which persisted throughout the entire 
duration of the time sequence under study. This random effects term displayed no spatial autocorrelation, and failed to 
closely conform to a bell-shaped curve. The model’s variance, however, implied a substantial variab ility in the prevalence 
of malaria across districts. The estimated model contained considerable overdispersion (i.e., excess Poisson variability): 
quasi-likelihood scale = 76.565. The following equation was then employed to forecast the expected value of the 
prevalence of malaria at the district-level: prevalence = exp[-3.1876 + (random effect)i] . Compilation of additional and 
accurate data can allow continual updating of the random effects term estimates allowing research intervention teams to 
bolster the quality of the forecasts for future district-level malarial risk modelling efforts.  

Keywords  Poisson Variability, Prevalence, Random Effects, Malaria Autoregressive Integrated Moving Average, 
Autocorrelation 

 

1. Introduction 
 

* Corresponding author: 
bjacob1@health.usf.edu (Benjamin G. Jacob) 
Published online at http://journal.sapub.org/ajcam 
Copyright © 2013 Scientific & Academic Publishing. All Rights Reserved 

Ecological regression for malaria disease mapping 
mainly focuses on simulating estimation of risk in 
administrative reg ions which are commonly exp lo ited using 
Poisson specifications[1]. A discrete stochastic variable X  is 
said to have a Poisson distribution with parameter λ>0, if k 
= 0, 1, 2, while the probability mass function of X is 
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rendered by: 𝑓𝑓(𝑘𝑘;𝜆𝜆) = Pr(𝑋𝑋 = 𝑘𝑘) = 𝜆𝜆𝑘𝑘𝑒𝑒−𝜆𝜆

𝑘𝑘 !
 where e is 

the base of the natural logarithm (e  = 2.71828...) and k! is 
the factorial o f k[2]. The mode of a Poisson-distributed 
malaria-related sampled variable with a non-integer λ is 
then equal to ,, which in turn will represent the largest 
integer less than or equal to λ in  the model. This can also be 
written as floor (λ).The floor function ⌊𝑥𝑥⌋ then would be 
the greatest integer function or integer value generating the 
largest integer less than or equal to x. Commonly, the floor 
and ceiling functions then maps a field-sampled malarial- 
related covariate coefficient value to the largest previous or 
the smallest following integer, respectively, where floor(x) 
= ⌊𝑥𝑥⌋  and is the largest integer not greater than x and 
ceiling(x) = ⌈𝑥𝑥⌉is the smallest integer not less than x[1]. 
Since λ would be a positive integer in  a spatiotemporal 
sampled d istrict-level malaria regression-based model, for 
example, the modes would be λ and λ – 1. By so doing, all 
of the cumulants of the Poisson distribution in the malarial 
model would be equal to the expected value λ calculated at 
each sampled district-level location. 

Further, the exp lanatory predictor covariate coefficient of 
variation in a Poisson-specified malaria-related regression 
model would then be 𝜆𝜆−

1 2�  while the index o f dispersion 
would be 1. Thereafter, commonly, the mean deviation 
about the mean in the district-level malarial model would be 

expressed as  for determining 

statistical significance of the spatiotemporal sampled 
parameter estimators.  

On occasion the negative binomial distribution can be 
used as a substitute to the Poisson distribution especially in 
its alternative parameterizat ion state. This distribution may 
be especially  useful fo r t ime series-dependent malarial- 
related discrete data over an unbounded positive range 
whose sample variance exceeds the sample mean. In such 
cases, the observations would be overdispersed with respect 
to a Poisson distribution, for which traditionally, the mean 
is equal to the variance. Additionally, spatial statistics has 
recently provided new methodologies and solutions for 
invasive residual autoregressive uncertainty diagnostic 
analyses (e.g., derivation of eigenvalues of second order 
coupled with differential equations) employing 
spatiotemporal sampled malarial-related explanatory 
covariate coefficient estimates[1]. Recent advances in local 
spatial statistics have led to a growing interest in the 
detection of disease clusters or 'hot spots', for public health 
surveillance fo r improving d isease etiology and the 
pathogenesis of epidemics such as malaria. For example, 
Moran’s I is a global parameter for the measurement of 
autocorrelation, which can  be used to examine indiv idual 
seasonal-sampled  district-level geographical locations 
enabling “hotspots” to be identified based on comparison 
with neighbouring sampled district- level malarial-related 
data feature attributes. Moran's I is a measure of spatial 
autocorrelation which in seasonal malaria modelling is 
characterized  by a correlation in a signal among nearby 
sampled data locations in space[1]. Hot spot cluster 

analyses can be an effective methodology for defining 
elevated concentrations of an environmental phenomenon 
[2]. Among a few methods proposed for hotspot or spatial 
cluster identification is the Moran's I which is a measure of 
spatial autocorrelation. Spatial autocorrelat ion is the 
correlation among values of a single variable strict ly 
attributable to their relat ively close geographical locational 
positions on a two-dimensional surface, introducing a 
deviation from the independent observations assumption of 
classical statistics[3]. Often spatial autocorrelation used in 
mathematical spatiotemporal arthropod-born infectious 
disease analyses is characterized  by a correlat ion in a signal 
among nearby larval habitat locations in geographical space 
such as Getis’G index, spatial scan statistics, and Tango’s C 
index but, currently the local Moran’s I index is the most 
popular index[1]. 

In this research our assumption was that by calculating 
analytic derivatives with  line parameter restrictions and 
estimation of simultaneous systems using linear and 
non-linear regression-based algorithmic equations with 
distributed lags and time-series dependent error 
quantification processes, robust spatial forecasts of 
district-level malaria-related prevalence rates could be 
generated. Thereafter, by analysing and identifying the 
spatiotemporal sampled covariate coefficient estimates as 
delineated by our model residuals, we assumed we could 
elucidate mechanisms for accurately pred icting underlying 
district-level geographic locations of higher prevalence 
rates (e.g., higher monthly precipitation values, h igher 
urban populations). Mathematical malarial regression 
models should focus on treatment based on surveillance of 
the most productive areas of an ecosystem[4]. 

Another assumption in  this research was that we could 
use the mathematically predicted prevalence rates from the 
linear and spatial autoregressive risk distribution model 
outputs for implementing cost-effective larval control 
measures throughout Uganda. For example, in theory, 
georeferenced explanatory covariate coefficients rendered 
from a stochastic robust interpolator could predicatively 
map, d istrict-level regions that have higher prevalence rates 
for targeting areas and/or feature data attributes that 
contribute to areas of greater rates. Since the devastating 
situation of malaria in  Uganda can be exp lained to  a large e 
xtent by the mounting drug-resistance problem and the lack 
of a vaccine[4], an integrated mathematical-based 
predictive map targeting geographic locations may reveal 
sound understanding of district-level malarial transmission 
dynamics especially in highly populated urban regions. The 
importance of this work may  also be expressed in 
mathematical literature regard ing representations of 
geographic space. Therefore, the objectives of this research 
were to: (1) construct a robust Poisson regression model 
framework using multiple field and remote-sampled 
predictor variab les; (2) generate a spatial autoregressive- 
oriented error matrix using the estimators; 3) filter all latent 
autocorrelation parameters in the residual variance 
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employing an eigenfunction decomposition algorithm to 
accurately forecast district-level malarial rates by 
eliminating the effect of variab les' uncertainties(e.g., perfect 
multicollinearity) in multip le spatiotemporal empirical 
ecological datasets of district-level t ime-series dependent 
georeferenced explanatory covariate coefficients seasonally 
- sampled from 2006 to 2010 in Uganda. 

2. Materials and Methodology  
2.1. Study Site 

Uganda is a  landlocked country in  East Africa. The 
country is located on the East African plateau, lying mostly 
between latitudes 4°N and 2°S (a small area is north of 4°), 
and longitudes 29° and 35°E. It averages about 1,100 
meters (3,609 ft.) above sea level, and this slopes very 
steadily downwards to the Sudanese Plain to the north. 
However, much  of the south is poorly drained, while the 
center is dominated by Lake Kyoga, which is also 
surrounded by extensive marshy areas. In many 
hyperendemic areas, malaria p revalence in communities is 
maximum in  areas bordering on marshes where rates can 
range from 1% to 15% according to age and season of the 
year[4]. 

Although generally equatorial, the climate is not uniform 
as the altitude modifies the climate. Southern Uganda is 
wetter with  rain generally  spread throughout the year. At 
Entebbe on the northern shore of Lake Victoria, most rain 
falls from March to June and in the November/December 
period. Further to the north a dry  season gradually emerges, 
for example, at Gulu about 120 km from the South 
Sudanese border where November to February is much 
drier than the rest of the year.  

Uganda is divided into districts spread across four 
administrative regions: Northern, Eastern, Central (i.e., 
Kingdom of Buganda) and Western. The districts are 
subdivided into counties. A number of d istricts have been 
added in the past few years, and eight others were added on 
July1, 2006 plus others were added throughout 2010. There 
are presently over 100 d istricts. Most districts are named 
after their main  commercial and admin istrative towns. Each 
district is divided into sub-districts, counties, sub-counties, 
parishes and villages. See Figure 1 for district -level 
administrative divisions in Uganda. 

2.2. Environmental Parameters 

Initially, the data analysis explored covariation between 
prevalence1[i.e., (adjusted cases)/population, which in this 
research was not the same as the reported number of 
probable and confirmed cases], variable Y, and the 
following variables: annual—population density, density of 
clin ics, and density of water bodies; monthly—humid ity, 
rainfall and vegetation indices. 

                                                                 
1 Adjusted cases were calcul ated by rounding off prevalence*population to 
obtain integer counts. 

 
Figure 1.  Administrative Boundaries: of districts in Uganda 

2.3. Regression Model  

We then constructed a Poisson model in  SAS GEN MOD.  
The Poisson process in our analyses was provided by the 
limit of a b inomial distribution of the sampled district-level 
explanatory predictor covariate coefficient estimates using  

(2.1).  

We viewed the distribution as a function of the expected 
number of count variables using the sample size N for 
quantifying the fixed  p in  equation (2.1), which was then 
transformed into the linear 

equation: 𝑃𝑃𝑣𝑣
𝑁𝑁

(�𝑛𝑛|𝑁𝑁) = 𝑁𝑁!
𝑛𝑛!(𝑁𝑁−𝑛𝑛)!

�𝑣𝑣
𝑁𝑁
�
𝑛𝑛
�1 − 𝑣𝑣

𝑁𝑁
�
𝑁𝑁−𝑛𝑛

.Based on 

the sample size  N, the distribution approached 𝑃𝑃𝑣𝑣 (𝑛𝑛) was 
lim𝑛𝑛→∞ 𝑃𝑃𝑝𝑝 (�𝑛𝑛|𝑁𝑁) = lim𝑁𝑁→∞

𝑁𝑁(𝑁𝑁−1)⋯(𝑁𝑁−𝑛𝑛+1)

𝑛𝑛!
𝑣𝑣𝑛𝑛

𝑁𝑁𝑛𝑛  �1 −
𝑣𝑣𝑁𝑁𝑁𝑁(1−𝑣𝑣𝑁𝑁)−𝑛𝑛=lim𝑁𝑁→∞𝑁𝑁𝑁𝑁−1⋯𝑁𝑁−𝑛𝑛+1𝑁𝑁𝑛𝑛𝑣𝑣𝑛𝑛𝑛𝑛!1−𝑣𝑣𝑁𝑁
𝑁𝑁(1−𝑣𝑣𝑁𝑁)−𝑛𝑛=1∙𝑉𝑉𝑛𝑛𝑛𝑛!∙𝑒𝑒−𝑣𝑣∙1=𝑣𝑣𝑛𝑛𝑒𝑒−𝑣𝑣𝑛𝑛!. 

The GENMOD procedure then fit a generalized linear 
model (GLM) to the sampled data by maximum likelihood 
estimation of the parameter vector β. In this research the 
GENMOD procedure estimated the seasonal-sampled 
parameters of each district-level malaria model numerically 
through an iterative fitting process. The dispersion 
parameter was then estimated by the residual deviance and 
by Pearson’s chi-square divided by the degrees of freedom 
(d.f.). Covariances, standard errors, and p-values were then 
computed for the sampled covariate coefficients based on 
the asymptotic normality derived from the maximum 
likelihood estimat ion. 

Note, that the sample size N completely dropped out of 
the probability function, which in this research had the same 
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functional form for all the sampled d istrict-level parameter 
estimator indicator values (i.e .,  𝑣𝑣  ). As expected, the 
Poisson distribution was normalized so that the sum of 
probabilit ies equaled 1. The ratio  of probabilities was then 
determined by    ∑ 𝑃𝑃𝑣𝑣∞

𝑛𝑛=0 (𝑛𝑛) = 𝑒𝑒−𝑣𝑣 ∑ 𝑣𝑣𝑛𝑛

𝑛𝑛 !
∞
𝑛𝑛 =0 = 𝑒𝑒−𝑣𝑣𝑒𝑒𝑣𝑣 =

1which was then subsequently expressed as .
𝑃𝑃𝑣𝑣(𝑛𝑛=𝑖𝑖+1)
𝑃𝑃(𝑛𝑛=𝑖𝑖)

=
𝑣𝑣𝑖𝑖+1𝑒𝑒−𝑣𝑣

(𝑖𝑖+1)!
𝑒𝑒−𝑣𝑣𝑉𝑉 𝑖𝑖

𝑖𝑖 !

= 𝑣𝑣
𝑖𝑖+1

. 

The Poisson distribution revealed that the explanatory covariate coefficients reached a maximum when 

 where  was the Euler-Mascheroni constant and  was a harmonic number, 
leading to the transcendental equation . The regression model also revealed that the Euler-Mascheroni 
constant arose in the integrals as  

1

0 0 0 0

1 1 1 1 1
ln lnln

1 1
x x x

x
e xdx dx e dx e dx

x e x x x
γ

∞ ∞ ∞− − −

−
= − = − = − = −

− +
     
     
     ∫ ∫ ∫ ∫     (2 .2). 

 Commonly, integrals that render  in combination with temporal sampled constants include

( )
0

2 1
ln 2 ln 2

4
xe xdx π γ

∞ − = − −∫
 
which is equal to ( )2 2 2

0

1
ln

6
xe x dx γ π

∞ − = +∫  [2]. Thereafter, the double integrals 

in our district-level seasonal malaria regression model included 
( ) ( )

1 1

0 0

1

1 ln

x
dxdy

xy xy
γ

−
=

−∫ ∫ .  

An interesting analog of equation (2.2) in the regression-based model was then calculated as 

( ) ( ) ( )
1 11

0 01

4 1 1 1ln 1 ln 0.241564...
1 ln

n

n

n x dxdy
n n xy xy

γ
π

∞
−

=

+ −   = − − = =    +   
∑ ∫ ∫ . Th is solution was also provided 

by incorporating Mertens theorem[i.e.,

 

1
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n
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i

e
p

p

γ

→∞ =
=

−
∏ ] where the product was aggregated over the 

district-level sampled values found in  the empirical eco logical datasets. IMertens' 3rd  theorem: 
1

limln 1
n

p n

n e
p

γ−

→∞
≤

− =
 
 
 

∏  

is related to the density of prime numbers where γ  is the Eu ler–Mascheroni constant[5].By taking  the logarithm of both 

sides in the model, an explicit formula fo r γ was then derived employing 
1

lim ln lnln
1

1
x

p x

x

p

γ
→∞

≤

= −
−

  
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      

∑ . This 

expression was also rendered coincidently  by quantifying the data series employing Euler, and equation (2.2) by first 

replacing ln ln( 1)bn n + , in the equation 
1

1 1ln 1
k k k

γ
∞

=

  = − +    
∑  and then generating 

( )[ ] 1
lim ln 1 ln limln 1 0
n n

n n
n→∞ →∞

+ − = + = 
 
 

.We then substituted the telescoping sum 
1

1ln 1
n

k k=

 + 
 

∑  for ln( 1)n + which 

then generated . Thereafter, our product was

1 11

1 1 1 1lim ln 1 lim ln 1
n n n

n nk k kk k k kγ
→∞ →∞= = =

      − + = − +            
∑ ∑ ∑  . 

Additionally, other series in our spatiotemporal district-level regression model included the equation (◇) where

( ) ( ) ( ) ( )
( )

1

2 1

1 141 ln
2 1

n
n

n
n n

n n
n n

ζ ζ
γ

π

−∞ ∞
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 

− +
= − = +

+∑ ∑  and  was ( ) [ ]
1

lg
1 n

n

n
n

γ
∞

=
= −∑  plus the Riemann 

zeta function. The Riemann zeta function ζ(s) is a function of a complex variables that analytically continues the sum of the 
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infinite series 
1

1
s

n n

∞

=
∑  which converges when the real part of s is greater than 1 where lg is the logarithm to base 2 and the  

⌊𝑥𝑥⌋  is the floor function[2]. Nielsen[5] earlier p rovided a series equivalent to ( )( )
1

1

2

1 2
1

2 1 2 2

n

nn k
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k k

γ
∞ −

−= =
= −

+ +
∑ ∑  and, 

thereafter 
( )( )

1 1 1

2 1 2 2 2 1 2 2k k k k
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+ + + +
 which was then added to 

1 1 1 1
0 ...

2 4 8 16
= − + + + +  to render Vacca's 

formula. Gosper et al.[6] used the sums
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∑ ∑ ∑ ∑  with  𝑘𝑘 − 𝑗𝑗  by replacing the 

undefined I and then rewrote the equation as a double series for applying the Euler's series transformation to each of the 
sampled time-series dependent exp lanatory covariate coefficient estimates. 

In this research 
𝑛𝑛
𝑘𝑘  was used as a binomial coefficient, rearranged to achieve the conditionally convergent series in our 

spatiotemporal d istrict-level linear model.  The plus and minus terms were first grouped in pairs of the sampled covariate 
coefficient estimates employing the resulting series based on the actual observational covariate coefficient  indicator 

values. The double series was thereby equivalent to Catalan's integral: ∫ ∑
∞

=

−

+
=

1

0
1

12

1
1

n
dxx

x
n

γ . Catalan's integrals are a 

special case of general formulas due t ( ) ( )2 2
0

cos

0

1
cos sinyJ z y z de

π θ

π
θ θ− = ∫  where ( )0J z  is a Bessel function 

of the first kind[3]. The Bessel function is a function ( )nZ x  defined in a robust regression model by using the recurrence 

relations 1 1

2
n n n

n
Z Z Z

x+ −+ =  and 1 1 2 n
n n

dZ
Z Z

dx+ −− = −  [2] which  more recently has been defined as solutions in 

linear models using the differential equation [6]. 

In this research the Bessel function ( )nJ z  was defined by the contour integral  

where the contour enclosed the origin and was traversed in a counter-clockwise direction. This function generated: 

( ) ( ) ( )[ ]0
1 cos

0

1
2 cos 1 sinzJ i z z de

π θ θ θ
π

+= −∫  1z z′≡ − and 1y z′≡ + . In mathematics, Bessel functions are 

canonical solutions y(x) of Bessel's differential equation:  for an arbitrary real or 

complex number α (i.e., the order of the Bessel function); the most common and important cases are for α an integer or 
half-integer[2]. Thereafter, to quantify the equivalence in the spatiotemporal malarial regression-based parameter 
estimators, we expanded ( )1 1 x+  in a geometric series and multip lied the district-level sampled data feature attributes by

2 1n

x − , and integrated the term wise as in  Sondow and Zudilin[6].Other series for  then included
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∑ ∑ A rapidly  converging 

limit for  was then provided by 
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∑ ∑  where  𝐵𝐵𝑘𝑘  was a Bernoulli 

number. Another limit formula was then provided by the equation 
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. In mathematics, the 

Bernoulli numbers Bn are a sequence of rat ional numbers with deep connections to number theory, whereby, values of the 
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first few Bernoulli numbers are B0 = 1, B1 = ±1⁄2, B2 = 1⁄6, B3 = 0, B4 = −1⁄30, B5 = 0, B6 = 1⁄42, B7 = 0, B8 = −1⁄30[2]. 
Jacob et al.[1] found if m and n are sampled values  and f(x) is a smooth sufficiently differentiable function in a seasonal 
malarial-related regression model which is defined for all the values of x in  the interval , then the integral 

 can be approximated by the sum (or v ice versa) . The 

Euler–Maclaurin formula then provided expressions for the d ifference between  the sum and the integral in terms  of the higher 
derivatives ƒ(k) at the end points of the interval m and n. The Euler–Maclaurin formula provides a powerfu l connection 
between integrals and sums which can be used to approximate integrals by finite sums, or conversely to evaluate finite sums 
and infinite series using integrals and the machinery of calculus[5]. Thereafter, for the district-level malarial-sampled values, 

p, we had  where B1 = −1/2, B2 = 1/6, B3 = 0, B4 = −1/30, B5 = 0, B6 = 1/42, 

B7 = 0, B8 = −1/30, and R which was an error term. Note in this research . Hence, we 
re-wrote the regression-based formula as follows:

 We then rewrote the 

equation more elegantly as  with the convention of 

  (i.e. the -1th derivation of f is the integral of the function). Limits to the district-level malaria 

regression model was then rendered by ( )( ) 4
2 1

3
lim

x
x

x
zγ ζ ζ

→∞
= − + + 

 
 

 where ( )zζ  was the Riemann zeta 

function. The Bernoulli numbers appear in the Tay lor series expansions of the tangent and hyperbolic tangent functions, in 
formulas for the sum of powers of the first positive integers, in the Eu ler–Maclaurin formula and in expressions for certain 
values of the Riemann zeta function[2]. 

Another connection with the primes was provided by ( ) ( )0d n nσ=  for the sampled district-level numerical values 
from 1 to 𝑛𝑛 in the spatiotemporal sampled malarial dataset which in this research was found to be asymptotic to

( )
1 ~ ln 2 1

n

k d k
n

n
γ= + −

∑ . De laValléePoussin[7] proved that if a large number n  is div ided by all primes≤ 𝑛𝑛, then the 

average amount by which the quotient is less than the next whole number is g[2]. An identity for g in our malaria 

district-level regression-based model was then provided by 
( ) ( )

( )
0 0

0

1
ln

2

S z K z
z

I z
γ

−
= −  

 
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 where ( )0I z  was a 

modified Bessel function of the first kind, ( )0K z  was a modified Bessel function of the second kind, and 
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 
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 ∑  where nH  was a harmonic number. For non-integer α, Yα(x) is related to Jα(x) by :

In the case of integer order n, the function is defined by taking the limit as a non-integer α 

tends to n: [2]. In this research, the Bessel functions of the second kind, were denoted by Yα(x), and by 
Nα(x), which were actually solutions of the Bessel differential equation employing a singularity at the origin (x = 0).Th is 

provided an efficient iterative algorithm for g by computing 
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and 1k k kV V B−= +  with 0 0 0 0ln 1A nB U A= − = =   and 0 1V =  Reformulating this identity rendered the limit 
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∑

 Infinite products involving g also arose from the Barnes G-function using the positive 

integer n. In mathematics, the Barnes G-function G(z) is a function that is an extension of superfactorials to the complex 
numbers which is related to the Gamma function[3]. In this research, this function provided 
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∏ .The Barnes G-function was then 

linearly defined in our time-series dependent district-level malarial regression-based model which then generated 
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1
1 2 exp 1 2 1 exp 2

n
z

n

z
G z z z z z z n

n
π γ

∞

=
+ = − + + × + − +

  
  
  

∏ where γ was the Euler–Mascheroni 

constant, exp(x) = ex, and ∏ was capital pi notation. The Euler-Mascheroni constant was then rendered by the expressions 

( ) ( )01 1γ ψ′= −Γ = −  where ( )0 xψ  was the digamma function ( )
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 and the asymmetric limit 
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. In mathemat ics, the digamma function is defined as the 

logarithmic derivative of the gamma function: ( ) ( ) ( )
( )

ln
xd

x x
dx x

ψ
′Γ

= Γ =
Γ

 where it is the first of the polygamma 

functions. In our model the digamma function, ψ0(x) was then related to the harmonic numbers in that ( ) 1nn Hψ γ−= −  
where Hn was the nth harmonic number, and γ was the Eu ler-Mascheroni constant. In mathemat ics, the n-th harmonic 
number is the sum of the reciprocals of the first n natural numbers[2].The d ifference between the nth convergent in equation 

(◇) and  in  our district-level regression-based model was then calculated by 2
1

1
ln

n

n
k
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k x
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∞

=

−
− − =∑ ∫  where 

⌊𝑥𝑥⌋was the floor function which satisfied the inequality 2
1

1
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k x
γ

∞
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−
− − =∑ ∫  . The symbol g was then  

1.781072eγγ ′ ≡ ≈ . This led to the radical representation of the sampled district-level covariate coefficients as 
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 which was related to the double series 
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 a binomial coefficient. 

Thereafter, another proof of product in the our spatiotemporal district-level malarial regression model was provided by 

the equation 
1 4 1 8 1 161 2 2 3 4 4

3 6

2 2 2 4 2 4

2 1 1 3 1 3 1 3 5
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.The solution was then made even clearer by changing

1n n→ + . In  this research, both these regression-based formulas were also analogous to the product for 𝑒𝑒 which  was then 

rendered by calculating 
1 2 1 3 1 41 1 2 3 4 4
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e
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. 

2.4. Negative Binomial  Regression 

Unfortunately, extra-Poisson variation was detected in the variance estimates in our model. A modificat ion of the iterated 
re-weighted least square scheme and/or a negative binomial non-homogenous regression-based framework conveniently 
accommodates extra-Poisson variation when constructing seasonal log-linear models employing frequencies or prevalence 
rates as dependent response variables[2].Operationally these models consists of making iterated weighted least square fit to 
approximately normally distributed dependent malarial-related exp lanatory predictor covariate coefficients based on 
observed rates or their logarithm. Unfortunately, the variance of malarial-related observations in log-linear equations are 
commonly  assumed to be constant[1].Subsequently, introducing an extra-binomial variation scheme in  a malarial-related 
linear-logistic model can be fitted for a Poisson procedure. The probabilities describing the possible outcome of a single trial 
are modeled, as a function of exp lanatory predictor variables, using a logistic function[2]. 

As such, we constructed a robust negative binomial regression model in SAS with non-homogenous means and a gamma 

distribution by incorporating ( )1
0α α

θ
= >  in  equation (2.1) . We let be the probability density function of  in 

the model. Then, the distribution  was no longer conditional on  . Instead it was obtained by integrating 
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with  respect to : . The distribution in the linear district-level malaria 

regression model was then ( ) ( )
( ) .2,1,0,

! 11

1

1

1
1

=







+








+Γ

+Γ
= −−

−

−

−
−

i

y

i

i

ii

i
ii y

y
yxyf

i

µα
µ

µα
α

α
α

α

. The negative binomial 

distribution was thus derived as a gamma mixture of Poisson random variables. The conditional mean in the model was 
then ( )| i

i i i
xE y x e βµ ′= =  and the variance in the residual estimates was. 

( ) [ ] ( )1
| 1 1 |i i i i i i i iV y x E y xµ µ µ αµ

θ
= + = + > 

  
 To further estimate the d istrict-level models, we specified 

DIST=NEGBIN (p=1) in  the MODEL statement in PROC REG. The negative binomial model NEGBIN1 was set p=1 , 
which revealed the variance function ( )|i i i iV y x µ αµ= +  was linear in the mean of the model. The log-likelihood 

function of the NEGBIN1 model was then provided by L= ( )( )

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ixj βα  Additionally, the equation 
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iiii yxyy ++′+−− −  was generated. The gradient for our spatiotemporal 

malarial-based regression model was then quantified employing ( ) ( )∑ ∑
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In this research, the negative binomial regression model with variance function , was then referred to 

as the NEGBIN2 model. To estimate this regression-based model, we specified DIST=NEGBIN (p=2) in the MODEL 

statements. A test of the Poisson distribution was then performed by examining the hypothesis that . A Wald 

test of this hypothesis was also provided which were the reported t statistics for the estimates in the model. Under the Wald 
statistical test, the maximum likelihood estimate  of the parameter(s) of interest is compared with the proposed value 

, with the assumption that the difference between the two will be approximately normally d istributed[2]. The 
log-likelihood function of the regression models (i.e ., NEGBIN2) was then generated by the equation: 

 whose gradient was

1 1

N
i i

i
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µδ
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−
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. The variance in our model was then assessed by 
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∑ ∑
. The final mean in the  model was calculated as: , 

the mode as; , the variance as , the skewess as , the kurtosis as , the 

moment generating function as , the characteristic function as  ;and, the 

probability generating function as .  

01
==

iθ
α
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2.5. Autocorrelation Model  
A spatial autoregressive model was then generated that 

used a variable Y, as a function of nearby sampled 
district–level covariate coefficients. In this research, Y had 
an indicator value 1 (i.e., an autoregressive response) and/or 
the residuals of Y which were values of nearby sampled Y 
residuals (i.e., an SAR or spatial error specification). For 
time series-dependent modelling malaria-related parameter 
estimators, the SAR model fu rnishes an alternative 
specification that frequently is written in terms of matrix 
W[1]. A misspecification perspective was then used for 
performing a spatial autocorrelation uncertainty estimation 
analyses using the sampled district-level covariates. The 
model was built using the *y X β ε= +  (i.e. regression 
equation) assuming the sampled data had autocorrelated 
disturbances. The model also assumed that the sampled data 
could be decomposed into a white-noise component, , and 
a set of unspecified sub-district level malarial regression 
models that had the structure 



*

y X E
ε

β γ ε
=

= + + . Jacob et 

al.[1] found that white noise in a seasonal malaria-based 
regression model is a univariate or mult ivariate discrete-time 
stochastic process whose terms are independent and 
independent (i.i.d) with a zero mean. In this research, the 
misspecification term was  𝐸𝐸𝛾𝛾 . 

3. Results 
Initially, we constructed a Poisson regression model using 

the spatiotemporal seasonal-sampled district -level covariate 
coefficient measurement values. Our model was generalized 
by introducing an unobserved heterogeneity term for each 
sampled district-level observation . The weights were then 
assumed to differ randomly in a manner that was not fully 
accounted for by the other seasonal-sampled covariates. In 
this research this district-level process was formulated as

 where the unobserved 

heterogeneity term i
i eετ =  was independent of the 

vector of regressors𝑥𝑥𝑖𝑖 . Then the distribution of 𝑦𝑦𝑖𝑖  was 
conditional on 𝑥𝑥𝑖𝑖  and had a Po isson specification with 
conditional mean and conditional variance 

( ) ( )( )exp
: | ,

!

iy

i i i i
i i i i i

i

f y x
y

µτ µτ
µ τ τ

−
= .We then let 

( )ig τ  be the probability density function of . Then, the 
distribution  was no longer conditional on  

Instead it was obtained by integrating with 

respect to ( )ig τ : ( ) ( ) ( )
0

| | ,i i i i i i if y x f y x g dτ τ τ
∞

= ∫ . 

We found that an analytical solution to this integral existed 
in our district-level malaria model when  was assumed 
to follow a gamma distribution. The model also revealed that 

, was the vector of the sampled predictor covariate 
coefficients while  𝑥𝑥𝑖𝑖, was independently Poisson distributed 

with ( )| , 0,1, 2,...
!

i iy
i

i i i i
i

e
P Y y x y

y

µ µ−

= = =  and the 

mean parameter — that is, the mean number of district -level 
sampling events per spatiotemporal period — was given by 

( )expi ixµ β′=  where  was a  parameter vector. 

The intercept in the model was then  and the coefficients 

for the regressors were . Taking the exponential 
of ensured that the mean parameter  was 
nonnegative. Thereafter, the conditional mean  was provided 
by . 

The district-level parameter estimators were then 
evaluated using ( )[ ] ( )ln | lni i i iE y x xµ β′= = . Note, that 
the conditional variance of the count random variable was 
equal to the conditional mean (i.e., equid ispersion) in our 
model[i.e., ,  ]. In a log-linear 
model the logarithm of the conditional mean is linear[2]. The 
marg inal effect of any district-level regressor in the malarial 
model was then provided by 

( ) ( ) ( )|
exp |i i

i j i i j
ji

E y x
x E y x

x
δ

β β β
δ

′= = . Thus, a  

one-unit change in the 𝑗𝑗th regressor in the model led to a 
proportional change in the conditional mean  of

 .  
In this research, the standard estimator fo r our Poisson 

model was the maximum likelihood estimator. Since the 
district-level observations were independent, the 
log-likelihood function in the model was then:

 
. 

Given the sampled dataset of district-level parameter 
estimators (i.e., θ ) and an input vector x, the mean of the 
predicted Poisson distribution was then provided by

. By so doing, the Poisson distribution's 
probability mass function was then rendered by

 The probability mass 

function in a targeted spatiotemporal pred ictive seasonal 
malaria risk model can be the primary means for defining a 
discrete probability  distribution, and, as such, functions 
could  exist for either scalar or mult ivariate field-sampled 
random variab les, given that the d istribution is discrete.[1] 
Gu and Novak[4] found that a targeted spatiotemporal 
predictive seasonal malaria risk model is vital for d istrict 
level larval control interventions. 

Since in this research, the sampled data consisted of m 
vectors 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖ℝ𝑛𝑛+1, 𝑖𝑖 = 1, … ,𝑚𝑚 , along with a set of m values 
𝑦𝑦1 , … , 𝑦𝑦2 ∈ ℝ then, for the sampled parameter estimators θ, 
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the probability of attaining this part icular set of the sampled 
observations was provided by the equation 

( )
( )

1 1
1

, ..., | , ..., ;
!

i i i

m m

y x e xm

ii
p y y x x

e e
y

θθ

θ
′′ −

=
=∏  .Consequently, 

we found the set of θ that made this probability as large as 
possible in the model estimates. To do this, the equation was 
first rewritten as a likelihood function in terms of θ: 
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=∏  .Note the 

expression on the right hand side in our model had not 
actually changed. Next, we used a log-likelihood[i.e.,
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]. 

Because the logarithm is a monotonically  increasing 
function, the logarithm of a function achieves its maximum 
value at the same points as the function itself, and, hence, 
the log-likelihood can be used in place of the likelihood in 
maximum likelihood estimation and related techniques[2]. 
Finding the maximum of a function in a malarial-related 
model often involves taking the derivative of a function and 
solving for the parameter estimator being maximized, and 
this is often easier when the function being maximized is a 
log-likelihood rather than the original likelihood function 
[1]. 

Notice that the parameters θ only appeared in the first two 
terms of each term in the summat ion. Therefore, given that 
we were only interested in finding the best value for θ in the 
district-level pred ictive malarial-related regression model we 
dropped the yi! and simply wrote 
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. Thereafter, to find a 

maximum, we solved an equation 
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∂
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 which 

had no closed-form solution. However, the negative 
log-likelihood (LL)[i.e.,

 ( )| ,X Yθ− ] was a convex 
function, and so standard convex optimization  was applied to 
find the optimal value of θ . 

We found that given the Poisson process in our regression 
model the limit of a binomial distribution was 
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. Viewing the 

distribution as a function of the expected number of 
successes[i.e., ] in the model, instead of the sample 
size N for fixed 𝑃𝑃, then rendered the equation (2.1) which 
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Our model revealed that as the sample size  𝑁𝑁become larger, 
the distribution approached P when the following equations 
aligned
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. Note, in this research, that the 

sample size N had completely dropped out of the probability 
function, which had the same functional form for all values 
of  in the model.  

Thereafter, as expected, the Poisson regression 
distribution was normalized so that the sum of probabilities 

was equal to 1, since ( )
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ratio of probabilit ies was then provided by the equation 
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. Our model revealed that 

the Poisson distribution reached a maximum when
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= =  where g was the 

Eu ler-Mascheroni constant and  was a harmonic 
number, leading to the equation  which 
could not be solved exactly for n. 

Next, the moment-generating function of the Poisson 

distribution was given by M =  ,M=

 and M= , 

when ,  so . The 

raw moments  were also computed directly by summat ion, 
which yielded an unexpected connection with the 
exponential polynomial  and Stirling numbers of the 

second kind[i.e.
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which in this research was the  Dobiński's formula. 
In combinatorial mathemat ics, Dobinski’s formula states 

that the number of partitions of a set of n members is 

0
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k

k
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∞

=
∑

 
This number has come to be called the nth Bell 

numberBn, where the proof is rendered as an adaptation to 
probabilistic language as given by Rota[11]. In  our 
malarial-based regression model the formula 
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∑ ∑ . The expression given by 

the model’s Dobinski's formula was then revealed as the nth 
moment of the Poisson distribution with expected value 1. In 
this research, Dobinski's formula was the number of 
partitions of a set of the sampled malarial parameter 
estimator size (i.e.,n) which equalled the nth moment of that 
distribution. We used the Pochhammer symbol (x)n to denote 
the falling factorial ( ) ( )( ) ( )1 2 ... 1

n
x x x x x n= − − − + . 

If x and n are nonnegative integers, 0 ≤ n ≤ x, then (x)n is the 
number of one-to-one functions that map a size-n set into a 
size-x set[1]. At this junction we let ƒ be any function from a 
size-n set A into a size-x set B.  Thus, in the model. u ∈ 
B .We then let ƒ−1(u) = {v ∈ A : ƒ(v) = u}. Then {ƒ−1(u) : u ∈ 
B} was a partit ion of A. Th is equivalence relation  was the 
"kernel" of the function ƒ.  Any function from A into B 
factors in to one function that maps a member of A  to that 
part of the kernel to which it belongs, and  another function, 
which is necessarily one-to-one, that maps the kernel into 
B[2]. In  this research the first of these two factors was 
completely determined by the partition π, that is the kernel. 
The number of one-to-one functions from π  into B  was then 
(x)|π|, in  the district-level malarial regression model when |π| 
was the number of parts in the partition π. Therefore, the total 
number of functions from a size-n set A into a size-x set B 

was 
 

in the model when the index π  ran through 

the set of all partit ions of A. On the other hand, the number of 
functions from A into B was clearly xn. Thus, we had 

( )nx x
π

π

= ∑  Since X  was a Poisson-distributed 

spatiotemporal-seasonal malarial-related district-level  
random variable with expected value 1, then the nth moment 
of this probability d istribution was

( ) ( )( )nE X E X
π

π

= ∑
 
but all of the factorial moments 

E((X)k) of this probability distribution was equal to 1 in the 

model also. Thereafter, we had,
 

( ) 1nE X
π

= ∑ ,which was 

the number of partitions of the set A in the model. Therefore, 

in the model,
 ( )1ν ν+ , ( )21 3ν ν ν+ +  and 

( )2 31 7 6ν ν ν ν+ + + . 
Thereafter, the central moments in the malarial model was 

computed as  so the mean, variance, skewness, 

and kurtosis were ,

and , respectively. The characteristic 

function for the Poisson distribution in the district -level 
Poisson predictive autoregressive model was then revealed 

as ( ) ( )1ite
t e

ν
φ

−
=  and the cumulative distribution function 

was ( ) ( ) 2 31 1
1 ...

2! 3!
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 so 

 The mean deviation of the Po isson distribution 

mode was then rendered by 
[ ]

[ ]

1
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2
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= . The 

cumulat ive distribution functions of the Poisson and 
chi-squared distributions were then related in the 
district-level model as

( ) ( )( )2 2 ; 2 1; 1Poisson x
kF k F λλ += −  integer k  and  

( ) ( ) ( )( )2 22 ; 2 2 ; 2 1r x x
X k k kP F Fλ λ= += − .The 

Poisson distribution was then expressed in terms of 
x

ν
λ ≡

 
whereby, the rate of changes were equal to the equation

( ) ( )
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n x
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x e
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= . The moment-generating function of 

the  Poisson distribution generated from the sampled 
district-level exp lanatory predictor variab les was also 

rendered by ( ) ( )( )1 2 1te
M t e

ν ν+ −
=  Given a random variab le 

x and a probability d istribution function ( )P x , if there 

exists an 0h > such that ( ) txM t e≡ 〈 〉 for t h< , where 

 denotes the expectation value of , then ( )M t is 
called  the moment-generating function[2]. Commonly, for a 
continuous distribution in a seasonal linear regression-based 
time-series dependent regression model 
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raw moment.[5].For quantify ing independent X and Y, the 
moment-generating function in a robust model must satisfy 

the equation ( ) ( ) , ,t x y tx ty tx ty
x yM t e e e e e+
+ = 〈 〉 〈 〉 〈 〉〈 〉  and 

( ) ( )x yM t M t  if, the independent variables , 

have Poisson distributions with parameters 1 2, , ..., Nx x x  

and 
1
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j
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X x
=

= ∑  [3].In this research this was evident since 

the cumulant-generating function was

( ) ( ) ( )1 ( 1h h

j j
j j

K K h e eµ µ≡ = − = −∑ ∑ . 

In the malaria model the directed Kullback-Leibler (K-L) 
divergence between Pois(λ) and Pois(λ0) was then provided 

by ( )0 0

0

|| logKLD
λ

λ λ λ λ λ
λ

= − + . In probability theory 

and information theory, the K-L divergence along with 
informat ion divergence, in formation gain, relat ive entropy 
are a non-symmetric measures of the difference between two 

y
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probability d istributions P and Q in  a model[2]. In this 
research, for quantifying the probability distributions P and 
Q of a sampled discrete random variable the K–L d ivergence 

was defined by ( ) ( ) ( )
|| ln

( )KL
i

P i
D P Q P i

Q i
= ∑  . The 

model revealed that the average of the logarithmic difference 
between the probabilities P  and Q was the average quantified 
using the probabilit ies P. The K-L divergence is only defined 
if P and Q both sum to 1 and if  fo r any i such that 

[3].  

In our d istrict-level spatiotemporal malaria-based 
regression-based model, if the quantity 0 ln 0 appeared in the 
formula it  was interpreted as zero. For distributions P and Q 
of the continuous random variable in the sampled datasets 
K-L d ivergence was defined to be the integral[i.e., 

( ) ( ) ( )
( )

|| lnKL

p x
D P Q p x dx

q x

∞

−∞
= ∫ ] where p and q denoted 

the densities of P and Q. More generally, since P and Q were 
probability measures over the sampled dataset X, and Q 
which was absolutely continuous with respect to P, then the 
K-L divergence from P to Q was defined as 

 in  the model where  was 

the Radon–Nikodym derivative of Q with respect to P, 
provided the expression on the right-hand side existed. In 
mathematics, the Radon–Nikodym theorem is a result in 
measure theory that states that given a measurable space (i.e., 
X,Σ), if a  σ-finite  is measured on (i..e , X,Σ) then the 

expression is absolutely continuous with respect to a σ-fin ite 
measure µon (X,Σ). By so doing, in this research a 
measurable function f was rendered on X (0,∞), such that

 for any other measured value which  then 

revealed the statistical significance of the sampled 
district-level covariate coefficients. 

Likewise, since P  was absolutely continuous with respect 
to Q in the district-level malarial regression model. The 
explanatory predictor covariate coefficients were then 
defined employing: ( )|| ln lnKL

X X

dP dP dP
D P Q dP dQ

dQ dQ dQ
= =∫ ∫  

which in this research was recognized as the entropy of P 
relative to Q. We found that if  was any measure on X in 

the model then and 
dQ

q
dµ

=  existed, and the K-L 

divergence from P to Q was given as 

( )|| ln
KL

X

p
D P Q p d

q
µ= ∫ . The bounds for the tail 

probabilit ies of the Poisson random variable were then 
derived in  the district-level malarial regression model using a 
Chernoff bound argument as 
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In probability theory, the Chernoff bound, provides exponentially decreasing bounds on tail distributions of sums of 
independent random variables. It is a sharper bound than the known first or second moment based tail bounds such as 
Markov's inequality o r Chebyshev inequality, which only y ield power-law bounds on tail decay. However, in this research, 
the Chernoff bound required that the variates be independent - a condition that neither the Markov nor the Chebyshev 
inequalities require. In  probability theory, Markov's inequality g ives an upper bound for the probability that a non-negative 
function of a random variab le is greater than or equal to some positive constant[5]. 
In this research, we let  X1, ..., Xn be independent Bernoulli random variab les, each having probability p  > 1/2. Then the 
probability of simultaneous occurrence of more than n/2 of the district-level sampling events  had an exact value S in the 

model when .The Chernoff bound revealed that S had the following lower bound: 

We noticed that if X  was any  sampled district-level random variable and a > 0,then

 In the language of measure theory, Markov's inequality states that if (X , Σ, μ ) is a measure space, 

ƒ is a measurable extended real-valued function, and ,then [2] We then used the 
Chebyshev's inequality  to determine the variance bound to the probability that the spatiotemporal-seasonal sampled random 

variable deviated far from the mean in the model. Specifically we used for any a>0. In this 
research, Var(X) was the variance of X, defined as: Chebyshev's inequality follows from 
Markov's inequality by considering the random variable for which  Markov's inequality also reads

[2]. Further, in Markov’s inequality if x takes only  nonnegative field-sampled  malarial values, 

then can be re-written = =  However, since  is a prevalence 

rate value in a spatiotemporal malarial regression-based model, it must be  .Thus, it must be stipulated that  so 

( ) ∫−=
X

KL dP
dQ
dPQPD ln||
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= = = in order to determine district–level 

covariate coefficients of  statistical significance. 

We then considered the Euler product 
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∏  where  was the Riemann zeta function and was the k  

the prime.  . Thereafter, by taking the fin ite product up to k=n in the district-level malarial regression model and 

pre-mult iplying by a factor , we were able to employ  to render 1
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equivalent to 1.781072…..By doing so, g became the Euler-Mascheroni constant which in this research also represented the 
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∑ = in the residuals where  was the harmonic 

number which in this research had the form in the district-level malarial regression model. A harmonic number 

can be expressed analytically as  where is the Euler-Mascheroni constant and  is the 

digamma function[2]. Our model revealed  that the Euler product attached to the Riemann zeta function  represented 
the sum of the geometric series rendered from the spatiotemporal-sampled empirical dataset of exp lanatory predictor 

covariate coefficients as . A  closely related result was also obtained by 

noting that .We also considered the variation of when  with the sign changed to a sign and the 

 in the district-level malarial model which moved from the denominator to the numerator rendering 
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We then tested the model for overdispersion with a 
likelihood ratio test. This test quantified the equality of the 
mean and the variance imposed by the Poisson distribution 
against the alternative that the variance exceeded the mean. 
For the negative b inomial d istribution, the variance = mean + 
k mean2 (k>= 0, the negative b inomial d istribution reduces to 
Poisson when k=0)[2]. In  this research, the null hypothesis 
was H0: k=0 and the alternative hypothesis was Ha  : k>0 . To 
carry out the test, we used the following steps initially and 
then ran the model using negative binomial d istribution and a 
record log-likelihood (LL) value. We then recorded LL for 
the Poisson model. We used the likelihood ratio  (LR) test, 
that is, we computed LR statistic, -2(LL (Poisson) – LL 
(negative binomial). The asymptotic distribution of the LR 
statistic had probability mass of one half at zero and one half 
– chi-sq distribution with 1 d.f. To  test the null hypothesis 

further at the significance level α, we then used the critical 
value of chi-sq distribution corresponding to significance 
level 2α, that is we rejected H0 if LR statistic >χ2 

 (1-2α , 1 

df). 
Next, we assumed that our spatiotemporal sampled 

district-level malaria model exp lanatory predictor covariate 
coefficient estimates were based on the log of the mean, µ, 
which in this research was a linear function of independent 
variables, log(µ) = intercept + b1*X1 +b2*X2 + ....+ b3*Xm. 
This log-transformat ion implied that µ was the exponential 
function of independent variables, µ = exp(intercept + 
b1*X1 +b2*X2 + ....+ b3*Xm). Instead of assuming as 
before that the distribution of the seasonal district-level 
covariate coefficients[i.e., Y], was Poisson, we assumed a 
negative binomial d istribution. That meant, relaxing the 
generalized linear Po isson regression specification 

( )10 ++= nHn ψγ
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assumption about the equality of the mean and variance since 
in our model we found that the variance of negative binomial 
was equal to µ + kµ2 , where k>= 0 was  a dispersion 
parameter. The maximum likelihood method was then used 
to estimate k as well as the parameter estimators of the 
malarial model for log(µ). Fortunately, the SAS syntax for 
running negative binomial regression was almost the same as 
for Poisson regression. The only change was the dist option 
in the MODEL statement was used instead of  dist = 
poisson,dist = nb. The probability mass function of the 
negative binomial distribution with a gamma d istributed 
mean in the predictive district-level malarial model was 
then expressed using the sampled exp lanatory covariate 
coefficients estimates as

( ) ( ) ( )
1

Pr 1 r kk r
f k X k

k
p p

+ −
≡ = = −

 
 
 

 for the 

variables  . In this equation, the quantity in 
parentheses was the binomial coefficient, which was equal 

to This 

quantity was also alternatively written as
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for explaining “negative binomialness’ in our regression 
model[2]. 

Results from both a Poisson and a negative binomial 
(model residuals revealed that the district -level 
spatiotemporal-sampled explanatory covariate coefficient 
estimates were highly significant, but virtually furn ished no 
predictive power. 

Inclusion of indicator variables denoting the time 
sequence and the district location spatial structure was then 
articulated with Thiessen polygons, (see Figure 2a) which 
also failed to reveal mean ingful covariates. Further, Figure 
2b implied the presence of additional noise in the data for 
2010 which was attributable to an  expansion of d istricts; thus, 
for this data analysis we retained the orig inal 80 d istricts for 
space-time consistency. Next, an Autoregressive Integrated 
Moving Average (ARIMA) analysis of indiv idual d istrict 
time-series was generated in SAS. Given our time series 
district level spatiotemporal data where  was an integer 
index and the  the values, an ARIMA model was built 

using  where  

was the lag operator, the  were the parameters of the 
autoregressive part of the model, the  were the 
parameters of the moving average part and the  were 
error terms. ARIMA models are, in theory, the most general 
class of models for forecasting a time series which can be 
stationarized by transformations such as differencing and 
logging[3]. The easiest way to think of ARIMA models is as 

fine-tuned versions of random-walk and random-trend 
models: the fine-tuning consists of adding lags of the 
differenced series and/or lags of the forecast errors to the 
prediction equation, as needed to remove any last traces of 
autocorrelation from the forecast errors[5]. In this research 
ehe error terms  were generally assumed to be i.i.d. 
sampled from a normal distribution with zero  mean: ~ 
N(0,σ2) where σ2 was the variance.  

Therefore, a random effects term was specified with the 80 
monthly t ime series data (2b).Th is random effects 
specification revealed a non-constant mean across the 
districts that were variable which was mathemat ically 
represented a district -constant across time. This specification 
also represented a district-specific intercept term that was a 
random deviat ion from the overall intercept term as it  was 
based on a draw from a normal frequency distribution. This 
random intercept represented the combined effect of all 
omitted spatiotemporal-ssampled explanatory district-level 
predictor covariate coefficients that caused some districts to 
be more prone to the malaria prevalence than other districts. 
Inclusion of a random intercept assumed random 
heterogeneity in the districts’ propensity or underlying risk 
of malaria prevalence that persisted throughout the entire 
duration of the time sequence under study.  

Table 1 presents the values for this random effects term, 
district-level for prevalence regressed on predict prevalence 
rates. The Poisson mean response specification was mu = 
exp[a + re+ LN(population)], Y ~Poisson(mu) . The 
mixed-model estimation results included: a = -3.1876 re ~ 
n(0, s2) mean re = -0.0010 s2 = 0.2513 where P(S-W) = 
0.0005 and the Pseudo-R2 = 0.3103. 

This random effects term d isplayed no spatial 
autocorrelation and failed  to closely conform to  a 
bell-shaped curve. Its variance implied a substantial 
variability  in  the prevalence of malaria across the sampled 
districts in the study site. The estimated model contained 
considerable overdispersion (i.e., excess Poisson variability): 
quasi-likelihood scale = 76.5648.  

Figure 3 portrays scatterplots of observed versus predicted 
prevalence rates for selected months, and reflected the 
considerable amount of no ise in the malaria prevalence data 
feature attributes as well as the random effects term 
accounting for about a third of the variance in the space-time 
series of malaria prevalence quantified. Based on the 
sampled district level random effects a model was then 
generated. As with most statistical procedures, the random 
effects term corresponded more closely with the data in the 
center of the t ime-series. This goodness-of-fit feature 
implied that although the random effects term can be used for 
predictive purposes, it was less effective for lengthy (e.g. > 1 
year) forecasts. 
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Figure 2a.  District Level Thiessen Polygons 

 
Figure 2b.  Predictive prevalence based on random effects 
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Table 1.  The estimated random effects term, by districts in Uganda 

District estimate district estiamte 
Abim 0.89982 Kiruhura 0.05555 

Adjumani 0.03677 Kisoro 0.13446 
Amolatar -0.18913 Kitgum -0.03109 
Amuria -0.14635 Koboko -0.10398 
Amuru 0.29050 Kotido 0.66980 
Apac -0.42229 Kumi 0.43194 
Arua 0.00814 Kyenjojo -0.27137 

Budaka 0.10741 Lira -0.31071 
Bududa 0.18560 Luwero -0.46994 
Bugiri -0.40472 Lyantonde 1.31114 

Bukedea 0.26552 Manafwa -0.37685 
Bukwo 0.21342 Masaka 0.55122 
Buliisa 2.10944 Masindi -0.73401 

Bundibugyo 0.05565 Mayuge -0.70644 
Bushenyi -0.07840 Mbale 0.03501 

Busia -0.18609 Mbarara -0.02797 
Butaleja 0.39845 Mityana 0.02994 
Dokolo 0.15323 Moroto -0.34944 
Gulu 0.44707 Moyo 0.18239 

Hoima 0.07682 Mpigi 0.36881 
Ibanda 0.24986 Mubende -0.43030 
Iganga -0.52757 Mukono 0.15185 
Isingiro -0.09899 Nakapiripirit -1.57646 

Jinja 0.05092 Nakaseke 0.09709 
Kaabong -0.56510 Nakasongola 0.66164 
Kabale -0.07296 Namutumba 0.26294 

Kabarole 0.00683 Nebbi 0.63691 
Kaberamaido 0.27525 Ntungamo -0.21660 

Kalangala 0.86887 Nyadri -0.29722 
Kaliro -0.13039 Oyam -0.85385 

Kampala -1.14975 Pader 0.02552 
Kamuli -0.37669 Pallisa 0.01429 

Kamwenge -0.19784 Rakai -0.09869 
Kanungu -0.14609 Rukungiri 0.20622 

Kapchorwa 0.49677 Sironko 0.13539 
Kasese -0.28772 Soroti -0.19364 

Katakwi -0.04807 Ssembabule  -0.27004 
Kayunga -0.21645 Tororo 0.34296 
Kibaale -0.53335 Wakiso -0.34154 
Kiboga 0.34372 Yumbe -0.48468 
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Figure 3.  Scatterplots of selected observed versus predicted district for Abimin December 2010 and Tororo 2006 

4. Discussion and Conclusions 
Initially, in this research we constructed a Poisson 

regression model using spatiotemporal sampled 
district-level exp lanatory predictor covariate coefficients. 
The Poisson regression model constructed in this research 
assumed the response variable Y (i.e., prevalence) had a 
Poisson distribution, and assumed the logarithm of its 
expected value can be modelled by a linear combination of 
district-level parameter estimators. Unlike normal 
distribution, the Poisson is a natural distribution for count 
data[2]. However, overdispersion in our regression 
coefficients suggested that the Poisson model was 
inappropriate for d ifferentiating the district-level covariate 
coefficient estimates. In this research the Poisson regression 
residuals indicated an inappropriate model fit due to 
overdispersion caused by outliners. More precisely the 
overdispersion implied that there was more variab ility 
around the district-level malaria model fitted values than 
was consistent with a Po isson formulat ion.  

We then constructed a negative binomial as a means to 
correct for the overdispersion. In this research the negative 
binomial was estimated as a generalized linear model (GLM) 
and as a full maximum (quasi-) likelihood model. We had to 
specify the distribution of the dependent variable (i.e., 
district-level malarial rate) in  dist = negbin, as well as the 
link function, superscript c. By defau lt, when we specified 
dist = negbin, the log  link function was assumed and, thus, 
did not need to be further specified; however, for 
pedagogical purposes, we included link = log. We then 
wrote our model out as log (μ) = β0 + β1 x1 + ... + βp xp, where 
μ was the log- transformed district-level prevalence count, 
which defined the link function. A negative binomial 
regression framework with a gamma d istributed non- 
homogenous mean was then rendered which was used to 

attain accurate regression-based inferences from the 
spatiotemporal-sampled district-level exp lanatory predictor 
covariate coefficient estimates over the unbounded positive 
range whose sample variance exceeded the sample mean. 
We assumed that the dependent variable was, thereafter, no 
longer ill-d ispersed (i.e., either under- or over- dispersed) 
and did not have an excessive number of zeros. In the 
circumstances when there is a surplus of zero measured 
explanatory predictor covariate coefficients in  a 
spatiotemporal -sampled district-level malarial parameter 
attribute dataset, a zero-inflated negative binomial 
regression with a non-homogenous mean may be used for 
modeling count outcome variables. By so doing, excess 
zeros in seasonal-sampled data can be generated by a 
separate process from the district-level count values which 
can then be then modelled independently. 

A SAR and a spatial filter model specificat ion was then 
constructed to help describe selected Gaussian and Poisson 
random variab les rendered from the district-level malarial- 
related autoregressive model. When coupled with regression 
equations and a normal probability model, an autoregressive 
specification can result in a covariat ion term characterizing 
autocorrelation uncertainty components in ecological 
empirical datasets of field and remote-sampled malaria- 
related georeferenced exp lanatory predictor covariate 
coefficient  estimates[1]. In  this research, the SAR used a 
response variable, Y, as a function of nearby sampled Y 
district-level values[i.e., an autoregressive response (AR)], 
and/or the model residuals of Y as a function of nearby Y 
district-level sampled model covariate coefficient estimate 
[i.e ., spatial error specification].Unfortunately, in our 
eigenfunction decomposition spatial filtering analyses using 
the district-level sampled data feature attributes, synthetic 
variates appeared in the numerator of Moran’s I. Thus, 
mean, variance and statistical distribution characterizations 
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and descriptions of the georeferenced random variables and 
their interrelat ionships were not orthogonally derived in 
terms of the spatial filters.  

The dependency in our model was then qualitatively  
assessed using random effect specifications. Random effects 
model specifications address samples for which 
independent observations are selected in a highly structured 
rather than random way, and involve repeated measures in 
frequentist analyses[2]. Th is average, however, in this 
research, ignored both spatial and serial uncertainty 
correlation coefficients in the space-time series. A random 
effects model essentially works with these averages, 
adjusting them in  accordance with the correlat ional 
structure parent space-time series, as well as their 
simultaneous estimation[3]. For example, in this research, 
the random effects model specification  was achieved by 
fitting a distribution with as few parameter estimators as 
possible (e.g., a mean and a variance for a bell-shaped 
curve), rather than n means (i.e., fixed effects) for the n 
sampled district-level locational attributes. Consequently, a 
relationship existed between the time-series means and the 
random effects. This random effects specification included 
n indicator variables, each for a separate specific district 
local intercept (i.e., one local intercept was arbitrarily set to 
0 to eliminate perfect multicollinearity with the global 
mean). Here, the local mean for district  80 was set to 0. The 
estimated global mean was -3.6723, the mean of the random 
effects term was -0.0010, and the mean of the local means 
was 0.4837; the sum of these three values was -3.1876, 
which in this research was exact ly the same as the random 
effects global mean. The scatterplot of the random effects 
versus the local intercepts corresponded to a straight line 
with no dispersion about it. 

In the future, meta-analyses of spatiotemporal sampled 
district-level malarial indices in Uganda may employ a 
random-effects model to remotely account for unobserved 
heterogeneity among varying sentinel sites since these data 
feature attributes would encompass variation beyond those 
associated with fixed effects. For example, a random-effects 
linear regression approach can allow for the inclusion of 
various times series-dependent sentinel site explanatory 
predictor covariate coefficients that may explain seasonal 
heterogeneity in attributes associated to district-level 
malarial prevalence rates. A simulat ion study for a random- 
effects regression method may also perform well in the 
context of a meta-analysis for qualitatively assessing 
district-level spatiotemporal-sampled predictor covariate 
coefficients for robustness especially where certain factors 
are thought to modify larval control efficacy (e.g., seasonal 
rainfall production). A smoothed estimator of the within- 
study variances may also produce less bias in the estimated 
linear regression-based coefficients, thereby, rendering 
robust asymptotical optimized efficient estimates. 
Additionally, the method can provide very good power for 
detecting a non-zero intercept term representing overall 
treatment efficacy in a d istrict-level malarial-related 
hyperendemic model. The model may then be also applied 
to the meta-analysis of continuous outcomes quantitatively 

derived from t ime-series-related seasonally dependent 
datasets of sentinel site-related exp lanatory predictor 
covariate coefficients. Thus, suppose that an n sampled 
sentinel site is chosen randomly  at a  selected district 
throughout an epidemiological d istrict-level study site. 
Thereafter,Yij would be used for sampled covariate 
coefficient  values of the jth sample site at the ith d istrict for 
ascertaining statistical significance of the sentinel site 
sampled parameter estimators. A simple way to model the 
relationships of these quantities would then be 𝑌𝑌𝑖𝑖𝑖𝑖 = 𝜇𝜇 +
𝑈𝑈𝑖𝑖 +𝑊𝑊𝑖𝑖𝑖𝑖  where μ is the time series sampled district-level 
sentinel site explanatory predictor covariate coefficients 
measurement indicator values. In this model Ui would 
represent the specific  sentinel site specific  random effect. 
This linear hierarch ical effect would then be used to measure 
the difference between the measured sample sites at sentinel 
site i and the measured values in the entire district  area. The 
term, WI in  would  then be the individual sampled 
district-level site specific error. That is, WI would be the 
deviation of the j-the sampled sentimental site data from the 
i-th district level sampled covariate coefficients. This 
analyses then would be regarded as random as the selection 
of the sentinel sites within the district would be random even 
though it would be fixed quantities.  

Theoretically, thereafter, the sentinel site malarial –related 
model can be augmented by including addit ional 
spatiotemporal seasonal-sampled  exp lanatory predictor 
covariate coefficients, which would then enable capturing 
and forecasting linear differences in sentinel sampled sites in 
different regional d istricts. For example, the variance of Yij 
could be adjusted to be the sum of the variances τ2 and σ2 of 
Ui and Wij respectively in a specific d istrict. We can even 

then let
1
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= ∑  be the average, at the ith sentietel 

sites, but only of those at the ith  district site that are 
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district. Subsequently, we can then let  the equation
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squares due to differences within  the sentinel sites and the 
sum of squares due to difference between districts. Thus, it 
can be easily shown that 

1
𝑚𝑚(𝑛𝑛−1)𝐸𝐸(𝑆𝑆𝑆𝑆𝑆𝑆) = 𝜎𝜎2 and that 

1
(𝑚𝑚−1)𝑛𝑛

𝐸𝐸(𝑆𝑆𝑆𝑆𝑆𝑆) = 𝜎𝜎2

𝑛𝑛
+ 𝜏𝜏2  These "expected mean 

squares" can then be used as the basis for estimation of the 
"variance components" σ2 and τ2 fo r seasonally quantifying 
time series-dependent sentinel- sampled malarial-related 
explanatory predictor covariate coefficients at the district 
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and regional level. 
In conclusion results from both a Poisson and a negative 

binomial regression(i.e., a Poisson random variable with a 
gamma d istrusted mean) revealed that the district-level 
seasonal-sampled  exp lanatory predictor covariate 
coefficients were h ighly significant, but furnished virtually 
no predictive power. In other words, the sizes of the 
population denominators were sufficient to result in 
statistically significant relationships while the detected 
relationships were inconsequential. Inclusion of indicator 
variables denoting the time sequence and the district 
location spatial structure was then articulated with Thiessen 
polygons which also failed to reveal mean ingful estimates. 
Unfortunately, the presence of additional noise in the data 
for 2010 was determined to be attributable to an expansion 
of districts which did not allow for forecasting the sampled 
district-level data employ ing a spatial filter algorithm. As 
such, the data analysis retained only the original 80 d istricts 
in the space-time consistency analyses. Thereafter, an 
ARIMA analysis of individual district time-series revealed a 
conspicuous but not very prominent first-order temporal 
autoregressive structure in the sampled data. As such, a 
random effects term was specified with the monthly time 
series variables. Th is random intercept represented the 
combined effect of all omitted district-specific covariate 
coefficients that caused districts to be more prone to the 
malaria prevalence than other districts. The random effects 
term d isplayed no spatial autocorrelation, and failed to 
closely conform to a bell-shaped curve. The variance, 
however, implied a substantial variability in the prevalence 
of malaria across districts. The estimated model contained 
considerable overdispersion (i.e., excess Poisson variability). 
The following equation was then generated to forecast the 
expected value of the prevalence of malaria for district: 
prevalence =exp[-3.1876 + (random effect)i] .The goodness- 
of-fit feature implied that the random effects term can be 
used for forecasting purposes. The model however also 

indicated the autoregressive residuals were less effective for 
forecasting purposes especially for a relat ively lengthy time. 
Compilation of additional data can allow continual updating 
of the random effects term estimates, allowing  rolling in 
new-data in formed results to bolster the quality of the 
predictions for future time-series dependent malarial-related 
seasonal district-level modelling efforts.  
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