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Abstract  Multip le-access adder channels have been extensively studied for manyyears. They can be classified into 
several types. The type of channels weconsider in this paper is discrete,memory less, synchronized and noisy. On noisy 
multip le-access adder channels a receiver must derive a groupof transmitted codewords uniquely from a received word 
garbled by errors. This means that a code suitable for this channel must have both separabilityand error control ability. In 
this paper we propose a coding method forsuch a channel.Our method utilizes some property of parity check matrices for 
Reeed-Solomon codes. We present not only encoding but also decoding methods of our codes. It is also shown that our 
method can construct some codes with high coding rates. 
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1. Introduction 
On the communication systems through a type of 

channels, some users can transmit each codeword, which is 
previously assigned to them, simultaneously. And the 
transmitted codewords are bitwisely added on the channels 
and therefore amount to a received word. Such channels are 
generally referred to as mult iple-access adder channels. 

Multiple-access adder channels have been extensively 
studied for many years[1-3]. They can be classified into 
several typeson the basis of such a condition as arithmet ic 
type of addition or noiseoccurring on a channel[4]. The type 
of channels we consider in this paper is discrete, 
memoryless, synchronized and noisy. And the 
arithmetictype of addition on a channel is modulo-2 
addition. Moreover, assume that at most T users among M 
users (M>T) can transmit their codewords simultaneously. 
This type of communications is seen in wireless system 
such assatellite-based communication. Figure 1 shows 
thischannel model.  

In Figure 1 M , T, and Ci(i=1, 2, · · ·, M) mean  the number 
of potential users, the maximum number of simultaneous 
connections andthe set of the codewords assigned to each 
user,respectively.A code suitable for this channel, therefore, 
must meet all the fo llowing conditions: 

1. A  code can assign its codewords to all the potential 
Musers where M  is much  greater than the maximumnumber 
of simultaneous connections T. 
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2. A code can derive all the codewords transmitted 
simultaneously from anoisy received word r. 

3. A  code have error control ab ility to combat primary  
errors occurred on the channel. 

In general a  type of primary erro rs we must combat 
varies agreat deal depending on some conditions such as 
channel characteristicsor how transmitted data are encoded  
in a codeword.In this paper we propose a coding method to 
meet all the conditions above. 

 
Figure 1.  Binary multiple-access adder channel with noise 

2. Coding Method 
Firstly, we g ive a basic frame of our code by the use ofthe 

method indicated in [5].Let H be a parity check matrix of a 
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Reed-Solomon code over GF(2m)that corrects T random 
errors and hi each column of the matrix H.Assigning each 
column to each user i , then, produces a code C0 whose 
codewordsare 
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whereαi is any nonzero element of GF(2m). After this we 
call each element of GF(2m) in a codeword o r a received 
word a unit. It is obvious that for M = 2m-1 this code meets 
the above conditions 1 and 2 from the property of check 
matrix H[6]. So the code length n0 and coding rate R0 of this 
code C0are respectively given by 
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Note that this code has no error control ability. In the 
following we give a method to add error control ability to 
C0. Our codes have the following error control ability: 

(1) They can detect any odd weight errors on each unit  in  
a codeword. 

(2) They can correct an error or detect two errors on a 
unit. 

Before describing our method we give conceptual 
diagram of our method in Figure 2. 

 
Figure 2.  Conceptual diagram of our method 

Let  
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whereβ is any nonzero element of GF(2m). 
(1)For any nonzero elementβof GF(2m) such that f(β)≠0 
Suppose that a code (m,m-s,3)G0 is a b inary code that has 

code length m and(m-s) info rmation bits with minimum 
distance 3. Then, for any basis  
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that spans this code over GF(2),  
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spans a (m,m-s) code D0overGF(2). All of the elements in 

(6) may have even weights. If not so, an even weight 
subcode of D0 can be always constructed by the following 
method: 

(1) If only one element in (6) has odd weight in GF(2) 
then the resulting (m-s-1) elements in (6) without the 
odd-weight element spans a (m, m-s-1, 2) even weight 
subcodes of D0.  

(2) If some elements in (6) have odd weights in GF(2) 
then adding of any odd-weight element selected from (6) 
and other odd-weight elements in (6) amounts to give a 
basis for a (m, m-s-1) even weight subcodes of D0. 

Since we want to give a lower bound on coding rate of 
our codes we shall use the above method to obtain even 
weight subcode.  

Now let D1 be the (m, m-s-1) even weight subcode of D0 
stated above and B1 a basis of D0. The products of B1and a 
multip lier βi , then, spans a (m, m-s-1) code over GF(2). By 
the above method, hence, we can construct a (m, m-s-2) 
even weight subcode of D1, which is denoted by G2. 
Obviously a basis of G2 d ivided by βi spans a (m, m-s-2) 
subcode of D1. We denote this code by D2. Consequently, 
repeating this procedure by changing a multiplier from βi to

)12( −T
iβ  produces (m, m-s-2T) code D2T as shown in Figure 

2. Finally, each user i uses non-zero codewords ofD2T as αi 
in (1). Then, since code Ds+1 is a  subcode of Ds (s=0,1,2,… , 
2T-1) it  follows that each  unit u  (u = 1, 2,… ,2T) in  a 
codeword has even weight. 

(2) For any nonzero elementβof GF(2m) such that f(β)=0 
The procedure is the same as in (1) except starting with 

(m, m-1, 2) even weight codes as D1 and G1, respectively. 
Resultingly the code length n and coding rate R of our 

codesmeet the following expressions respectively. 
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Note here that the numbers of the codewords each user 
ihas are always not the same: it depends on the element βi 
assigned to each user i. For example,when βi is equal to 1 
the number of information bits assigned to user iism-1, 
which is always greater than m-s-2T. And when 
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,codeDy+1 can be equal to code Dx+1 and this saves one 
parity check b it: whether Eq.(9) holds or not depends only 
the order of βi in GF(2m). In other cases,which code to be 
selected as G0 influences coding rate R since it might be 
possible that code D0 would be an even weight code. 

3. Decoding and Numerical Results 
In this section we prove the error control ability of our 

codes by giving a decoding method. 
<decoding method> 
[D1] Count the weight of each unit in a received word as 

an m-tuple overGF(2). 
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[D2-1] If there are some units that have odd weight, then 
fin ish the decoding method: it means that some error 
occurred on not a unit but some units. 

[D2-2] If there is no unit or a unit that has odd weight, 
then add all units in a received word r as an m-tuple over 
GF(2) by modulo-2 addition. That is, for
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decode S by any decoding method of G0. If the decoder 
decides that an error occurred, then correct the error on the 
unit detected by[D1] 

Obviously,[D2-1] is true because each unit in (1) must 
have even weight. From errors under consideration[D2-2] 
means that either no error or an error occurred on a unit. 
Hence if user i j(j=1,2,… ,L-1,L;L≤T) in  Figure 1 t ransmitted 
their codewords including αijas their informat ion and an 
error e  occurred on the channel, then 
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Since αij can be expressed as a product of )(1
ijf β− and a 

codeword of G0, S amounts to an addition of a codeword of 
G0 and e. This means that our codes have the error control 
ability stated above. 

As an example calcu lation we show the code length n and 
minimum coding rate R  of our codes constructed by using a 
(2s-1, 2s-1-s, 3)Hamming code as G0. In this example 
coding rate RHmeets the following expression. 
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Table 1.  Parameters of Our Codes Based on Hamming Codes (T=2) 

s n R 
5 124 0.3548 
6 252 0.4206 
7 508 0.4566 
8 1020 0.4765 
9 2044 0.4873 

10 4092 0.4931 
11 8188 0.4963 
12 16380 0.4980 

This expression indicates that the coding rate o f our code 
gets close to the same coding rate R0 of C0, which has no 
error control ability, as code lengh increases. In Table 1 we 

show some parameters of our codes based on Hamming 
codes when at most two users can transmit their codewords 
simultaneously.With increasing the number of active users 
the right hand of (11) gets smaller. But generally (4) tends 
to have more solutions in GF(2m) reversely. Coding rate, 
therefore, would be greater than one given by (11) when the 
users assigned the solutions of (4) as βi are included in 
potential users. 

4. Conclusions 
In this paper we have proposed a coding method for a 

noisybinary mult iple-access adder channel. And by giv ing a 
decoding methodit has been shown that besides uniquely 
separable our codes have the property to control some 
errorsoccurred within a segment in a codeword and be 
uniquely separable whensome codewords superimposed. 
Furthermore it was shown that our codes can have coding 
rates close to the value which is associated with the uniquely 
separable codes without error control ability like[5]. As 
stated in this paper the selection of nonzero elements in 
GF(2m) assigned to each user affects coding rate in a d irect 
fashion. So which  element to be chosen is an  important and 
interesting problem.It is also future work to expand our 
method to deal with several types of errors occurred on 
transmission. 
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