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Abstract Multiple-access adder channels have been extensively studied for manyyears. They can be classified into
several types. The type of channels weconsider in this paper is discrete,memoryless, synchronized and noisy. On noisy
multiple-access adder channels a receiver must derive a groupof transmitted codewords uniquely from a received word
garbled by errors. Thismeans that a code suitable for this channel must have both separabilityand error control ability. In
this paper we propose a coding method forsuch a channel.Our method utilizes some property of parity check matrices for
Reeed-Solomon codes. We present not only encoding but also decoding methods of our codes. It is also shown that our
method can construct some codes with high coding rates.
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2. A code can derive all the codewords transmitted
1. Introduction simultaneously fromanoisy received word r.
3. A code have error control ability to combat primary

On the communication systems through a type of errors occurred on the channel.
channels, some users can transmit each codeword, which is In general a type of primary errors we must combat
previously assigned to them, simultaneously. And the varies agreat deal depending on some conditions such as
transmitted codewords are bitwisely added on the channels channel characteristicsor how transmitted data are encoded
and therefore amount to a received word. Such channels are  in a codeword.In this paper we propose a coding method to
generally referred to as multiple-access adder channels. meet all the conditions above.

Multiple-access adder channels have been extensively
studied for many years[1-3]. They can be classified into
several typeson the basis of such a condition as arithmetic
type of addition or noiseoccurring on a channel[4]. The type
of channels we consider in this paper is discrete,
memoryless, synchronized and noisy. And the
arithmetictype of addition on a channel is modulo-2
addition. Moreover, assume that at most T users among M
users (M>T) can transmit their codewords simultaneously.
This type of communications is seen in wireless system
such assatellite-based communication. Figure 1 shows
thischannel model.

In Figure 1 M, T, and Cj(i=1, 2, - - -, M) mean the number
of potential users, the maximum number of simultaneous
connections andthe set of the codewords assigned to each i
user,respectively.A code suitable for this channel, therefore, @

must meet all the following conditions:

1. A code can assign its codewords to all the potential
Musers where M is much greater than the maximumnumber
of simultaneous connections 7.

Figure 1. Binary multiple-access adder channel with noise
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Reed-Solomon code over GF(2™)that corrects T random
errors and hi each column of the matrix H.Assigning each
column to each user i , then, produces a code C, whose
codewordsare

aimi=la |af|a,p2 | f 2 e p) )
whereq; is any nonzero element of GF(2™). A fter this we
call each element of GF(2™) in a codeword or a received
word a unit. It is obvious that for M = 2"-1 this code meets
the above conditions 1 and 2 from the property of check
matrix H[6]. So the code length n( and coding rate Ry of this
code Cyare respectively given by

ng =2Tm 2)
log,(2" -1) _1

Ry =T———~~— 3

0 2Tm 2 3

Note that this code has no error control ability. In the
following we give a method to add error control ability to
Cy.Our codes have the following error control ability:

(1) They can detect any odd weight errors on each unit in
a codeword.

(2) They can correct an error or detect two errors on a
unit.

Before describing our method we give conceptual
diagram of our method in Figure 2.
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Figure 2. Conceptual diagram of our method
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wheref is any nonzero element of GF(2™).
(1)For any nonzero elementfof GF(2™) such that f{£)#0
Suppose that a code (m, m-s,3)Gy is a binary code that has
code length m and(m-s) information bits with minimum
distance 3. Then, for any basis

{gng,"':g(m—s)} (5)
that spans this code over GF(2),
{f_l(ﬂi)glaf_l(ﬁi)gZa'"af_l(ﬂi)g(m—s)} (6)

spans a (m,m-s) code DyoverGF(2). All of the elements in
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(6) may have even weights. If not so, an even weight
subcode of D; can be always constructed by the following
method:

(1) If only one element in (6) has odd weight in GF(2)
then the resulting (m-s-/) elements in (6) without the
odd-weight element spans a (m, m-s-I, 2) even weight
subcodes of D).

(2) If some elements in (6) have odd weights in GF(2)
then adding of any odd-weight element selected from (6)
and other odd-weight elements in (6) amounts to give a
basis fora (m, m-s-1) even weight subcodes of Dy.

Since we want to give a lower bound on coding rate of
our codes we shall use the above method to obtain even
weight subcode.

Now let Dy be the (m, m-s-1) even weight subcode of Dy
stated above and B a basis of Dy. The products of Bjand a
multiplier §; , then, spans a (m, m-s-1) code over GF(2). By
the above method, hence, we can construct a (m, m-s-2)
even weight subcode of D;, which is denoted by G,.
Obviously a basis of G, divided by f; spans a (m, m-s-2)
subcode of D;. We denote this code by D,. Consequently,
repeating this procedure by changing a multiplier from f; to
ﬂi(zm) produces (m, m-s-2T) code D, as shown in Figure
2. Finally, each user i uses non-zero codewords ofD,t as o;
in (1). Then, since code D4 is a subcode of D (s=0,1,2, -+,
2T-1) it follows that each unit u (u = I, 2,--,2T) in a
codeword has even weight.

(2) For any nonzero elementfof GF(2™) such that £8)=0

The procedure is the same as in (1) except starting with
(m, m-1, 2) even weight codes as Dy and G, respectively.

Resultingly the code length » and coding rate R of our
codesmeet the following expressions respectively.

n=2Tm @)
RZm—s—ZT:l_s+2T )
2m 2  2m

Note here that the numbers of the codewords each user
ihas are always not the same: it depends on the element fi
assigned to each user i. For example,when fi is equal to 1
the number of information bits assigned to user iism-I/,
which is always greater than m-s-27. And when

Br=Plix<y ©)
,codeDy4; can be equal to code Dy and this saves one
parity check bit: whether Eq.(9) holds or not depends only
the order of  in GF(2™). In other cases,which code to be
selected as Gy influences coding rate R since it might be
possible that code Dy would be an even weight code.

3. Decoding and Numerical Results

In this section we prove the error control ability of our
codes by giving a decoding method.

<decoding method>

[D1] Count the weight of each unit in a received word as
an m-tuple overGF(2).
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[D2-1] If there are some units that have odd weight, then
finish the decoding method: it means that some error
occurred on not a unit but some units.

[D2-2] If there is no unit or a unit that has odd weight,
then add all units in a received word r as an m-tuple over

GF(2) by modulo-2 addition. That is, for
2T

r=(7‘1|}"2|“-|l"2T_1|1”2T) N calculate S:er and
j=1

decode S by any decoding method of Gy. If the decoder
decides that an error occurred, then correct the error on the
unit detected by[D1]

Obviously,[D2-1] is true because each unit in (1) must
have even weight. From errors under consideration[D2-2]
means that either no error or an error occurred on a unit.
Hence ifuserij(j=1,2,--,L-1,L;L<T) in Figure 1 transmitted
their codewords including ajjas their information and an
error e occurred on the channel, then

L
S= a1+ B+ B +-+ ) +e

=1
L (10)
= Zaijf(ﬂy)"'e
=

Since a;j can be expressed as a product of f_l(ﬂij) and a

codeword of Gy, S amounts to an addition of a codeword of
Gy and e. This means that our codes have the error control
ability stated above.

As an example calculation we show the code length » and
minimum coding rate R of our codes constructed by using a
(2S—1, 21, 3)Hamming code as Gp. In this example
coding rate Rymeets the following expression.

1 s+2T

Ry, >————— 11
72 200 -1 an
Table 1. Parameters of Our Codes Based on Hamming Codes (T=2)

S n R

5 124 0.3548
6 252 04206
7 508 04566
8 1020 04765
9 2044 04873
10 4092 04931
11 8188 04963
12 16380 04980

This expression indicates that the coding rate ofour code
gets close to the same coding rate Ry of Cy, which has no
error control ability, as code lengh increases. In Table 1 we

show some parameters of our codes based on Hamming
codes when at most two users can transmit their codewords
simultaneously. With increasing the number of active users
the right hand of (11) gets smaller. But generally (4) tends
to have more solutions in GF(2™) reversely. Coding rate,
therefore, would be greater than one given by (11) when the
users assigned the solutions of (4) as Pi are included in
potential users.

4. Conclusions

In this paper we have proposed a coding method for a
noisybinary multiple-access adder channel. And by giving a
decoding methodit has been shown that besides uniquely
separable our codes have the property to control some
errorsoccurred within a segment in a codeword and be
uniquely separable whensome codewords superimposed.
Furthermore it was shown that our codes can have coding
rates close to the value which is associated with the uniquely
separable codes without error control ability like[5]. As
stated in this paper the selection of nonzero elements in
GF(2m) assigned to each user affects coding rate in a direct
fashion. So which element to be chosen is an important and
interesting problem.It is also future work to expand our
method to deal with several types of errors occurred on
transmission.
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