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Abstract  Th is paper investigates a numerical computation for determination of source terms in a linear parabolic problem. 
The source term 𝑤𝑤: = {𝐹𝐹(𝑥𝑥, 𝑡𝑡), 𝑝𝑝(𝑡𝑡)} is defined in the linear parabolic equation 𝑢𝑢𝑡𝑡 = (𝑘𝑘(𝑥𝑥)𝑢𝑢𝑥𝑥)𝑥𝑥 + 𝐹𝐹(𝑥𝑥, 𝑡𝑡) and Robin 
boundary condition −𝑘𝑘(𝑙𝑙)𝑢𝑢𝑥𝑥(𝑙𝑙 , 𝑡𝑡) = 𝜈𝜈 [𝑢𝑢(𝑙𝑙, 𝑡𝑡)− 𝑝𝑝(𝑡𝑡)] from the measured final data and the measurement of the temperature 
in a subregion. We demonstrate how to compute Fréchet derivative of Tikhonov functional based on the solution of the 
adjoint problem. Lipschitz continuity of the gradient is proved. Iteratively regularized gradient method is applied for 
numerical solution of the problem. We conclude with several numerical tests by using the theoretical results.   
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1. Introduction 
In describing the heat conduction in a material occupying 

a domain Ω𝑇𝑇 = {(𝑥𝑥, 𝑡𝑡) ∈ 𝑅𝑅2:  0 < 𝑥𝑥 < 𝑙𝑙 ,  0 < 𝑡𝑡 ≤ 𝑇𝑇} , the 
temperature distribution 𝑢𝑢(𝑥𝑥 , 𝑡𝑡) is modeled by  

𝑢𝑢𝑡𝑡 = (𝑘𝑘(𝑥𝑥)𝑢𝑢𝑥𝑥)𝑥𝑥 +𝐹𝐹(𝑥𝑥, 𝑡𝑡),   (𝑥𝑥, 𝑡𝑡) ∈ Ω𝑇𝑇 ,      (1) 
𝑢𝑢(𝑥𝑥 , 0) = 𝜇𝜇0(𝑥𝑥),   𝑥𝑥 ∈ (0, 𝑙𝑙),            (2) 

𝑢𝑢𝑥𝑥(0,𝑡𝑡) = 0,   − 𝑘𝑘(𝑙𝑙)𝑢𝑢𝑥𝑥(𝑙𝑙 , 𝑡𝑡) = 𝜈𝜈[𝑢𝑢(𝑙𝑙 , 𝑡𝑡) − 𝑝𝑝(𝑡𝑡)], 
𝑡𝑡 ∈ (0, 𝑇𝑇]                 (3) 

where 𝐹𝐹(𝑥𝑥 , 𝑡𝑡) denotes internal heat source, 𝑘𝑘(𝑥𝑥) is spatial 
varying heat conductivity, 𝜇𝜇0(𝑥𝑥) is an initial condition and 
𝑝𝑝(𝑡𝑡) denotes the convection between conducting body and 
the ambient environment.  If one cannot measure the pair 
𝑤𝑤: = {𝐹𝐹(𝑥𝑥 ,𝑡𝑡);𝑝𝑝(𝑡𝑡)} directly, one can try to determine 𝑤𝑤 
from the final state observation of 𝑢𝑢  

𝜑𝜑𝑇𝑇 (𝑥𝑥) = 𝑢𝑢(𝑥𝑥 , 𝑇𝑇), 𝑥𝑥 ∈ (0, 𝑙𝑙)         (4) 
and from the observation of 𝑢𝑢  over subregion Ω𝑡𝑡1

∘ =
(𝑥𝑥0,𝑥𝑥1) × (0, 𝑡𝑡1),   0 < 𝑥𝑥1 < 𝑥𝑥2 < 𝑙𝑙,  

𝜑𝜑(𝑥𝑥, 𝑡𝑡) = 𝑢𝑢(𝑥𝑥 , 𝑡𝑡),   (𝑥𝑥 , 𝑡𝑡) ∈ Ω𝑡𝑡1
∘       (5) 

Source term identificat ion problems like (3)-(4) appear in  
hydrology[2], material science[26], heat transfer[3] and 
transport problems[31].  

The problem of reconstructing the right hand side of a 
parabolic equation were investigated earlier in[18,20,23, 
24,28].  

 
* Corresponding author: 
erdem.arzu@gmail.com (Arzu Erdem) 
Published online at http://journal.sapub.org/ajcam 
Copyright © 2013 Scientific & Academic Publishing. All Rights Reserved 

The unique solvability  of inverse problem of determin ing 
the right hand side in the parabolic problem and the 
overdetermination condition are given in[12]. Determining 
the unknown function representing source terms in inverse 
heat conduction problems and gradient based iterative 
procedures for optimization problem have been presented 
in[30]. Based on the weak solution approach how the inverse 
problem can  be formulated for the pair 𝑤𝑤: = {𝐹𝐹(𝑥𝑥, 𝑡𝑡);𝑝𝑝(𝑡𝑡)} 
has been investigated in[16,17].  

To solve the inverse source problem one can use explicit  
and implicit methods[5,6,15,19,25]. Exp licit methods 
provide analytical solutions to the inverse source problem 
directly from measured data. Exp licit  methods are limited to 
simple medium geometries with spatially non-varying 
optical parameters . For more complex geometries and 
heterogeneous media no exp licit methods are available and 
implicit methods need to be employed. Implicit methods for 
solving the inverse source problem iteratively utilize a 
solution of a forward model to provide predicted 
measurement data. An update of an initial source distribution 
is sought by min imizing a functional that describes the 
goodness of a fit between the predicted and experimental 
data.  

Our approach is based on quasisolution approach. We also 
introduce an adjoint problem. Adjoint problem technique 
computes the gradient of the objective function. The concept 
of the adjoint problem technique can also be applied to 
similar inverse problems[10,13,14] o r sensitivity analysis 
where the derivative of an error function is sought. A distinct 
advantage of using that technique is relatively  simple 
numerical implementation and the resulting low 
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computational costs. In view of quasisolution approach,this 
inverse problem can be formulated as minimization problem 
for the objective function[27]. In most cases for the 
numerical solution of this minimizat ion problem gradient 
methods are used[4]. For this aim, in many applications 
various gradient formulas are either derived empirically, or 
computed numerically[21]. A lthough an empirical gradient 
formula has been employed with regularization 
algorithm,there was no mathematical framework for this 
formula. At the same t ime, we need to estimate the iteration 
parameter fo r any grad ient method. Choice of the iteration 
parameter defines various gradient methods,although in 
many situation estimations of this parameter is a  difficu lt 
problem. However,in the case of Lipschitz continuity of the 
gradient of the objective function the parameter can be 
estimated via the Lipschitz constant,which subsequently 
improves convergence properties of the iteration p rocess 
[29].  

In this paper we shall show how the adjo int problem 
technique can be readily utilized in proving Fréchet 
differentiability of the objective function. This has been 
hinted at in previous treatments[16]. Here we extend the 
objective function including the regularization parameter. 
Then we show how the Fréchet differentiab ility result is 
readily extended to examine Lipschitz continuity properties 
of the operator. Finally, we shall illustrate the application of 
our technique.  

The paper is outlined as follows. We summarize the basic 
notation and definition of regularized object ive function in 
Section 2. Fréchet differentiability of the objective function 
results proven in Section 3 gives a unique regularized 
solution of the inverse problem. Iteratively  regularized 
gradient method is proposed to obtain the numerical solution 
and some numerical examples are presented in Section 4 .  

2. Regularization Method 
Let us denote by 𝑊𝑊𝑇𝑇 ⊂ 𝐿𝐿2(Ω𝑇𝑇 ) × 𝐿𝐿2[0, 𝑇𝑇]  the set of 

admissible unknown sources 𝐹𝐹(𝑥𝑥, 𝑡𝑡) and 𝑝𝑝(𝑡𝑡). The scalar 
product in 𝑊𝑊𝑇𝑇  is defined as follows:  

< 𝑤𝑤1,𝑤𝑤2 >𝑊𝑊𝑇𝑇 : = �� 𝐹𝐹1
Ω𝑇𝑇

(𝑥𝑥, 𝑡𝑡)𝐹𝐹2 (𝑥𝑥, 𝑡𝑡)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

+ � 𝑝𝑝1

𝑇𝑇

0
(𝑡𝑡)𝑝𝑝2 (𝑡𝑡)𝑑𝑑𝑑𝑑,  ∀𝑤𝑤1,𝑤𝑤2 ∈ 𝑊𝑊𝑇𝑇 , 

where 𝑤𝑤𝑖𝑖 : = {𝐹𝐹𝑖𝑖 (𝑥𝑥 , 𝑡𝑡), 𝑝𝑝𝑖𝑖 (𝑡𝑡)},  𝑖𝑖 = 1,2. We also assume that 
𝑘𝑘(𝑥𝑥) ∈ 𝐿𝐿2(0, 𝑙𝑙),0 < 𝑘𝑘∗ ≤ 𝑘𝑘(𝑥𝑥) ≤ 𝑘𝑘∗.  

We denote the unique solution of problem (3) by 
𝑢𝑢(𝑥𝑥, 𝑡𝑡;𝑤𝑤), corresponding to this source term. The direct 
problem could  be to pred ict the evolution of the described 
system from knowledge of 𝑤𝑤: = {𝐹𝐹(𝑥𝑥, 𝑡𝑡), 𝑝𝑝(𝑡𝑡)}. We denote 
by 𝑉𝑉𝑇𝑇 ⊂ 𝐿𝐿2(0, 𝑙𝑙)  the set of measured output data 𝜑𝜑𝑇𝑇 (𝑥𝑥) 
and 𝑉𝑉𝑡𝑡1

∘ ⊂ 𝐿𝐿2(Ω𝑡𝑡1
∘ ) the set of measured output data 𝜑𝜑 (𝑥𝑥,𝑡𝑡) 

and set 𝑉𝑉 = 𝑉𝑉𝑡𝑡1
∘ × 𝑉𝑉𝑇𝑇 . Hence the inverse problem (3)-(4) can 

be formulated in the following operator form  
Φ[𝑤𝑤] = {𝜑𝜑 ,𝜑𝜑𝑇𝑇 }                (6) 

According to[8,9,10], the mapping Φ[⋅]:𝑊𝑊𝑇𝑇 → 𝑉𝑉  is 
defined to be the input-output mapping. We can  give the 
definit ion of scalar product in 𝑉𝑉 as similar as in 𝑊𝑊𝑇𝑇 :  

< 𝛷𝛷[𝑤𝑤1],Φ[𝑤𝑤2] >𝑉𝑉 : = �� 𝜑𝜑1
Ω𝑡𝑡1
∘

(𝑥𝑥 , 𝑡𝑡)𝜑𝜑2(𝑥𝑥 , 𝑡𝑡)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

+ � 𝜑𝜑1,𝑇𝑇

𝑙𝑙

0
(𝑥𝑥)𝜑𝜑2 ,𝑇𝑇 (𝑥𝑥)𝑑𝑑𝑑𝑑. 

There is a fundamental difference between the direct and 
the inverse problems. In all cases, the inverse problem is 
ill-posed or improperly posed in the sense of Hadamard, 
while the direct problem is well-posed. A mathematical 
model for a physical problem is called as well-posed in the 
sense that it has the following three properties:  

There exists a solution of the problem (existence).  
There is at most one solution of the problem (uniqueness).  
The solution depends continuously on the data (stability).  
When the operator Φ is a bounded, linear and in jective 

between Hilbert spaces 𝑊𝑊𝑇𝑇  and 𝑉𝑉 , and 𝜑𝜑 ∈ 𝑅𝑅({Φ,Φ𝑇𝑇 }), 
the existence and uniqueness of the mapping is clear. If the 
desired output data 𝜑𝜑 and 𝜑𝜑𝑇𝑇  are not attainable, one tries to 
get approximation 𝜑𝜑𝛿𝛿  and 𝜑𝜑𝑇𝑇𝛿𝛿  as close as possible 𝜑𝜑  and 
𝜑𝜑𝑇𝑇 , respectively. Then the function  

𝜑𝜑𝑇𝑇𝛿𝛿(𝑥𝑥): = 𝑢𝑢(𝑥𝑥, 𝑇𝑇 ;𝑤𝑤), 𝑥𝑥 ∈ (0, 𝑙𝑙)𝜑𝜑𝛿𝛿(𝑥𝑥 , 𝑡𝑡)
= 𝑢𝑢(𝑥𝑥, 𝑡𝑡;𝑤𝑤),   (𝑥𝑥, 𝑡𝑡) ∈ Ω 

will be defined to be the final state noisy output data and the 
noisy data over the subregion. For the analysis of the 
approximation quality of the regularized solutions, we 
require that a bound on the data noise  

∥ 𝜑𝜑 − 𝜑𝜑𝛿𝛿 ∥𝐿𝐿2 (Ω𝑡𝑡1
∘ ) +∥ 𝜑𝜑𝑇𝑇 − 𝜑𝜑𝑇𝑇𝛿𝛿 ∥𝐿𝐿2(0 ,𝑙𝑙)≤ 𝛿𝛿 . 

The problem to solve (3)-(4) with noise data 𝜑𝜑𝑇𝑇𝛿𝛿  may be 
equivalently reformulated as finding the min imum of the 
functional which has been given in[16] for the only final 
state output data :  

𝐽𝐽(𝑤𝑤) =∥ Φ[𝑤𝑤] −𝜑𝜑𝑇𝑇𝛿𝛿 ∥𝐿𝐿2 (0 ,𝑙𝑙)
2 ,  𝑤𝑤 ∈ 𝑊𝑊𝑇𝑇 . 

On the other hand, in the case where 𝑝𝑝(𝑡𝑡) is given, the 
inverse problem of determining 𝐹𝐹(𝑥𝑥 ,𝑡𝑡)  from the 
observation 𝑢𝑢(𝑥𝑥 , 𝑇𝑇),   𝑥𝑥 ∈ (0, 𝑙𝑙) , can be transformed to a 
Fredholm equation of the second kind, where there might 
exist a non-trivial solution which implies the non-uniqueness 
for such an inverse problem. Of course, the solution to this 
minimizat ion problem again does not depend continuously 
on the data. One possibility to restore stability is to add the 
data over the subregion and a penalty term to the functional 
involving the norm of 𝑤𝑤:  
𝐽𝐽𝛼𝛼(𝑤𝑤) =∥ Φ[𝑤𝑤]− {𝜑𝜑𝛿𝛿 ,𝜑𝜑𝑇𝑇𝛿𝛿} ∥𝑉𝑉2 + 𝛼𝛼 ∥ 𝑤𝑤 ∥𝑊𝑊𝑇𝑇

2 ,  𝑤𝑤 ∈ 𝑊𝑊𝑇𝑇  (7) 
The parameter 𝛼𝛼 > 0 is called regularization parameter. 

A regularized solution 𝑤𝑤𝛼𝛼𝛿𝛿  is defined by  
𝐽𝐽𝛼𝛼(𝑤𝑤𝛼𝛼𝛿𝛿): = inf

𝑤𝑤∈𝑊𝑊𝑇𝑇
𝐽𝐽𝛼𝛼 (𝑤𝑤). 

Regularization methods replace an ill-posed problem by a 
family of well-posed problems, their solution, called 
regularized solutions, are used as approximations to the 
desired solution of the inverse problem. These methods 
always involve some parameter measuring the closeness of 
the regularized and the original (unregularized) inverse 
problem, rules (and algorithms) for the choice of these 
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regularizat ion parameters as well as convergence properties 
of the regularized solutions are central points in the theory of 
these methods, since only they allow to finally and the right 
balance between stability and accuracy.  

3. Properties of Regularization Method 
This section contains the main results of this paper. In the 

forthcoming theorem, we prove that the the functional (7) is 
Fréchet differentiable and provide the exp licit form of the 
derivative. Let us give some preparat ions.  

Definition 3.1.  Let X, Y be normed spaces, and let U be 
an open subset of X. A  mapping 𝐹𝐹:𝑈𝑈 → 𝑌𝑌  is called Fréchet 
differentiable at 𝜑𝜑 ∈ 𝑈𝑈  if there exists a bounded linear 
operator 𝐹𝐹′ [𝜑𝜑]: 𝑋𝑋 → 𝑌𝑌  such that  

lim
ℎ→∞

𝐹𝐹(𝜑𝜑 + ℎ) −𝐹𝐹(𝜑𝜑)− 𝐹𝐹′ [𝜑𝜑]ℎ
∥ ℎ ∥

= 0 

The proof of the following lemma can be found in[16].  
Lemma 3.2.  Let 𝑢𝑢𝑖𝑖(𝑥𝑥, 𝑡𝑡;𝑤𝑤𝑖𝑖) be two solutions of direct 

problem (3) corresponding to admissible sources 𝑤𝑤𝑖𝑖 ∈
𝑊𝑊𝑇𝑇 ,  𝑖𝑖 = 1,2. The fo llowing equality holds:  

2 � [
𝑙𝑙

0
𝑢𝑢(𝑥𝑥, 𝑇𝑇;𝑤𝑤2) − 𝜑𝜑𝑇𝑇𝛿𝛿(𝑥𝑥)]Δ𝑢𝑢(𝑥𝑥, 𝑇𝑇)𝑑𝑑𝑑𝑑

= �� 𝜁𝜁
Ω𝑇𝑇

(𝑥𝑥, 𝑡𝑡;𝑤𝑤2 )Δ𝐹𝐹(𝑥𝑥 , 𝑡𝑡)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

+𝜈𝜈 ∫ 𝜁𝜁
𝑇𝑇

0 (𝑙𝑙 , 𝑡𝑡;𝑤𝑤2)Δ𝑝𝑝(𝑡𝑡)𝑑𝑑𝑑𝑑,        (8) 
where Δ𝐹𝐹 = 𝐹𝐹1 − 𝐹𝐹2 , Δ𝑝𝑝 = 𝑝𝑝1 − 𝑝𝑝2 , Δ𝑢𝑢(𝑥𝑥 ,𝑡𝑡) =
𝑢𝑢(𝑥𝑥, 𝑡𝑡;𝑤𝑤1) − 𝑢𝑢(𝑥𝑥 , 𝑡𝑡;𝑤𝑤2)  is the solution of the following 
sensitivity problem  

Δ𝑢𝑢𝑡𝑡 = (𝑘𝑘(𝑥𝑥)Δ𝑢𝑢𝑥𝑥)𝑥𝑥 + Δ𝐹𝐹(𝑥𝑥, 𝑡𝑡),   (𝑥𝑥 , 𝑡𝑡) ∈ Ω𝑇𝑇     (9) 
Δ𝑢𝑢(𝑥𝑥 , 0) = 0,   𝑥𝑥 ∈ (0, 𝑙𝑙)             (10) 
Δ𝑢𝑢𝑥𝑥(0, 𝑡𝑡) = 0,   − 𝑘𝑘(𝑙𝑙)Δ𝑢𝑢𝑥𝑥(𝑙𝑙 , 𝑡𝑡) 

= 𝜈𝜈[Δ𝑢𝑢(𝑙𝑙 , 𝑡𝑡) − Δ𝑝𝑝(𝑡𝑡) ],   𝑡𝑡 ∈ (0, 𝑇𝑇]       (11) 
and 𝜁𝜁(𝑥𝑥, 𝑡𝑡;𝑤𝑤2)  is the solution of the backward parabolic 
problem:  

�
𝜁𝜁𝑡𝑡 = −(𝑘𝑘(𝑥𝑥)𝜁𝜁𝑥𝑥)𝑥𝑥 ,   (𝑥𝑥, 𝑡𝑡) ∈ Ω𝑇𝑇 ,                                          (12)
𝜁𝜁(𝑥𝑥 , 𝑇𝑇) = 2�𝑢𝑢(𝑥𝑥 , 𝑇𝑇;𝑤𝑤2) − 𝜑𝜑𝑇𝑇𝛿𝛿(𝑥𝑥)�,   𝑥𝑥 ∈ (0, 𝑙𝑙),               (13)
𝜁𝜁𝑥𝑥 (0, 𝑡𝑡) = 0,   − 𝑘𝑘(𝑙𝑙)𝜁𝜁𝑥𝑥 (𝑙𝑙 , 𝑡𝑡) = 𝜈𝜈𝜈𝜈(𝑙𝑙 , 𝑡𝑡),   𝑡𝑡 ∈ (0, 𝑇𝑇].      (14)

� 

Lemma 3.3. Let  𝑢𝑢𝑖𝑖(𝑥𝑥 , 𝑡𝑡;𝑤𝑤𝑖𝑖 ) be two solutions of direct  
problem (3) corresponding to admissible sources 𝑤𝑤𝑖𝑖 ∈
𝑊𝑊𝑇𝑇 ,  𝑖𝑖 = 1,2. The fo llowing equality holds:  

2 �� [
Ω𝑡𝑡1
∘
𝑢𝑢(𝑥𝑥, 𝑡𝑡;𝑤𝑤2 )− 𝜑𝜑𝛿𝛿(𝑥𝑥, 𝑡𝑡)]Δ𝑢𝑢(𝑥𝑥 , 𝑡𝑡)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

= �� 𝜉𝜉
Ω𝑇𝑇

(𝑥𝑥, 𝑡𝑡;𝑤𝑤2 )Δ𝐹𝐹(𝑥𝑥 , 𝑡𝑡)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

+𝜈𝜈 ∫ 𝜉𝜉
𝑇𝑇

0 (𝑙𝑙 , 𝑡𝑡;𝑤𝑤2)Δ𝑝𝑝(𝑡𝑡)𝑑𝑑𝑑𝑑,           (15) 
where 𝜉𝜉(𝑥𝑥 , 𝑡𝑡;𝑤𝑤2 ) is the solution of the backward parabolic 
problem:  

�
𝜉𝜉𝑡𝑡 + (𝑘𝑘(𝑥𝑥)𝜉𝜉𝑥𝑥)𝑥𝑥 = 𝐹𝐹𝜉𝜉 (𝑥𝑥 , 𝑡𝑡),   (𝑥𝑥 , 𝑡𝑡) ∈ Ω𝑇𝑇 ,                         (16)
𝜉𝜉(𝑥𝑥 , 𝑇𝑇) = 0,   𝑥𝑥 ∈ (0, 𝑙𝑙),                                                       (17)
𝜉𝜉𝑥𝑥(0, 𝑡𝑡) = 0,   − 𝑘𝑘(𝑙𝑙)𝜉𝜉𝑥𝑥(𝑙𝑙 , 𝑡𝑡) = 𝜈𝜈𝜈𝜈(𝑙𝑙 , 𝑡𝑡),   𝑡𝑡 ∈ (0, 𝑇𝑇].     (18)

� 

with the fo llowing discontinuous right-hand side  

𝐹𝐹𝜉𝜉 (𝑥𝑥 , 𝑡𝑡) = �
−2[𝑢𝑢(𝑥𝑥 , 𝑡𝑡;𝑤𝑤2 )− 𝜑𝜑𝛿𝛿(𝑥𝑥 , 𝑡𝑡)] 𝑖𝑖𝑖𝑖 (𝑥𝑥 , 𝑡𝑡) ∈ Ω𝑡𝑡1

∘ ,
0 𝑖𝑖𝑖𝑖 (𝑥𝑥 , 𝑡𝑡) ∉ Ω𝑡𝑡1

∘ .
� 

Proof.  We start by replacing the left hand side of 
equality (15) with the right hand side of problem (18):  

2 �� [
Ω𝑡𝑡1
∘
𝑢𝑢(𝑥𝑥, 𝑡𝑡;𝑤𝑤2 )− 𝜑𝜑𝛿𝛿(𝑥𝑥, 𝑡𝑡)]Δ𝑢𝑢(𝑥𝑥 , 𝑡𝑡)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

= −∫∫ 𝐹𝐹𝜉𝜉Ω𝑇𝑇
(𝑥𝑥 , 𝑡𝑡)Δ𝑢𝑢(𝑥𝑥 , 𝑡𝑡)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑   

= −�� (
Ω𝑇𝑇

𝜉𝜉𝑡𝑡(𝑥𝑥, 𝑡𝑡) + (𝑘𝑘(𝑥𝑥)𝜉𝜉𝑥𝑥(𝑥𝑥, 𝑡𝑡))𝑥𝑥)Δ𝑢𝑢(𝑥𝑥 , 𝑡𝑡)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 . 

We use integration by parts  

2 �� [
Ω𝑡𝑡1
∘
𝑢𝑢(𝑥𝑥, 𝑡𝑡;𝑤𝑤2 )− 𝜑𝜑𝛿𝛿(𝑥𝑥, 𝑡𝑡)]Δ𝑢𝑢(𝑥𝑥 , 𝑡𝑡)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

= �� (
Ω𝑇𝑇

Δ𝑢𝑢𝑡𝑡 − (𝑘𝑘(𝑥𝑥)Δ𝑢𝑢𝑥𝑥)𝑥𝑥)𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉𝜉 − � [
𝑙𝑙

0
𝜉𝜉Δ𝑢𝑢]0

𝑇𝑇𝑑𝑑𝑑𝑑 

+ � [
𝑇𝑇

0
− 𝑘𝑘(𝑥𝑥)𝜉𝜉𝑥𝑥 Δ𝑢𝑢+ 𝑘𝑘(𝑥𝑥)Δ𝑥𝑥𝜉𝜉]0

𝑙𝑙 𝑑𝑑𝑑𝑑 

and employ init ial and boundary conditions of problems (11) 
and (18) we conclude the proof of the lemma.  

The following Lemma gives computation of the first 
variation of the functional (7).  

Lemma 3.4.  Let us denote by Ξ[𝑤𝑤2] = {𝜁𝜁(𝑥𝑥, 𝑡𝑡;𝑤𝑤2 ) +
𝜉𝜉(𝑥𝑥 , 𝑡𝑡;𝑤𝑤2 ), 𝜈𝜈(𝜁𝜁(𝑙𝑙 , 𝑡𝑡;𝑤𝑤2) + 𝜉𝜉(𝑙𝑙 , 𝑡𝑡;𝑤𝑤2 ))}. ∀𝑤𝑤1,𝑤𝑤2 ∈ 𝑊𝑊𝑇𝑇  the 
first variation of the functional (7) is given by  
𝐽𝐽𝛼𝛼(𝑤𝑤1)− 𝐽𝐽𝛼𝛼(𝑤𝑤2) =∥ {Δ𝑢𝑢 ,Δ𝑢𝑢(⋅, 𝑇𝑇)} ∥𝑉𝑉2 +< 𝛯𝛯[𝑤𝑤2] + 2𝛼𝛼𝑤𝑤2, 

Δ𝑤𝑤 >𝑊𝑊𝑇𝑇 +𝛼𝛼 ∥ Δ𝑤𝑤 ∥𝑊𝑊𝑇𝑇
2 .         (19) 

Proof.  By definit ion of the functional (7) we observe  
𝐽𝐽𝛼𝛼(𝑤𝑤1)− 𝐽𝐽𝛼𝛼(𝑤𝑤2) =∥ Φ[𝑤𝑤1]− �𝜑𝜑𝛿𝛿 ,𝜑𝜑𝑇𝑇𝛿𝛿� ∥𝑉𝑉2 + 𝛼𝛼 ∥ 𝑤𝑤1 ∥𝑊𝑊𝑇𝑇

2 −
∥ Φ[𝑤𝑤2] − �𝜑𝜑𝛿𝛿 ,𝜑𝜑𝑇𝑇𝛿𝛿� ∥𝑉𝑉2− 𝛼𝛼 ∥ 𝑤𝑤2 ∥𝑊𝑊𝑇𝑇

2    
=∥ Φ[𝑤𝑤1] ∥𝑉𝑉2− 2 < 𝛷𝛷[𝑤𝑤1], �𝜑𝜑𝛿𝛿 ,𝜑𝜑𝑇𝑇𝛿𝛿� >𝑉𝑉 −∥ Φ[𝑤𝑤2] ∥𝑉𝑉2 +
2 < 𝛷𝛷[𝑤𝑤2], �𝜑𝜑𝛿𝛿 ,𝜑𝜑𝑇𝑇𝛿𝛿� >𝑉𝑉+𝛼𝛼�∥ 𝑤𝑤1 ∥𝑊𝑊𝑇𝑇

2 −∥ 𝑤𝑤2 ∥𝑊𝑊𝑇𝑇
2 �    

=∥ Φ[𝑤𝑤1] ∥𝑉𝑉2 −∥ Φ[𝑤𝑤2] ∥𝑉𝑉2− 2 <
{𝛥𝛥𝛥𝛥, Δ𝑢𝑢(⋅,𝑇𝑇)}, {𝜑𝜑𝛿𝛿 ,𝜑𝜑𝑇𝑇𝛿𝛿} >𝑉𝑉+ 𝛼𝛼(∥ 𝑤𝑤1 ∥𝑊𝑊𝑇𝑇

2 −∥ 𝑤𝑤2 ∥𝑊𝑊𝑇𝑇
2 ).  

Employing some add and subtract tricks, we get  
𝐽𝐽𝛼𝛼(𝑤𝑤1)− 𝐽𝐽𝛼𝛼(𝑤𝑤2 ) =∥ Φ[𝑤𝑤1] ∥𝑉𝑉2 −< 𝛷𝛷[𝑤𝑤1],Φ[𝑤𝑤2] >𝑉𝑉 +<

𝛷𝛷[𝑤𝑤1],Φ[𝑤𝑤2] >𝑉𝑉 −∥ Φ[𝑤𝑤2] ∥𝑉𝑉2   − 2 < {𝛥𝛥𝛥𝛥, Δ𝑢𝑢(⋅
,𝑇𝑇,𝜑𝜑𝛿𝛿,𝜑𝜑𝑇𝑇𝛿𝛿>𝑉𝑉+𝛼𝛼∥𝑤𝑤1∥𝑊𝑊𝑇𝑇2−∥𝑤𝑤2∥𝑊𝑊𝑇𝑇2+𝛼𝛼<𝑤𝑤1,𝑤𝑤2>𝑊𝑊𝑇𝑇

−<𝑤𝑤1,𝑤𝑤2>𝑊𝑊𝑇𝑇    

=< 𝛷𝛷[𝑤𝑤1],Φ[𝑤𝑤1]− Φ[𝑤𝑤2] >𝑉𝑉 +
< 𝛷𝛷[𝑤𝑤1]− Φ[𝑤𝑤2],Φ[𝑤𝑤2] >𝑉𝑉− 2
< {𝛥𝛥𝛥𝛥, Δ𝑢𝑢(⋅, 𝑇𝑇)}, �𝜑𝜑𝛿𝛿 ,𝜑𝜑𝑇𝑇𝛿𝛿� >𝑉𝑉
+ 𝛼𝛼�< 𝑤𝑤1,𝑤𝑤1 − 𝑤𝑤2 >𝑊𝑊𝑇𝑇 +
< 𝑤𝑤1 − 𝑤𝑤2,𝑤𝑤2 >𝑊𝑊𝑇𝑇 )   

=< 𝛷𝛷[𝑤𝑤1] + Φ[𝑤𝑤2], {Δ𝑢𝑢, Δ𝑢𝑢(⋅, 𝑇𝑇)} >𝑉𝑉− 2
< {𝛥𝛥𝛥𝛥 , Δ𝑢𝑢(⋅, 𝑇𝑇)}, �𝜑𝜑𝛿𝛿 ,𝜑𝜑𝑇𝑇𝛿𝛿� >𝑉𝑉+𝛼𝛼
< 𝑤𝑤1 + 𝑤𝑤2 , Δ𝑤𝑤 >𝑊𝑊𝑇𝑇  

=∥ {Δ𝑢𝑢, Δ𝑢𝑢(⋅, 𝑇𝑇)} ∥𝑉𝑉2 + 2
< 𝛷𝛷[𝑤𝑤2]− {𝜑𝜑𝛿𝛿 ,𝜑𝜑𝑇𝑇𝛿𝛿}, {Δ𝑢𝑢, Δ𝑢𝑢(⋅, 𝑇𝑇)} >𝑉𝑉
+ 𝛼𝛼 ∥ Δ𝑤𝑤 ∥𝑊𝑊𝑇𝑇

2 + 2𝛼𝛼 < 𝑤𝑤2, Δ𝑤𝑤 >𝑊𝑊𝑇𝑇 . 
Finally, this with the integral identities (8) and (15) leads 

to  
2 < 𝛷𝛷[𝑤𝑤2] − �𝜑𝜑𝛿𝛿, 𝜑𝜑𝑇𝑇𝛿𝛿�, {Δ𝑢𝑢, Δ𝑢𝑢(⋅, 𝑇𝑇)} >𝑉𝑉=< 𝛯𝛯[𝑤𝑤2],Δ𝑤𝑤 >𝑊𝑊𝑇𝑇
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so completes the proof of lemma. Now, to obtain Fréchet 
differentiability of the functional (7), we need to show an 
estimation for the first term on right hand side of (19).  

Lemma 3.5.  There exists a constant 𝑐𝑐1 = 𝑐𝑐1(𝜈𝜈, 𝑘𝑘 , 𝑙𝑙) 
such that  

∥ Δ𝑢𝑢(⋅, 𝑇𝑇) ∥𝑉𝑉𝑇𝑇
2 ≤ 𝑐𝑐1 ∥ Δ𝑤𝑤 ∥𝑊𝑊𝑇𝑇

2        (20) 
where Δ𝑢𝑢(𝑥𝑥 , 𝑡𝑡) is solution of the parabolic problem (11).  

Proof. One can have this result due to Lemma 3.2 o f[16].  
Lemma 3.6. There exists a constant 𝑐𝑐2 = 𝑐𝑐2(𝜈𝜈 ,𝑘𝑘 , 𝑙𝑙) such 

that  
∥ Δ𝑢𝑢 ∥𝑉𝑉𝑡𝑡1

∘2 ≤ 𝑐𝑐2 ∥ Δ𝑤𝑤 ∥𝑊𝑊𝑇𝑇
2          (21) 

where Δ𝑢𝑢(𝑥𝑥 , 𝑡𝑡) is solution of the parabolic problem (11).  
Proof. Due to the energy equality  of the parabolic problem 

(11), we write  
1
2
� |Δ𝑢𝑢(𝑥𝑥 , 𝑡𝑡1)|2
𝑥𝑥1

𝑥𝑥0

𝑑𝑑𝑑𝑑 + � (𝑢𝑢𝑥𝑥(𝑥𝑥0,𝑡𝑡)2 + 𝜈𝜈Δ𝑢𝑢(𝑥𝑥1,𝑡𝑡)2)
𝑡𝑡1

0
𝑑𝑑𝑑𝑑

+ �� 𝑘𝑘
Ω𝑡𝑡1
∘

(𝑥𝑥)(Δ𝑢𝑢𝑥𝑥)2𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

= 𝜈𝜈� Δ
𝑡𝑡1

0
𝑢𝑢(𝑙𝑙 ,𝑡𝑡)Δ𝑝𝑝(𝑡𝑡)𝑑𝑑𝑑𝑑 + �� Δ

Ω𝑡𝑡1
∘

𝐹𝐹Δ𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢. 

Applying Cauchy 𝜀𝜀- inequality  to the right hand side of 
the above equality we obtain  

𝜈𝜈 � |Δ𝑢𝑢(𝑥𝑥1,𝑡𝑡)|2
𝑡𝑡1

0
𝑑𝑑𝑑𝑑 + �� 𝑘𝑘

Ω𝑡𝑡1
∘

(𝑥𝑥)(Δ𝑢𝑢𝑥𝑥)2𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

≤
𝜈𝜈𝜈𝜈
2
� |
𝑡𝑡1

0
Δ𝑢𝑢(𝑥𝑥1,𝑡𝑡)|2𝑑𝑑𝑑𝑑 

+ 𝜈𝜈
2𝜀𝜀
∫ |
𝑡𝑡1

0 Δ𝑝𝑝(𝑡𝑡)|2𝑑𝑑𝑑𝑑 + 𝜀𝜀
2
∫ ∫ |Ω𝑡𝑡1

∘ Δ𝑢𝑢(𝑥𝑥, 𝑡𝑡)|2𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 +
1

2𝜀𝜀
∫ ∫ |Ω𝑡𝑡1

∘ Δ𝐹𝐹(𝑥𝑥 , 𝑡𝑡)|2𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 .          (22) 

Since  

|Δ𝑢𝑢(𝑥𝑥1,𝑡𝑡)|2 = �� Δ
𝑥𝑥1

𝑥𝑥
𝑢𝑢𝜉𝜉 (𝜉𝜉 , 𝑡𝑡)𝑑𝑑𝑑𝑑 − Δ𝑢𝑢(𝑥𝑥1,𝑡𝑡)�

2

 

≤ 2𝑙𝑙 � |Δ𝑢𝑢𝑥𝑥(𝑥𝑥, 𝑡𝑡)|2
𝑥𝑥1

0
𝑑𝑑𝑑𝑑 + 2|Δ𝑢𝑢(𝑥𝑥1,𝑡𝑡)|2, 

we have  
∫ ∫ |Ω𝑡𝑡1

∘ Δ𝑢𝑢(𝑥𝑥, 𝑡𝑡)|2𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ≤ 2𝑙𝑙2∫ ∫ |Δ𝑢𝑢𝑥𝑥(𝑥𝑥, 𝑡𝑡)|2
Ω𝑡𝑡1
∘ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 +

2𝑙𝑙 ∫ |Δ𝑢𝑢(𝑥𝑥1,𝑡𝑡)|2𝑡𝑡1
0 𝑑𝑑𝑑𝑑.          (23) 

Using (23) on the right hand side of inequality (22) and 
lower bound of 𝑘𝑘(𝑥𝑥), we get the following estimate:  

�𝜈𝜈 −
𝜀𝜀𝜀𝜀
2
− 𝑙𝑙𝑙𝑙� � |Δ𝑢𝑢(𝑙𝑙 , 𝑡𝑡)|2

𝑡𝑡1

0
𝑑𝑑𝑑𝑑

+ (𝑘𝑘∗ − 𝑙𝑙2𝜀𝜀)�� |Δ𝑢𝑢𝑥𝑥(𝑥𝑥 , 𝑡𝑡) |2

Ω𝑡𝑡1
∘

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

≤
𝜈𝜈

2𝜀𝜀
� |
𝑡𝑡1

0
Δ𝑝𝑝(𝑡𝑡)|2𝑑𝑑𝑑𝑑 +

1
2𝜀𝜀
�� |

Ω𝑡𝑡1
∘
Δ𝐹𝐹(𝑥𝑥 , 𝑡𝑡)|2𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  

≤ max �
𝜈𝜈

2𝜀𝜀
,

1
2𝜀𝜀
� �� |

𝑇𝑇

0
Δ𝑝𝑝(𝑡𝑡)|2𝑑𝑑𝑑𝑑

+ �� |
Ω𝑇𝑇

Δ𝐹𝐹(𝑥𝑥 , 𝑡𝑡)|2𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�  . 

and satisfies  

𝜅𝜅�� |Δ𝑢𝑢(𝑙𝑙 , 𝑡𝑡)|2
𝑡𝑡1

0
𝑑𝑑𝑑𝑑 + 𝑙𝑙�� |Δ𝑢𝑢𝑥𝑥(𝑥𝑥 , 𝑡𝑡)|2

Ω𝑡𝑡1
∘

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�  

≤ max � 𝜈𝜈
2𝜀𝜀

, 1
2𝜀𝜀
��∫ |𝑇𝑇0 Δ𝑝𝑝(𝑡𝑡)|2𝑑𝑑𝑑𝑑+ ∫ ∫ |Ω𝑇𝑇

Δ𝐹𝐹(𝑥𝑥, 𝑡𝑡)|2𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�(24) 

where 𝜅𝜅 = min �𝜈𝜈 − 𝜀𝜀𝜀𝜀
2
− 𝑙𝑙𝑙𝑙 , 𝑘𝑘∗−𝑙𝑙

2𝜀𝜀
𝑙𝑙

�. In this case requiring 
𝜈𝜈 − 𝜀𝜀𝜀𝜀/2 − 𝑙𝑙𝑙𝑙 > 0 we obtain the bound 𝜀𝜀 < 2𝜈𝜈/(𝜈𝜈 + 2𝑙𝑙). 
Further from the requirement 𝑘𝑘∗ − 𝑙𝑙2𝜀𝜀 > 0  we have the 
second bound 𝜀𝜀 < 𝑘𝑘∗/𝑙𝑙2. Thus assuming for the parameter 
𝜀𝜀 > 0  

0 < 𝜀𝜀 < min �
2𝜈𝜈

𝜈𝜈 + 2𝑙𝑙
,
𝑘𝑘∗
𝑙𝑙2 �, 

Taking into account (23) and (24)  
�� |

Ω𝑡𝑡1
∘
Δ𝑢𝑢(𝑥𝑥 , 𝑡𝑡)|2𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 

≤ 𝑐𝑐2 �� |
𝑇𝑇

0
Δ𝑝𝑝(𝑡𝑡)|2𝑑𝑑𝑑𝑑 + �� |

Ω𝑇𝑇
Δ𝐹𝐹(𝑥𝑥 , 𝑡𝑡)|2𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑� 

where 𝑐𝑐2 = 2𝑙𝑙
𝜅𝜅

max � 𝜈𝜈
2𝜀𝜀

, 1
2𝜀𝜀
�.  

Theorem 3.7. Assume that 𝑘𝑘(𝑥𝑥) ∈ 𝐿𝐿2(0, 𝑙𝑙),0 < 𝑘𝑘∗ ≤
𝑘𝑘(𝑥𝑥) ≤ 𝑘𝑘∗  and Δ𝑢𝑢(𝑥𝑥 , 𝑡𝑡)  is the solution of the parabolic 
problem (11) corresponding to admissible source Δ𝑤𝑤 =
{Δ𝐹𝐹 , Δ𝑝𝑝}. Then, the functional (7) is Fréchet differentiab le, 
with Fréchet differential:  

𝐽𝐽′ 𝛼𝛼(𝑤𝑤)Δ𝑤𝑤 =< 𝛯𝛯[𝑤𝑤] + 2𝛼𝛼𝛼𝛼 , Δ𝑤𝑤 >𝑊𝑊𝑇𝑇 ,   ∀𝑤𝑤 ∈ 𝑊𝑊𝑇𝑇   (25) 
where Ξ[𝑤𝑤] = {𝜁𝜁(𝑥𝑥 ,𝑡𝑡;𝑤𝑤) + 𝜉𝜉(𝑥𝑥, 𝑡𝑡;𝑤𝑤),𝜈𝜈(𝜁𝜁(𝑙𝑙, 𝑡𝑡;𝑤𝑤) +
𝜉𝜉(𝑙𝑙 , 𝑡𝑡;𝑤𝑤))}.  

Proof.  We take the two sources 𝑤𝑤 + Δ𝑤𝑤, 𝑤𝑤 instead of 
𝑤𝑤1 , 𝑤𝑤2  in (19)  
𝐽𝐽𝛼𝛼(𝑤𝑤 + Δ𝑤𝑤)− 𝐽𝐽𝛼𝛼(𝑤𝑤) =∥ {Δ𝑢𝑢, Δ𝑢𝑢(⋅, 𝑇𝑇)} ∥𝑉𝑉2 +

< 𝛯𝛯[𝑤𝑤] + 2𝛼𝛼𝛼𝛼 , Δ𝑤𝑤 >𝑊𝑊𝑇𝑇 +𝛼𝛼 ∥ Δ𝑤𝑤 ∥𝑊𝑊𝑇𝑇
2 . 

Using the estimates in lemma 5 and lemma 6 , we have  
∥ {Δ𝑢𝑢, Δ𝑢𝑢(⋅, 𝑇𝑇)} ∥𝑉𝑉2 + 𝛼𝛼 ∥ Δ𝑤𝑤 ∥𝑊𝑊𝑇𝑇

2 = 𝑜𝑜(∥ Δ𝑤𝑤 ∥𝑊𝑊𝑇𝑇
2 ). 

Then due to Defin ition 1 we conclude Fréchet derivative 
of the functional (7)  

𝐽𝐽′ 𝛼𝛼(𝑤𝑤)Δ𝑤𝑤 =< 𝛯𝛯[𝑤𝑤] + 2𝛼𝛼𝛼𝛼 , Δ𝑤𝑤 >𝑊𝑊𝑇𝑇 ,   ∀𝑤𝑤 ∈ 𝑊𝑊. 
Theorem 3.8.  If conditions of Theorem 7 hold, then the 

functional (7) has a unique solution 𝑤𝑤𝛼𝛼𝛿𝛿  in 𝑊𝑊𝑇𝑇  for 𝛼𝛼 > 0. 
This minimum is given by the solution of the following 
equation:  

Ξ[𝑤𝑤] = −2𝛼𝛼𝛼𝛼,   ∀𝑤𝑤 ∈ 𝑊𝑊𝑇𝑇 . 
Moreover  

||𝑤𝑤𝛼𝛼𝛿𝛿||𝑊𝑊𝑇𝑇 ≤
∥ {𝜑𝜑𝛿𝛿 ,𝜑𝜑𝑇𝑇𝛿𝛿} ∥𝑉𝑉2

√𝛼𝛼
. 

Proof.  Assume that 𝑤𝑤𝛼𝛼𝛿𝛿  minimizes the functional (7). 
The choice Δ𝑤𝑤: = Ξ[𝑤𝑤] + 2𝛼𝛼𝛼𝛼 implies by (25) that  

Ξ[𝑤𝑤] = −2𝛼𝛼𝑤𝑤,   ∀𝑤𝑤 ∈ 𝑊𝑊𝑇𝑇 . 
To show that 𝑤𝑤𝛼𝛼𝛿𝛿  defined by the solution of above 

equation min imizes the functional (7), note that for all 
Δ𝑤𝑤 ∈ 𝑊𝑊𝑇𝑇 \{0}  the function 𝑔𝑔(𝑡𝑡): = 𝐽𝐽𝛼𝛼(𝑤𝑤𝛼𝛼𝛿𝛿 + 𝑡𝑡𝑡𝑡)  is a  
polynomial of degree 2 with 𝑔𝑔 ≥ 0 and 𝑔𝑔′ (0) = 0. Hence 
𝑔𝑔(𝑡𝑡) ≥ 𝑔𝑔(0),∀𝑡𝑡 ∈ 𝑅𝑅 with the equality only 𝑡𝑡 = 0 implies 
that 𝑤𝑤𝛼𝛼𝛿𝛿  is a min imization of the functional (7). Due to the 
convexity of the functional (7), we obtain the uniqueness of 
the solution. Since the functional (7) attains its min imum at
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𝑤𝑤𝛼𝛼𝛿𝛿  and 0 ∈ 𝑊𝑊𝑇𝑇 , we have  
inf
𝑤𝑤∈𝑊𝑊

𝐽𝐽𝛼𝛼 (𝑤𝑤) ≤ 𝐽𝐽𝛼𝛼(0), 

which implies  

||𝑤𝑤𝛼𝛼𝛿𝛿 ||𝑊𝑊𝑇𝑇 ≤
∥{𝜑𝜑𝛿𝛿 ,𝜑𝜑𝑇𝑇

𝛿𝛿}∥𝑉𝑉
2

√𝛼𝛼
          (26) 

A crucial question in  regularization methods is how to 
choose regularization parameters to obtain optimal 
convergence rates. Theorem 9 shows 𝑤𝑤𝛼𝛼𝛿𝛿  converges towards 
a solution of (6) in a set-valued sense with 𝛿𝛿 → 0  and 
𝛼𝛼 = 𝛿𝛿𝑝𝑝 ,  0 < 𝑝𝑝 < 2.  

Theorem 3.9.  Let 𝑊𝑊𝑇𝑇
∘ ⊂ 𝑊𝑊𝑇𝑇  be a weakly closed set and 

𝑤𝑤∗ be the exact solution of (6) in 𝑊𝑊0 . If Φ is inject ive and 
𝛼𝛼 = 𝛿𝛿𝑝𝑝 ,  0 < 𝑝𝑝 < 2, then 𝑤𝑤𝛼𝛼𝛿𝛿  converges to 𝑤𝑤∗ as 𝛿𝛿  tends 
to zero.  

Proof.  Let  us assume the contrary. Then there exist an 
𝜀𝜀 > 0 and a sequence 𝛿𝛿𝑘𝑘 → 0 such that  

||𝑤𝑤𝛼𝛼
𝛿𝛿𝑘𝑘 − 𝑤𝑤∗||𝑊𝑊𝑇𝑇 ≥ 𝜀𝜀 . 

Since the functional (7) attains its minimum at 𝑤𝑤𝛼𝛼
𝛿𝛿𝑘𝑘   

𝐽𝐽𝛼𝛼(𝑤𝑤𝛼𝛼
𝛿𝛿𝑘𝑘 ) = inf𝑤𝑤∈𝑊𝑊0 𝐽𝐽𝛼𝛼 (𝑤𝑤) ≤ 𝐽𝐽𝛼𝛼(𝑤𝑤∗) = ||Φ[𝑤𝑤∗]−

𝜑𝜑𝛿𝛿𝑘𝑘 ||𝑉𝑉2 + 𝛼𝛼||𝑤𝑤∗||𝑊𝑊𝑇𝑇
2 ≤ 𝛿𝛿𝑘𝑘

2 + 𝛼𝛼||𝑤𝑤∗||𝑊𝑊𝑇𝑇
2 .    (27) 

Hence  
||𝑤𝑤𝛼𝛼

𝛿𝛿𝑘𝑘 ||𝑊𝑊𝑇𝑇
2 ≤ 𝛿𝛿𝑘𝑘

2

𝛼𝛼
+ ||𝑤𝑤∗||𝑊𝑊𝑇𝑇

2 .       (28) 
According to condition of theorem there is a constant 𝑐𝑐 , 

independent of 𝛿𝛿𝑘𝑘 , such that 
𝛿𝛿𝑘𝑘

2

𝛼𝛼
≤ 𝑐𝑐 . Then we obtain 

||𝑤𝑤𝛼𝛼
𝛿𝛿𝑘𝑘 ||𝑊𝑊𝑇𝑇

2 ≤ 𝑐𝑐 + ||𝑤𝑤∗||𝑊𝑊𝑇𝑇
2 . Further, using the weak 

compactness of a ball in Hilbert space we conclude that 
{𝑤𝑤𝛼𝛼

𝛿𝛿𝑘𝑘 } converges weakly  to 𝑤𝑤 ∈ 𝑊𝑊𝑇𝑇
∘ , since 𝑊𝑊𝑇𝑇

∘ is a  weakly 
closed subset. Together with lower semicontinuity of the 
norm and inequality (28)  

||𝑤𝑤||𝑊𝑊𝑇𝑇 ≤ lim inf
𝑘𝑘→∞

| |𝑤𝑤𝛼𝛼
𝛿𝛿𝑘𝑘 ||𝑊𝑊𝑇𝑇  

≤ lim sup𝑘𝑘→∞ | |𝑤𝑤𝛼𝛼
𝛿𝛿𝑘𝑘 ||𝑊𝑊𝑇𝑇 ≤ ||𝑤𝑤∗||𝑊𝑊𝑇𝑇 .     (29) 

By (27)  
||Φ[𝑤𝑤𝛼𝛼

𝛿𝛿𝑘𝑘 ]− Φ[𝑤𝑤∗]||𝑉𝑉2

≤ 2 �||Φ[𝑤𝑤𝛼𝛼
𝛿𝛿𝑘𝑘 ]− 𝜑𝜑𝛿𝛿𝑘𝑘 ||𝑉𝑉2 + ||𝜑𝜑𝛿𝛿𝑘𝑘

−Φ[𝑤𝑤∗]||𝑉𝑉2 �
≤ 2 �𝐽𝐽𝛼𝛼(𝑤𝑤𝛼𝛼

𝛿𝛿𝑘𝑘 ) + ||𝜑𝜑𝛿𝛿𝑘𝑘 − Φ[𝑤𝑤∗]||𝑉𝑉2 �

≤ 2�𝛿𝛿𝑘𝑘
2 + 𝛼𝛼||𝑤𝑤∗||𝑊𝑊𝑇𝑇

2 + ||𝜑𝜑𝛿𝛿𝑘𝑘

−Φ[𝑤𝑤∗]||𝑉𝑉2 �. 

By limit transition as 𝑘𝑘 → ∞ , we conclude ||Φ[𝑤𝑤] −
Φ[𝑤𝑤∗]||𝑉𝑉 = 0, i.e., 𝑤𝑤 = 𝑤𝑤∗. Due to the weak converges we 
obtain 𝑤𝑤𝛼𝛼

𝛿𝛿𝑘𝑘 → 𝑤𝑤∗. This contradiction proves the theorem. 

4. Identification Process and 
Computational Results 

Another idea is to minimize the functional (7) by gradient 
method. This leads to the recursion formula of Conjugate 
Gradient Method  

𝑤𝑤𝑛𝑛+1 = 𝑤𝑤𝑛𝑛 − 𝛽𝛽𝑛𝑛𝑑𝑑𝑛𝑛 ,  𝑛𝑛 = 0,1,2          (30) 

where 𝛽𝛽𝑛𝑛  is the search step size, 𝑑𝑑𝑛𝑛  is the direction of 
descent, 𝑛𝑛 > 0 is the iteration parameter. The direction of 
descent 𝑑𝑑𝑛𝑛 is given as  

𝑑𝑑𝑛𝑛 = 𝐽𝐽′ 𝛼𝛼(𝑤𝑤𝑛𝑛 ) + 𝛾𝛾𝑛𝑛𝑑𝑑𝑛𝑛−1,   𝑤𝑤𝑛𝑛 = {𝐹𝐹𝑛𝑛 , 𝑝𝑝𝑛𝑛 }    (31) 
where different expression for the conjugation coefficient 
𝛾𝛾𝑛𝑛  can be found as Polak-Ribiere or Fletcher 
-Reeves[1,7,11] . In the Polak-Ribiere version of the 
conjugation coefficient 𝛾𝛾𝑛𝑛  can be obtained from the 
following expression:  

𝛾𝛾𝑛𝑛 =
<𝐽𝐽′ 𝛼𝛼(𝑤𝑤𝑛𝑛 ),𝐽𝐽′ 𝛼𝛼(𝑤𝑤𝑛𝑛 )−𝐽𝐽′ 𝛼𝛼(𝑤𝑤𝑛𝑛−1)>𝑊𝑊𝑇𝑇

||𝐽𝐽′ 𝛼𝛼 (𝑤𝑤𝑛𝑛−1)||𝑊𝑊𝑇𝑇
2      (32) 

In the Fletcher -Reeves version of the conjugation 
coefficient 𝛾𝛾𝑛𝑛  is given by the following expression:  

𝛾𝛾𝑛𝑛 =
||𝐽𝐽′ 𝛼𝛼 (𝑤𝑤𝑛𝑛 )||𝑊𝑊𝑇𝑇

2

||𝐽𝐽′ 𝛼𝛼 (𝑤𝑤𝑛𝑛 −1)||𝑊𝑊𝑇𝑇
2             (33) 

By using a first-order Taylor series approximation the 
following expression result for the step size 𝛽𝛽𝑛𝑛:  

𝛽𝛽𝑛𝑛 =
∫ [𝑙𝑙

0
𝑢𝑢(𝑥𝑥, 𝑇𝑇;𝑤𝑤𝑛𝑛 )− 𝜑𝜑𝑇𝑇𝛿𝛿(𝑥𝑥)]𝛥𝛥𝛥𝛥(𝑥𝑥 ,𝑇𝑇 ;𝑑𝑑𝑛𝑛 )𝑑𝑑𝑑𝑑

∫ [𝑙𝑙0 𝛥𝛥𝛥𝛥(𝑥𝑥 , 𝑇𝑇; 𝑑𝑑𝑛𝑛 )]2𝑑𝑑𝑑𝑑
+ 

∫∫ [𝛺𝛺𝑡𝑡1
∘ 𝑢𝑢(𝑥𝑥 ,𝑡𝑡;𝑤𝑤𝑛𝑛)−𝜑𝜑𝛿𝛿(𝑥𝑥,𝑡𝑡)]𝛥𝛥𝛥𝛥(𝑥𝑥,𝑡𝑡;𝑑𝑑𝑛𝑛)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

∫∫ [𝛺𝛺𝑡𝑡1
∘ 𝛥𝛥𝛥𝛥(𝑥𝑥,𝑡𝑡;𝑑𝑑𝑛𝑛)]2𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

    (34) 

To use a numerical method with rap id convergence 
properties in the solution of the inverse problem we must 
require h igher regularity properties on Φ defined by (6) than 
just continuity. In particular to generate an affine 
approximation to Φ required to be Fréchet differentiable 
that we have already obtained in the previous section. To 
obtain high-order convergence properties of the numerical 
method this Fréchet derivative must also be Lipschitz 
continuous.  

For the next results we refer to[16,17]  
Theorem 4.1. If 𝑢𝑢(𝑥𝑥, 𝑡𝑡;𝑤𝑤)  and 𝜓𝜓(𝑥𝑥 , 𝑡𝑡;𝑤𝑤)  are the 

solutions of problems (3) and (14), respectively then 
𝐽𝐽𝛼𝛼(𝑤𝑤) ∈ 𝐶𝐶 1,1(𝑊𝑊𝑇𝑇 ) and the following estimate holds:  
‖𝐽𝐽𝛼𝛼′ (𝑤𝑤) − 𝐽𝐽𝛼𝛼′ (𝑤𝑤�)‖ ≤ 𝐿𝐿‖𝑤𝑤 − 𝑤𝑤�‖ ,  ∀𝑤𝑤,𝑤𝑤� ∈ 𝑊𝑊𝑇𝑇 ,  𝐿𝐿 > 0. (35) 

Corollary 4.2. Assume that {𝑤𝑤𝑛𝑛 } ⊂𝑊𝑊𝑇𝑇 , 𝑤𝑤∗ ∈ 𝑊𝑊𝑇𝑇 . Then 
lim𝑛𝑛→∞ 𝑤𝑤𝑛𝑛 = 𝑤𝑤∗ implies lim𝑛𝑛→∞ 𝐽𝐽𝛼𝛼 (𝑤𝑤𝑛𝑛 ) = 𝐽𝐽𝛼𝛼(𝑤𝑤∗).  

The proof of monotonicity of the sequence {𝐽𝐽𝛼𝛼(𝑤𝑤𝑛𝑛 )} is 
given by Corollary 4.1 in[16].  

Theorem 4.3. The sequence {𝐽𝐽𝛼𝛼(𝑤𝑤𝑛𝑛 )} is a  monotone 
decreasing sequence. Moreover;  

lim
𝑛𝑛→∞

𝐽𝐽′ 𝛼𝛼 (𝑤𝑤𝑛𝑛 ) = 0 

Since an  expression for the grad ient 𝐽𝐽𝛼𝛼
′ (𝑤𝑤)  of the 

functional (7) is exp licitly available, and easily obtained by 
solving the adjoint problem (14), the gradient can be readily 
implemented. Gradient algorithm[22] applied to the 
optimization problem takes the form  

Step 1  Choose 𝑤𝑤0 , and set 𝑛𝑛 = 0.  
Step 2  So lve the direct  problem (3) with 𝑤𝑤 = 𝑤𝑤𝑛𝑛, and 

determine the residuals  
𝑢𝑢(𝑥𝑥 , 𝑇𝑇;𝑤𝑤𝑛𝑛 )− 𝜑𝜑𝑇𝑇𝛿𝛿(𝑥𝑥)and𝑢𝑢(𝑥𝑥 , 𝑡𝑡;𝑤𝑤𝑛𝑛 )− 𝜑𝜑𝛿𝛿(𝑥𝑥 , 𝑡𝑡). 

Step 3  So lve the adjoint problems (14) and (18)  
Step 4  Compute the gradient 𝐽𝐽𝛼𝛼

′ (𝑤𝑤𝑛𝑛 ) with (25).  
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Step 5  Update the conjugation coefficient 𝛾𝛾𝑛𝑛  from (32) 
or (33) and then the direction descent 𝑑𝑑𝑛𝑛 from (31).  

Step 6  By setting Δ𝑤𝑤𝑛𝑛 = 𝑑𝑑𝑛𝑛  solve the sensitivity 
problem (11) to obtain Δ𝑢𝑢(𝑥𝑥 , 𝑇𝑇; 𝑑𝑑𝑛𝑛 ) and Δ𝑢𝑢(𝑥𝑥 , 𝑡𝑡; 𝑑𝑑𝑛𝑛 ) on 
subregion .  

Step 7  Compute the step size 𝛽𝛽𝑛𝑛 form (34).  
Step 8  Update 𝑤𝑤𝑛𝑛+1  from (30).  
Step 9  Stop computing if the stopping criterion  

𝐽𝐽𝛼𝛼(𝑤𝑤𝑛𝑛+1) < 𝜀𝜀 
is satisfied. Otherwise set 𝑛𝑛 = 𝑛𝑛 + 1 and go to Step 2.  

Now, we perform some numerical experiments using the 
above algorithm.  

Example 4.4. In the first numerical experiment we take  
𝑢𝑢(𝑥𝑥, 𝑡𝑡) = cos ( 𝑥𝑥)(𝑒𝑒𝑡𝑡 + 𝑡𝑡 cos ( 𝑡𝑡2)),  (𝑥𝑥 , 𝑡𝑡)

∈ �0,
3𝜋𝜋
2
�× (0,2), 

𝐹𝐹(𝑥𝑥 , 𝑡𝑡) = cos ( 𝑥𝑥)(𝑒𝑒𝑡𝑡 + cos ( 𝑡𝑡2)− 2𝑡𝑡2 sin ( 𝑡𝑡2))
+ sin ( 𝑥𝑥)(𝑒𝑒𝑡𝑡 + 𝑡𝑡 cos ( 𝑡𝑡2)) + (1
+ 𝑥𝑥) cos ( 𝑥𝑥)(𝑒𝑒𝑡𝑡 + 𝑡𝑡 cos ( 𝑡𝑡2)), 

𝑘𝑘(𝑥𝑥) = 1 + 𝑥𝑥 ,  𝑥𝑥 ∈ �0,
3𝜋𝜋
2
�, 

𝑝𝑝(𝑡𝑡) = 9.5𝑒𝑒𝑡𝑡 + 9.5𝑡𝑡 cos ( 𝑡𝑡2),  𝑡𝑡 ∈ (0,2), 

𝜇𝜇0(𝑥𝑥) = cos (𝑥𝑥),  𝑥𝑥 ∈ �0,
3𝜋𝜋
2
�. 

The final state observation and the observation over the 
subregion (1.79,2.82) × (0,1.4) are given by  
𝜑𝜑𝑇𝑇 (𝑥𝑥) = 6.1 cos ( 𝑥𝑥)𝜑𝜑(𝑥𝑥, 𝑡𝑡) = cos ( 𝑥𝑥)(𝑒𝑒𝑡𝑡 + 𝑡𝑡 cos ( 𝑡𝑡2)). 
It is easy to check that 𝑢𝑢(𝑥𝑥 , 𝑡𝑡;𝑤𝑤) satisfies the problem (3) 

for 𝜈𝜈 = 0.6 . The noisy data 𝜑𝜑𝑇𝑇𝛿𝛿(𝑥𝑥)  and 𝜑𝜑𝛿𝛿(𝑥𝑥 , 𝑡𝑡)  are 
generated as follows:  

𝜑𝜑𝑇𝑇𝛿𝛿(𝑥𝑥) = 𝜑𝜑𝑇𝑇 (𝑥𝑥) + 𝛿𝛿𝛿𝛿 max
(0,2)

|𝜑𝜑𝑇𝑇 (𝑥𝑥)|𝜑𝜑𝛿𝛿(𝑥𝑥, 𝑡𝑡)

= 𝜑𝜑(𝑥𝑥, 𝑡𝑡) + 𝛿𝛿𝛿𝛿 max
(1.79 ,2.82) ×(0 ,1.4)

| 𝜑𝜑(𝑥𝑥, 𝑡𝑡)|, 

where 𝛿𝛿  is the noisy level and 𝜖𝜖 is generated by MATLAB 
function 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 . The exact solutions 𝐹𝐹(𝑥𝑥, 𝑡𝑡)  and 𝑝𝑝(𝑡𝑡) 
together with the numerical solutions for various values of 
the noisy level 𝛿𝛿 ∈ {4%, 8%} are shown in Figure 1. Due to 
the discrepancy principle we use the stopping criteria as 
𝐽𝐽𝛼𝛼(𝑤𝑤) < 𝜀𝜀  where the value of the tolerance 𝜀𝜀: =∥ 𝜑𝜑 −
𝜑𝜑𝛿𝛿 ∥𝐿𝐿2 (Ω𝑡𝑡1

∘ ) +∥ 𝜑𝜑𝑇𝑇 − 𝜑𝜑𝑇𝑇𝛿𝛿 ∥𝐿𝐿2 (0,𝑙𝑙 ) , for noisy free data 
𝜀𝜀: = 10−6 and the regularization parameter 𝛼𝛼 = 𝜀𝜀0.8   

Example 4.5. In the second numerical experiment we take  
𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 𝑥𝑥2 sin ( 𝑡𝑡),  (𝑥𝑥, 𝑡𝑡) ∈ (0, 𝜋𝜋) × (0,4), 

𝐹𝐹(𝑥𝑥, 𝑡𝑡) = 𝑥𝑥2 cos ( 𝑡𝑡)− 4 sin (𝑥𝑥) cos ( 𝑥𝑥)𝑥𝑥 sin ( 𝑡𝑡)

− 2(sin
2

( 𝑥𝑥) + 1) sin ( 𝑡𝑡),  (𝑥𝑥 , 𝑡𝑡)
∈ (0, 𝜋𝜋) × (0,4), 

𝑘𝑘(𝑥𝑥) = sin
2

(𝑥𝑥) + 1,  𝑥𝑥 ∈ (0, 𝜋𝜋), 
𝑝𝑝(𝑡𝑡) = 0.4𝜋𝜋 sin ( 𝑡𝑡) + 9.87 sin ( 𝑡𝑡),  𝑡𝑡 ∈ (0,4), 

𝜇𝜇0(𝑥𝑥) = 0,  𝑥𝑥 ∈ (0, 𝜋𝜋). 
The final state observation and the observation over the 

subregion (1.19,1.88) × (0,2.8) are given by  
𝜑𝜑𝑇𝑇 (𝑥𝑥) = −0.75𝑥𝑥2  
𝜑𝜑(𝑥𝑥 , 𝑡𝑡) = 𝑥𝑥2 sin ( 𝑡𝑡). 

𝑢𝑢(𝑥𝑥, 𝑡𝑡;𝑤𝑤) satisfies the problem (3) for 𝜈𝜈 = 5. The exact  
solutions 𝐹𝐹(𝑥𝑥, 𝑡𝑡)  and 𝑝𝑝(𝑡𝑡)  together with the numerical 
solutions for various values of the noisy level 𝛿𝛿 ∈ {1%, 2%} 
are presented in Figure 2. The stopping criteria is 𝜀𝜀: = 10−6 
for noisy free data and the regularization parameter 𝛼𝛼 = 𝜀𝜀1.4   
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Figure 1.  Results obtained by conjugate gradient method for Example 4.4 

 



20 Arzu Erdem:  Iteratively Regularized Gradient Method for Determination of Source Terms in a  
Linear Parabolic Problem 

 

 
Figure 2.  Exact solution and and numerical experiment of 𝑭𝑭(𝒙𝒙,𝒕𝒕) and 𝒑𝒑(𝒕𝒕) for various amounts of noise p ={1, 2}% for Example 4.5 

Example 4.6.  Th is example tries to reconstruct both 𝐹𝐹(𝑥𝑥 , 𝑡𝑡) and 𝑝𝑝(𝑡𝑡) when an analytical solution for the problem (3) is 
not available:  

𝐹𝐹(𝑥𝑥 , 𝑡𝑡) = 𝑡𝑡 sin (𝑥𝑥),  (𝑥𝑥, 𝑡𝑡) ∈ (0, 𝜋𝜋) × (0, 𝜋𝜋), 
𝑘𝑘(𝑥𝑥) = 1,  𝑥𝑥 ∈ (0, 𝜋𝜋), 

𝑝𝑝(𝑡𝑡) = cos ( 𝑡𝑡),  𝑡𝑡 ∈ (0, 𝜋𝜋), 
𝜇𝜇0(𝑥𝑥) = 0,  𝑥𝑥 ∈ (0, 𝜋𝜋). 

The final state observation and the observation over the subregion (0.59,2.51) × (0,2.19) are computed by numerically 
for 𝜈𝜈 = 1. The exact solutions 𝐹𝐹(𝑥𝑥, 𝑡𝑡) and 𝑝𝑝(𝑡𝑡) together with the numerical solutions for various values of the noisy level 
𝛿𝛿 ∈ {2%, 4%} are p resented in Figure 3. The stopping criteria is 𝜀𝜀 : = 10−6  for noisy free data and the regularization 
parameter 𝛼𝛼 = 𝜀𝜀1.8 .  
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Figure 3.  Exact solution and construction of 𝑭𝑭(𝒙𝒙,𝒕𝒕) and 𝒑𝒑(𝒕𝒕) for various amounts of noise p ={2, 4}% for Example 4.6 

Table 1.  The values of 𝒊𝒊𝒊𝒊, 𝒆𝒆𝑭𝑭(%) and 𝒆𝒆𝒑𝒑(%) with various noisy level 

for Example4.4, Example4.5 and Example4.6 

Example 4.4 

𝛿𝛿 0 4% 8% 

𝑖𝑖𝑖𝑖 101 163 103 

𝑒𝑒𝐹𝐹(%) 1.21% 4.40% 4.42% 

𝑒𝑒𝑝𝑝(%) 5.57% 18.01% 18.42% 

Example 4.5 

𝛿𝛿 0 1% 2% 

𝑖𝑖𝑖𝑖 439 349 227 

𝑒𝑒𝐹𝐹(%) 3.19% 14.24% 18.35% 

𝑒𝑒𝑝𝑝(%) 11.85% 34.94% 43.64% 

Example 4.6 

𝛿𝛿 0 2% 4% 

𝑖𝑖𝑖𝑖 44 49 41 

𝑒𝑒𝐹𝐹(%) 0.11% 3.07% 7.08% 

𝑒𝑒𝑝𝑝(%) 1.16% 11.51% 23.67% 

In Table 1 we present some numerical results for the 
stopping iteration numbers and the percentage error in 
𝐹𝐹(𝑥𝑥 , 𝑡𝑡)  and 𝑝𝑝(𝑡𝑡) . Here we use the symbol 𝑖𝑖𝑖𝑖  as the 
stopping iteration numbers, 𝑒𝑒𝐹𝐹(%): =

||𝐹𝐹−𝐹𝐹�||𝐶𝐶(𝛺𝛺 𝑇𝑇 )

||𝐹𝐹||𝐶𝐶 (𝛺𝛺 𝑇𝑇)
∗ 100 and 

𝑒𝑒𝑝𝑝 (%): =
||𝑝𝑝−𝑝𝑝�||𝐶𝐶(0,𝑇𝑇)

||𝑝𝑝 ||𝐶𝐶 (0,𝑇𝑇)
∗ 100  as the percentage error in  

𝐹𝐹(𝑥𝑥 , 𝑡𝑡)  and 𝑝𝑝(𝑡𝑡) , respectively where 𝐹𝐹�  and 𝑝𝑝�  are 
approximate value of 𝐹𝐹(𝑥𝑥, 𝑡𝑡) and 𝑝𝑝(𝑡𝑡).  
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