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Preconditioned SOR Iterative Methods for 𝑳𝑳 −𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦  
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Abstract  A preconditioner of the type 𝐼𝐼 + 𝑆𝑆  for speeding up convergence of the successive overrelaxat ion (SOR) 
iterative method for solving linear system 𝐴𝐴𝐴𝐴 = 𝑏𝑏  is proposed. Two forms of the preconditioned SOR iteration are obtained 
and implemented, under limited conditions imposed on the coefficient matrix o f the orig inal linear system. Convergence 
properties are analyzed and established in conformity with standard procedures. The rates of convergence of the 
preconditioned iterations are shown to supersede that of the SOR method. Numerical experiments confirmed the established 
theoretical results. 
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1. Introduction 
Suppose the linear system of equations 

𝐴𝐴𝐴𝐴 = 𝑏𝑏                   (1) 
is such that 𝐴𝐴 ∈ 𝑅𝑅(𝑛𝑛×𝑛𝑛)  is an 𝐿𝐿 − matrix, 𝑏𝑏 ∈ 𝑅𝑅𝑛𝑛 is the 
right-hand side vector, and 𝑥𝑥 ∈ 𝑅𝑅𝑛𝑛  is the vector of 
unknown. All the numerical methods for solution of a linear 
system can be categorised into two thus; direct and iterative 
methods. 

A direct method is one that produces the exact solution of 
a linear system by performing a prescribed, finite number of 
operations (steps), if there were no round-off error. 
Examples of direct methods for solving linear systems 
include, g raphical method, matrix inversion method, 
Cramer’s rule, elimination of unknowns, Gaussian 
elimination and LU decomposition. However, because 
direct methods are mostly restricted to small systems of 
linear equations, iterative methods remain  the dominating 
and preferred  techniques for solving very  large linear 
systems. 

An iterative method for solving a linear system consists of 
a process whereby the system 𝐴𝐴𝐴𝐴 = 𝑏𝑏  is converted into an 
equivalent system of the form 

𝑥𝑥 = 𝐺𝐺𝐺𝐺 + 𝑘𝑘               (2) 
What follows next is applicat ion of the general linear 

iteration formula 
𝑥𝑥(𝑛𝑛) = 𝐺𝐺𝑛𝑛𝑥𝑥(𝑛𝑛−1) + 𝑘𝑘𝑛𝑛              (3) 

where 𝐺𝐺𝑛𝑛  , referred to as the Iteration matrix, is a matrix 
depending upon 𝐴𝐴 and 𝑥𝑥 , and 𝑘𝑘𝑛𝑛  is a column vector. At 
each step of the iterat ion a solution vector, 𝑥𝑥(𝑛𝑛), that more 
accurately approximates the solution to the linear system  
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than its predecessor, is produced. This sequence 𝑥𝑥(𝑛𝑛) should 
be so defined that lim𝑛𝑛→∞ 𝑥𝑥(𝑛𝑛) = 𝐴𝐴−1𝑏𝑏. For any iterat ion to 
be convergent, the spectral rad ius of the iteration matrix must 
be less than 1[1]. 

Iterative methods are further classified into two main  
types, namely, stationary and nonstationary iterative 
methods. Stationary iterative methods are those methods that 
can be expressed in the form  

𝑥𝑥(𝑛𝑛) = 𝐺𝐺𝑥𝑥(𝑛𝑛−1) + 𝑘𝑘                (4) 
where neither 𝐺𝐺  nor 𝑘𝑘  depend upon the iteration count 
𝑛𝑛 [2]. Stationary methods are simpler to implement and 
understood compared to nonstationary methods. However, 
they are usually not effective when used alone; hence the 
need to implement them along with preconditioners. If we 
assume that  𝐴𝐴 = 𝐼𝐼 − 𝐿𝐿 − 𝑈𝑈, where 𝐼𝐼 is the identity matrix, 
−𝐿𝐿  the strictly lower triangular part of 𝐴𝐴 , and –𝑈𝑈  the 
strictly upper triangular part  of 𝐴𝐴 , then the successive 
overrelaxat ion method as invented by[3] has the following 
matrix from 

𝑥𝑥(𝑛𝑛) = 𝐺𝐺𝑆𝑆𝑆𝑆𝑆𝑆 𝑥𝑥(𝑛𝑛−1) + (𝐼𝐼 − 𝜔𝜔𝜔𝜔)−1𝜔𝜔𝜔𝜔         (5) 
where 𝐺𝐺𝑆𝑆𝑆𝑆𝑆𝑆 = (𝐼𝐼 −𝜔𝜔𝜔𝜔)−1{(1 − 𝜔𝜔)𝐼𝐼 + 𝜔𝜔𝜔𝜔}  is the SOR 
iteration matrix. Various authors have introduced 
preconditioners for accelerating the convergence of the SOR 
method[4 -9]. 

2. Materials and Methods 
Consider the preconditioner 𝑃𝑃 = 𝐼𝐼 + 𝑆𝑆 , where 
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The above preconditioning matrix is applied to the 
coefficient matrix 𝐴𝐴 of system (1) thus 

𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑃𝑃𝑃𝑃                  (7) 
which results into the equivalent preconditioned system 

𝐴̅𝐴𝑥𝑥 = 𝑏𝑏�                    (8) 
where 𝐴̅𝐴 = 𝑃𝑃𝑃𝑃 and 𝑏𝑏� = 𝑃𝑃𝑃𝑃 . The preconditioned coefficient 
matrix 𝐴̅𝐴 is further analyzed as follows. 

   𝐴̅𝐴 = 𝑃𝑃𝑃𝑃 = (𝐼𝐼 + 𝑆𝑆)𝐴𝐴 = 𝐴𝐴 + 𝑆𝑆𝑆𝑆            (9) 
= 𝐼𝐼 − 𝐿𝐿 − 𝑈𝑈 + 𝑆𝑆 − 𝑆𝑆𝑆𝑆 − 𝑆𝑆𝑆𝑆           (10) 

= 𝐼𝐼 − 𝐿𝐿 − 𝑈𝑈 + (𝑆𝑆) − (𝑆𝑆𝑆𝑆 + 𝑆𝑆𝑆𝑆)       (11) 
Further splittings of the bracket terms in (11) are obtained 

as follows. 
𝑆𝑆 = −𝐿𝐿𝑆𝑆 − 𝑈𝑈𝑆𝑆                  (12) 

−𝑆𝑆𝑆𝑆 − 𝑆𝑆𝑆𝑆 = 𝐷𝐷1 − 𝐿𝐿1 − 𝑈𝑈1           (13) 
Thus  
𝐴̅𝐴 = (𝐼𝐼 + 𝐷𝐷1)− (𝐿𝐿 + 𝐿𝐿𝑆𝑆 + 𝐿𝐿1)− (𝑈𝑈 + 𝑈𝑈𝑆𝑆 +𝑈𝑈1 )  (14) 

or equivalently 
𝐴̅𝐴  = 𝐷𝐷�  − 𝐿𝐿�  − 𝑈𝑈�                (15) 

where 𝐷𝐷� = 𝐼𝐼 + 𝐷𝐷1  is the diagonal, −𝐿𝐿� = −(𝐿𝐿 + 𝐿𝐿𝑆𝑆 + 𝐿𝐿1) 
and −𝑈𝑈� = −(𝑈𝑈 + 𝑈𝑈𝑆𝑆 + 𝑈𝑈1)  are strictly lower and strictly 
upper triangular parts of 𝐴̅𝐴 respectively. 

The application of overrelaxat ion parameter 𝜔𝜔  to the 
preconditioned linear system (8) y ields 

𝜔𝜔𝐴̅𝐴𝑥𝑥 = 𝜔𝜔𝑏𝑏�                 (16) 
where, 

𝜔𝜔𝐴̅𝐴 = 𝜔𝜔(𝐷𝐷� − 𝐿𝐿� − 𝑈𝑈�)             (17) 
= (𝐼𝐼 − 𝜔𝜔𝐿𝐿�)− (1 − 𝜔𝜔) 𝐼𝐼 − 𝜔𝜔(𝑈𝑈�− 𝐷𝐷1)      (18) 

Thus 
𝜔𝜔𝐴̅𝐴 = (𝐼𝐼 − 𝜔𝜔𝐿𝐿�)− [(1 − 𝜔𝜔) 𝐼𝐼 + 𝜔𝜔(𝑈𝑈�− 𝐷𝐷1)]   (19) 

is a regular splitting of 𝜔𝜔𝐴̅𝐴 = 𝑀𝑀 − 𝑁𝑁, where 
𝑀𝑀 = (𝐼𝐼 − 𝜔𝜔𝐿𝐿�) and 𝑁𝑁 = [(1 − 𝜔𝜔)𝐼𝐼 + 𝜔𝜔(𝑈𝑈�− 𝐷𝐷1)]  (20) 

Hence, the following preconditioned SOR iterat ive 
scheme is obtained. 

𝑥𝑥(𝑛𝑛+1) = 𝐺𝐺1𝑥𝑥
(𝑛𝑛) + 𝑀𝑀−1𝜔𝜔𝑏𝑏�              (21) 

And the preconditioned SOR iterative matrix 𝐺𝐺1  has the 
representation 

𝐺𝐺1 = (𝐼𝐼 − 𝜔𝜔𝐿𝐿�)−1[(1 − 𝜔𝜔) 𝐼𝐼 + 𝜔𝜔(𝑈𝑈�− 𝐷𝐷1)]    (22) 
Similarly, 

= (𝐷𝐷� − 𝜔𝜔𝐿𝐿�)− [(1 − 𝜔𝜔)𝐷𝐷� + 𝜔𝜔𝑈𝑈�]        (23) 
is another splitting of the the preconditioned coefficient 
matrix 𝜔𝜔𝐴̅𝐴 = 𝑀𝑀 − 𝑁𝑁, with  

𝑀𝑀 = (𝐷𝐷�− 𝜔𝜔𝐿𝐿�) and 𝑁𝑁 = [(1 − 𝜔𝜔)𝐷𝐷�+ 𝜔𝜔𝑈𝑈�]    (24) 
And this leads to the second preconditioned SOR iterat ive 

scheme   
𝑥𝑥(𝑛𝑛+1) = 𝐺𝐺2𝑥𝑥

(𝑛𝑛) + 𝑀𝑀−1𝜔𝜔𝑏𝑏�             (25) 

with the second preconditioned iterative matrix 𝐺𝐺2  having 
the representation 

𝐺𝐺2 = (𝐷𝐷�− 𝜔𝜔𝐿𝐿�)−1[(1 −𝜔𝜔)𝐷𝐷� +𝜔𝜔𝑈𝑈�]        (26) 

3. Convergence Analysis 
Convergence of the preconditioned iterative schemes (21) 

and (25) is established by showing that the spectral radii of 
the 𝐺𝐺1  and 𝐺𝐺2  are less than 1 in each case. 

Lemma 3.1 (Varga[10] ): Let 𝐴𝐴 ≥ 𝑂𝑂 be an irreducible 
𝑛𝑛 × 𝑛𝑛 matrix. Then, 

i. 𝐴𝐴 has a positive real eigenvalue equal to its spectral  
radius. 
ii. To 𝜌𝜌(𝐴𝐴) there corresponds an eigenvector 𝑥𝑥 > 0. 
iii. 𝜌𝜌(𝐴𝐴) increases when any entry of 𝐴𝐴 increases. 
iv. 𝜌𝜌(𝐴𝐴) is a simple eigenvalue of 𝐴𝐴. 
Lemma 3.2 (Varga[10] ): Let 𝐴𝐴 be a nonnegative matrix. 

Then 
i. If 𝛼𝛼𝛼𝛼 ≤ 𝐴𝐴𝐴𝐴 for some nonnegative vector 𝑥𝑥, 𝑥𝑥 ≠ 0, then  
𝛼𝛼 ≤ 𝜌𝜌(𝐴𝐴). 
ii. If 𝐴𝐴𝐴𝐴 ≤ 𝛽𝛽𝛽𝛽  for some positive vector 𝑥𝑥 , then 𝜌𝜌(𝐴𝐴) ≤

𝛽𝛽. Moreover, if 𝐴𝐴 is irreducib le and if 0 ≠ 𝛼𝛼𝛼𝛼 ≤ 𝐴𝐴𝐴𝐴 ≤ 𝛽𝛽𝛽𝛽  
for some nonnegative vector 𝑥𝑥 , then 𝛼𝛼 ≤ 𝜌𝜌(𝐴𝐴) ≤ 𝛽𝛽  and 𝑥𝑥  
is a positive vector.  

Lemma 3.1  (Li  and Sun[11] ): Let 𝐴𝐴 = 𝑀𝑀− 𝑁𝑁  be an 
𝑀𝑀 − splitting of 𝐴𝐴 . Then the splitting is convergent, 
i.e., 𝜌𝜌(𝑀𝑀−1𝑁𝑁 < 1) , if and only if 𝐴𝐴  is a nonsingular 
𝑀𝑀 −matrix. 

By employing the foregoing lemmas (lemmas 3.1 - 3.3), 
the next three theorems are proposed to establish 
convergence of the preconditioned iterative methods. 

Theorem 3.1: Let 𝐺𝐺𝑆𝑆𝑆𝑆𝑆𝑆 = (𝐼𝐼 − 𝜔𝜔𝜔𝜔)−1[(1 −𝜔𝜔) 𝐼𝐼 + 𝜔𝜔𝜔𝜔] 
be the SOR iteration matrix while 𝐺𝐺1 = (𝐼𝐼 − 𝜔𝜔𝐿𝐿�)−1[(1 −
𝜔𝜔𝐼𝐼+𝜔𝜔(𝑈𝑈−𝐷𝐷1)]  and 𝐺𝐺2=𝐷𝐷−𝜔𝜔𝐿𝐿−1[1−𝜔𝜔𝐷𝐷+𝜔𝜔𝑈𝑈]  be the 
preconditioned SOR iteration matrices. If 𝐴𝐴 is an irreducible 
𝐿𝐿 −matrix with 0 ≤ 𝑎𝑎1𝑖𝑖 𝑎𝑎𝑖𝑖1 + 𝑎𝑎𝑖𝑖 ,𝑖𝑖+1𝑎𝑎𝑖𝑖+1,𝑖𝑖  < 1, 𝑖𝑖 = 2(1)𝑛𝑛 , 
and 0 < 𝜔𝜔 < 1 , then 𝐺𝐺𝑆𝑆𝑆𝑆𝑆𝑆 , 𝐺𝐺1  and 𝐺𝐺2  are nonnegative 
and irreducible matrices. 

Proof  
Since 𝐴𝐴  is an  𝐿𝐿 − matrix, 𝐿𝐿 ≥ 0  and 𝑈𝑈 ≥ 0.  Now, 

(𝐼𝐼 − 𝜔𝜔𝜔𝜔)−1 = 𝐼𝐼 + 𝜔𝜔𝜔𝜔 + 𝜔𝜔2𝐿𝐿2 + ∙∙∙  +𝜔𝜔𝑛𝑛−1𝐿𝐿𝑛𝑛−1 ≥ 0,  
(1 − 𝜔𝜔 )𝐼𝐼 + 𝜔𝜔𝜔𝜔 ≥ 0 , for 0 < 𝜔𝜔 < 1 . Thus 𝐺𝐺𝑆𝑆𝑆𝑆𝑆𝑆 =
(𝐼𝐼 − 𝜔𝜔𝜔𝜔)−1[(1 − 𝜔𝜔)𝐼𝐼 + 𝜔𝜔𝜔𝜔] ≥ 0 . Hence, 𝐺𝐺𝑆𝑆𝑆𝑆𝑆𝑆  is  a  
nonnegative matrix.  

One can also obtain that for 0 < 𝜔𝜔 < 1, 
𝐺𝐺𝑆𝑆𝑆𝑆𝑆𝑆 = [𝐼𝐼 + 𝜔𝜔𝜔𝜔 + 𝜔𝜔2𝐿𝐿2 + ∙∙∙ +𝜔𝜔𝑛𝑛−1𝐿𝐿𝑛𝑛−1][(1 − 𝜔𝜔) 𝐼𝐼 + 𝜔𝜔𝜔𝜔]                       (27) 

= (1 −𝜔𝜔) 𝐼𝐼 + 𝜔𝜔(1 − 𝜔𝜔)𝐿𝐿 + 𝜔𝜔𝜔𝜔 + 𝜔𝜔2𝐿𝐿𝐿𝐿 + 𝜔𝜔2(1 − 𝜔𝜔)𝐿𝐿2 + 𝜔𝜔3𝐿𝐿2𝑈𝑈+ ∙∙∙                      (28) 
= (1 −𝜔𝜔) 𝐼𝐼 + 𝜔𝜔(1 − 𝜔𝜔)𝐿𝐿 + 𝜔𝜔𝜔𝜔 + nonnegative  terms                         (29) 

Since 𝐴𝐴 = 𝐷𝐷 − 𝐿𝐿 − 𝑈𝑈  is irreducible, so also is 𝐷𝐷−1𝐴𝐴 = 𝐼𝐼 − 𝐿𝐿 − 𝑈𝑈 , because it inherits the nonzero structure of the 
irreducible matrix 𝐴𝐴 . The same thing applies to the matrix (1 − 𝜔𝜔) 𝐼𝐼 + 𝜔𝜔(1 − 𝜔𝜔)𝐿𝐿 + 𝜔𝜔𝜔𝜔  since the coefficients of 
𝐼𝐼, 𝐿𝐿  and 𝑈𝑈 are different from zero and less than 1 in absolute value. Hence, 𝐺𝐺𝑆𝑆𝑆𝑆𝑆𝑆  is an irreducible matrix. 

𝐺𝐺1 = (𝐼𝐼 − 𝜔𝜔𝐿𝐿�)−1[(1 − 𝜔𝜔) 𝐼𝐼 + 𝜔𝜔(𝑈𝑈�− 𝐷𝐷1)]                             (30) 
Since 𝐿𝐿� ≥ 0, 𝑈𝑈� ≥ 0,−𝐷𝐷1 ≥ 0 , for 0 < 𝜔𝜔 < 1 , (1 −𝜔𝜔) 𝐼𝐼 + 𝜔𝜔(𝑈𝑈�− 𝐷𝐷1) ≥ 0  and (𝐼𝐼 − 𝜔𝜔𝐿𝐿�)−1 = 𝐼𝐼 + 𝜔𝜔𝐿𝐿� + 𝜔𝜔2𝐿𝐿�2 + ∙∙∙

 +𝜔𝜔𝑛𝑛−1𝐿𝐿�𝑛𝑛−1 ≥ 0 . Consequently, one can find that 𝐺𝐺1 = (𝐼𝐼 − 𝜔𝜔𝐿𝐿�)−1[(1 − 𝜔𝜔) 𝐼𝐼 + 𝜔𝜔(𝑈𝑈�− 𝐷𝐷1)] ≥ 0 . Hence  𝐺𝐺1  is a 
nonnegative matrix. 
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Now, 
𝐴̅𝐴 = (𝐼𝐼 + 𝑆𝑆)𝐴𝐴 = (𝐼𝐼 − 𝐿𝐿𝑠𝑠 − 𝑈𝑈𝑠𝑠)(𝐼𝐼 − 𝐿𝐿 − 𝑈𝑈)                              (31) 

 = 𝐼𝐼 − 𝐿𝐿 − 𝑈𝑈 − 𝐿𝐿𝑠𝑠 + 𝐿𝐿𝑠𝑠𝐿𝐿 + 𝐿𝐿𝑠𝑠𝑈𝑈 − 𝑈𝑈𝑠𝑠 + 𝑈𝑈𝑠𝑠𝐿𝐿 +𝑈𝑈𝑠𝑠𝑈𝑈                             (32) 
 = 𝐼𝐼 − 𝐿𝐿 − 𝑈𝑈 − 𝐿𝐿𝑠𝑠 + 𝐿𝐿𝑠𝑠𝐿𝐿 − (𝐿𝐿𝑠𝑠𝑈𝑈)𝐿𝐿 − (𝐿𝐿𝑠𝑠𝑈𝑈)𝑈𝑈 − 𝑈𝑈𝑠𝑠 − (𝑈𝑈𝑠𝑠𝐿𝐿)𝐿𝐿 − (𝑈𝑈𝑠𝑠𝐿𝐿)𝑈𝑈 + 𝑈𝑈𝑠𝑠𝑈𝑈                (33) 
= 𝐼𝐼 − 𝐿𝐿 − 𝐿𝐿𝑠𝑠 + 𝐿𝐿𝑠𝑠𝐿𝐿 − (𝐿𝐿𝑠𝑠𝑈𝑈)𝐿𝐿 − (𝑈𝑈𝑠𝑠𝐿𝐿)𝐿𝐿 − 𝑈𝑈 − 𝑈𝑈𝑠𝑠 +𝑈𝑈𝑠𝑠𝑈𝑈 − (𝑈𝑈𝑠𝑠𝐿𝐿)𝑈𝑈 − (𝐿𝐿𝑠𝑠𝑈𝑈)𝑈𝑈               (34) 

= 𝐼𝐼 − (𝐿𝐿 + 𝐿𝐿𝑠𝑠 − 𝐿𝐿𝑠𝑠𝐿𝐿 + (𝐿𝐿𝑠𝑠𝑈𝑈)𝐿𝐿 + (𝑈𝑈𝑠𝑠𝐿𝐿)𝐿𝐿)  − (𝑈𝑈 + 𝑈𝑈𝑠𝑠 − 𝑈𝑈𝑠𝑠𝑈𝑈 + (𝑈𝑈𝑠𝑠𝐿𝐿)𝑈𝑈 + (𝐿𝐿𝑠𝑠𝑈𝑈)𝑈𝑈 )              (35) 
= 𝐼𝐼 − 𝐿𝐿� − 𝑈𝑈�                                          (36) 

where 𝐿𝐿� = 𝐿𝐿 + 𝐿𝐿𝑠𝑠 − 𝐿𝐿𝑠𝑠𝐿𝐿 + (𝐿𝐿𝑠𝑠𝑈𝑈)𝐿𝐿 + (𝑈𝑈𝑠𝑠𝐿𝐿)𝐿𝐿  , 𝑈𝑈� = 𝑈𝑈 + 𝑈𝑈𝑠𝑠 − 𝑈𝑈𝑠𝑠𝑈𝑈 + (𝑈𝑈𝑠𝑠𝐿𝐿)𝑈𝑈 + (𝐿𝐿𝑠𝑠𝑈𝑈)𝑈𝑈  and −(𝑇𝑇)𝐿𝐿  and −(𝑇𝑇)𝑈𝑈  denote 
the strictly lower and strictly upper parts of the matrix 𝑇𝑇 respectively. 𝐴̅𝐴 = 𝐼𝐼 − 𝐿𝐿� − 𝑈𝑈�  is irreducible, since it inherits the 
nonzero structure of the irreducible matrix 𝐴̅𝐴. 

Now, 
𝐺𝐺1 = (𝐼𝐼 − 𝜔𝜔𝐿𝐿�)−1[(1 − 𝜔𝜔) 𝐼𝐼 + 𝜔𝜔(𝑈𝑈�− 𝐷𝐷1)]                           (37) 

= (1 −𝜔𝜔) 𝐼𝐼 + 𝜔𝜔(1 − 𝜔𝜔)𝐿𝐿� + 𝜔𝜔𝑈𝑈�− 𝜔𝜔𝐷𝐷1 + 𝜔𝜔2𝐿𝐿�𝑈𝑈� − 𝜔𝜔2𝐷𝐷1𝐿𝐿� + 𝜔𝜔2(1 − 𝜔𝜔)𝐿𝐿�2 +∙∙∙              (38) 
= (1 −𝜔𝜔) 𝐼𝐼 + 𝜔𝜔(1 − 𝜔𝜔)𝐿𝐿� + 𝜔𝜔𝑈𝑈�+ nonnegative  terms                       (39) 

The matrix (1 − 𝜔𝜔) 𝐼𝐼 + 𝜔𝜔(1 − 𝜔𝜔)𝐿𝐿� + 𝜔𝜔𝑈𝑈� is irreducib le, since the coefficients of  𝐼𝐼, 𝐿𝐿�  and 𝑈𝑈�  are d ifferent from zero 
and less than one in absolute value. Therefore, the matrix 𝐺𝐺1 = (𝐼𝐼 − 𝜔𝜔𝐿𝐿�)−1[(1 − 𝜔𝜔)𝐼𝐼 + 𝜔𝜔(𝑈𝑈�− 𝐷𝐷1)] is irreducible. Hence 
𝐺𝐺1  is a nonnegative and irreducible matrix. 

Similarly, consider 
𝐺𝐺2 = (𝐷𝐷�− 𝜔𝜔𝐿𝐿�)−1[(1 −𝜔𝜔)𝐷𝐷� +𝜔𝜔𝑈𝑈�]                              (40) 

= [𝐷𝐷�(𝐼𝐼 − 𝜔𝜔𝐷𝐷�−1𝐿𝐿�)]−1[(1 − 𝜔𝜔)𝐷𝐷� + 𝜔𝜔𝑈𝑈�]                              (41) 
= (𝐼𝐼 − 𝜔𝜔𝐷𝐷�−1𝐿𝐿�)−1[(1 − 𝜔𝜔) 𝐼𝐼 + 𝜔𝜔𝐷𝐷�−1𝑈𝑈�]                              (42) 

= [𝐼𝐼 + 𝜔𝜔𝐷𝐷�−1𝐿𝐿�+ 𝜔𝜔2(𝐷𝐷�−1𝐿𝐿�)2 + ⋯+ 𝜔𝜔𝑛𝑛−1(𝐷𝐷�−1𝐿𝐿�)𝑛𝑛−1] × [(1 − 𝜔𝜔)𝐼𝐼 + 𝜔𝜔𝐷𝐷�−1𝑈𝑈�]              (43) 
= (1 −𝜔𝜔) 𝐼𝐼 + 𝜔𝜔(1 − 𝜔𝜔)𝐷𝐷�−1𝐿𝐿�+ 𝜔𝜔𝐷𝐷�−1𝑈𝑈�+ nonnegative  terms                   (44) 

Using similar arguments it is conclusive that 𝐺𝐺2 = (𝐷𝐷� − 𝜔𝜔𝐿𝐿�)−1[(1 − 𝜔𝜔)𝐷𝐷� + 𝜔𝜔𝑈𝑈�] is a nonnegative and irreducible matrix. 
The proof is completed. 

Theorem 3.2: Let  𝐺𝐺𝑆𝑆𝑆𝑆𝑆𝑆 = (𝐼𝐼 − 𝜔𝜔𝜔𝜔)−1[(1 −𝜔𝜔) 𝐼𝐼 + 𝜔𝜔𝜔𝜔]  and 𝐺𝐺1 = (𝐼𝐼 − 𝜔𝜔𝐿𝐿�)−1[(1 − 𝜔𝜔) 𝐼𝐼 + 𝜔𝜔(𝑈𝑈�− 𝐷𝐷1)]  be the SOR 
and preconditioned SOR iteration matrices respectively. If 0 < 𝜔𝜔 < 1  and if 𝐴𝐴  is an irreducib le 𝐿𝐿 −matrix with0 ≤
𝑎𝑎1𝑖𝑖 𝑎𝑎𝑖𝑖1 + 𝑎𝑎𝑖𝑖 ,𝑖𝑖+1𝑎𝑎𝑖𝑖+1,𝑖𝑖  < 1, 𝑖𝑖 = 2(1)𝑛𝑛. Then, 

(i) 𝜌𝜌(𝐺𝐺1) < 𝜌𝜌(𝐺𝐺𝑆𝑆𝑆𝑆𝑆𝑆 ), if  𝜌𝜌(𝐺𝐺𝑆𝑆𝑆𝑆𝑆𝑆 ) < 1 
(ii) 𝜌𝜌(𝐺𝐺1) = 𝜌𝜌(𝐺𝐺𝑆𝑆𝑆𝑆𝑆𝑆 ), if  𝜌𝜌(𝐺𝐺𝑆𝑆𝑆𝑆𝑆𝑆 ) = 1 
(iii)  𝜌𝜌(𝐺𝐺1 ) > 𝜌𝜌(𝐺𝐺𝑆𝑆𝑆𝑆𝑆𝑆 ), if  𝜌𝜌(𝐺𝐺𝑆𝑆𝑆𝑆𝑆𝑆 ) > 1 
Proof 
From Theorem 3.1, 𝐺𝐺𝑆𝑆𝑆𝑆𝑆𝑆  and 𝐺𝐺1  are nonnegative and irreducible matrices. Suppose 𝜌𝜌(𝐺𝐺𝑆𝑆𝑆𝑆𝑆𝑆 ) = 𝜆𝜆 , then there exists a 

positive vector 𝑥𝑥 = (𝑥𝑥1,𝑥𝑥2,⋯ , 𝑥𝑥𝑛𝑛)𝑇𝑇, such that  
𝐺𝐺𝑆𝑆𝑆𝑆𝑆𝑆 𝑥𝑥 = 𝜆𝜆𝜆𝜆                                           (45) 

That is, 
(𝐼𝐼 − 𝜔𝜔𝜔𝜔)−1{(1 − 𝜔𝜔) 𝐼𝐼 + 𝜔𝜔𝜔𝜔}𝑥𝑥 = 𝜆𝜆𝜆𝜆                                  (46) 

(1 − 𝜔𝜔)𝐼𝐼 + 𝜔𝜔𝜔𝜔 = 𝜆𝜆(𝐼𝐼 − 𝜔𝜔𝜔𝜔)                                 (47) 
Therefore, for this 𝑥𝑥 > 0, 

= (𝐼𝐼 − 𝜔𝜔𝐿𝐿�)−1{(1 − 𝜔𝜔) 𝐼𝐼 + 𝜔𝜔(𝑈𝑈�− 𝐷𝐷1)}𝑥𝑥 − 𝜆𝜆(𝐼𝐼 − 𝜔𝜔𝐿𝐿�)−1(𝐼𝐼 − 𝜔𝜔𝐿𝐿�)𝑥𝑥                (48) 
= (𝐼𝐼 − 𝜔𝜔𝐿𝐿�)−1{(1 − 𝜔𝜔 − 𝜆𝜆)𝐼𝐼 + 𝜔𝜔𝜔𝜔 + 𝜆𝜆𝜆𝜆𝜆𝜆 + 𝜆𝜆𝜆𝜆𝐿𝐿𝑆𝑆 + 𝜆𝜆𝜆𝜆𝐿𝐿1 + 𝜔𝜔𝑈𝑈𝑆𝑆 −𝜔𝜔𝜔𝜔1 + 𝜔𝜔𝑈𝑈1}𝑥𝑥            (49) 

From equation (47) 
𝜔𝜔𝜔𝜔 + 𝜆𝜆𝜆𝜆𝜆𝜆 = −(1 − 𝜔𝜔 − 𝜆𝜆)𝐼𝐼                                 (50) 

𝐺𝐺1𝑥𝑥 − 𝜆𝜆𝜆𝜆 = (𝐼𝐼 − 𝜔𝜔𝐿𝐿�)−1{(𝜆𝜆 − 1)𝜔𝜔𝐿𝐿1 + 𝜆𝜆𝜆𝜆𝐿𝐿𝑆𝑆 + 𝜔𝜔𝑈𝑈𝑆𝑆 − 𝜔𝜔(𝐷𝐷1 − 𝐿𝐿1 − 𝑈𝑈1)}𝑥𝑥                (51) 
= (𝐼𝐼 − 𝜔𝜔𝐿𝐿�)−1{(𝜆𝜆 − 1)𝜔𝜔𝐿𝐿1 + 𝜆𝜆𝜆𝜆𝐿𝐿𝑆𝑆 − 𝜔𝜔𝐿𝐿𝑆𝑆 + 𝜔𝜔𝐿𝐿𝑆𝑆 + 𝜔𝜔𝑈𝑈𝑆𝑆 +𝜔𝜔𝜔𝜔𝜔𝜔 +𝜔𝜔𝜔𝜔𝜔𝜔}𝑥𝑥                 (52) 
= (𝐼𝐼 − 𝜔𝜔𝐿𝐿�)−1{𝜔𝜔(𝜆𝜆 − 1)(𝐿𝐿1 + 𝐿𝐿𝑆𝑆) + (1 − 𝜔𝜔)𝑆𝑆 − 𝑆𝑆(𝐼𝐼 − 𝜔𝜔𝜔𝜔) + 𝜔𝜔𝜔𝜔𝜔𝜔)}𝑥𝑥                   (53) 
= (𝐼𝐼 − 𝜔𝜔𝐿𝐿�)−1{𝜔𝜔(𝜆𝜆 − 1)(𝐿𝐿1 + 𝐿𝐿𝑆𝑆) + 𝑆𝑆[(1 − 𝜔𝜔)𝐼𝐼 + 𝜔𝜔𝜔𝜔]− 𝑆𝑆(𝐼𝐼 − 𝜔𝜔𝜔𝜔)}𝑥𝑥                    (54) 
= (𝐼𝐼 − 𝜔𝜔𝐿𝐿�)−1{𝜔𝜔(𝜆𝜆 − 1)(𝐿𝐿1 + 𝐿𝐿𝑆𝑆) + 𝜆𝜆𝜆𝜆(𝐼𝐼 − 𝜔𝜔𝜔𝜔) − 𝑆𝑆(𝐼𝐼 − 𝜔𝜔𝜔𝜔)}𝑥𝑥                          (55) 

= (𝜆𝜆 − 1)(𝐼𝐼 − 𝜔𝜔𝐿𝐿�)−1{𝜔𝜔(𝐿𝐿1 + 𝐿𝐿𝑆𝑆) + 𝑆𝑆(𝐼𝐼 − 𝜔𝜔𝜔𝜔)}𝑥𝑥                             (56) 
𝐺𝐺1𝑥𝑥 − 𝜆𝜆𝜆𝜆 = (𝜆𝜆 − 1) 𝜆𝜆⁄ [(𝐼𝐼 − 𝜔𝜔𝐿𝐿�)−1]{𝜆𝜆 𝜔𝜔(𝐿𝐿1 + 𝐿𝐿𝑆𝑆) + (1 − 𝜔𝜔)𝑆𝑆 + 𝜔𝜔𝜔𝜔𝜔𝜔}𝑥𝑥                   (57) 

Let 𝑅𝑅 = 𝑄𝑄𝑄𝑄 , where 𝑄𝑄 = (𝐼𝐼 −𝜔𝜔𝐿𝐿�)−1{𝜆𝜆 𝜔𝜔(𝐿𝐿1 + 𝐿𝐿𝑆𝑆) +
(1 − 𝜔𝜔)𝑆𝑆 + 𝜔𝜔𝜔𝜔𝜔𝜔} . Then 𝑄𝑄 = (𝐼𝐼 − 𝜔𝜔𝐿𝐿�)−1{𝜆𝜆 𝜔𝜔(𝐿𝐿1 + 𝐿𝐿𝑆𝑆) +
(1 − 𝜔𝜔)𝑆𝑆 + 𝜔𝜔𝜔𝜔𝜔𝜔} ≥ 0 , because 𝜆𝜆 𝜔𝜔(𝐿𝐿1 + 𝐿𝐿𝑆𝑆) ≥ 0 , 
 (1 − 𝜔𝜔)𝑆𝑆 ≥ 0 and  𝜔𝜔𝜔𝜔𝜔𝜔 ≥ 0 . Also, (𝐼𝐼 − 𝜔𝜔𝐿𝐿�)−1 = 𝐼𝐼 +
𝜔𝜔𝐿𝐿� + 𝜔𝜔2𝐿𝐿�2 + ∙∙∙  +𝜔𝜔𝑛𝑛−1𝐿𝐿�𝑛𝑛−1 ≥ 0, since 𝐿𝐿� ≥ 0. Therefore, 
𝑄𝑄 = (𝐼𝐼 − 𝜔𝜔𝐿𝐿�)−1{𝜆𝜆 𝜔𝜔(𝐿𝐿1 + 𝐿𝐿𝑆𝑆) + (1 −𝜔𝜔)𝑆𝑆 + 𝜔𝜔𝜔𝜔𝜔𝜔} ≥ 0.  

So, 𝑅𝑅 = (𝐼𝐼 − 𝜔𝜔𝐿𝐿�)−1{𝜆𝜆 𝜔𝜔(𝐿𝐿1 + 𝐿𝐿𝑆𝑆) + (1 − 𝜔𝜔)𝑆𝑆 + 𝜔𝜔𝜔𝜔𝜔𝜔}𝑥𝑥 ≥
0, since 𝑥𝑥 > 0. 

i. If 𝜆𝜆 < 1, then 𝐺𝐺1𝑥𝑥 − 𝜆𝜆𝜆𝜆 ≤ 0 but not equal to 0. 
Therefore, 

𝐺𝐺1𝑥𝑥 ≤ 𝜆𝜆𝜆𝜆                  (58) 
From Lemma 3.2, one obtains 
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𝜌𝜌(𝐺𝐺1 ) < 𝜆𝜆 = 𝜌𝜌(𝐺𝐺𝑆𝑆𝑆𝑆𝑆𝑆 )             (59) 
ii. If 𝜆𝜆 = 1, then 𝐺𝐺1𝑥𝑥 − 𝜆𝜆𝜆𝜆 = 0  
Therefore, 

𝐺𝐺1𝑥𝑥 = 𝜆𝜆𝜆𝜆                   (60) 
From Lemma 3.2, we have 

𝜌𝜌(𝐺𝐺1 ) = 𝜆𝜆 = 𝜌𝜌(𝐺𝐺𝑆𝑆𝑆𝑆𝑆𝑆 )              (61) 
iii. If 𝜆𝜆 > 1, then 𝐺𝐺1𝑥𝑥 − 𝜆𝜆𝜆𝜆 ≥ 0 but not equal to 0. 
Therefore, 

𝐺𝐺1𝑥𝑥 ≥ 𝜆𝜆𝜆𝜆                     (62) 
From Lemma 3.2, we have 

𝜌𝜌(𝐺𝐺1 ) > 𝜆𝜆 = 𝜌𝜌(𝐺𝐺𝑆𝑆𝑆𝑆𝑆𝑆 )               (63) 
The proof is completed.  
Theorem 3.3: Let 𝐺𝐺𝑆𝑆𝑆𝑆𝑆𝑆 = (𝐼𝐼 − 𝜔𝜔𝜔𝜔)−1[(1 −𝜔𝜔) 𝐼𝐼 + 𝜔𝜔𝜔𝜔] 

and 𝐺𝐺2 = (𝐷𝐷� − 𝜔𝜔𝐿𝐿�)−1[(1 − 𝜔𝜔)𝐷𝐷�+ 𝜔𝜔𝑈𝑈�]  be the SOR and 
the preconditioned SOR iteration matrices respectively. If 

0 < 𝜔𝜔 < 1  and if 𝐴𝐴  is an irreducible 𝐿𝐿 − matrix with 
0 ≤ 𝑎𝑎1𝑖𝑖𝑎𝑎𝑖𝑖1 + 𝑎𝑎𝑖𝑖 ,𝑖𝑖+1𝑎𝑎𝑖𝑖+1,𝑖𝑖   < 1, 𝑖𝑖 = 2(1)𝑛𝑛. Then, 

(i) 𝜌𝜌(𝐺𝐺2 ) < 𝜌𝜌(𝐺𝐺𝑆𝑆𝑆𝑆𝑆𝑆 ), if  𝜌𝜌(𝐺𝐺𝑆𝑆𝑆𝑆𝑆𝑆 ) < 1; 
(ii) 𝜌𝜌(𝐺𝐺2) = 𝜌𝜌(𝐺𝐺𝑆𝑆𝑆𝑆𝑆𝑆 ), if  𝜌𝜌(𝐺𝐺𝑆𝑆𝑆𝑆𝑆𝑆 ) = 1; 
(iii) 𝜌𝜌(𝐺𝐺2 ) > 𝜌𝜌(𝐺𝐺𝑆𝑆𝑆𝑆𝑆𝑆 ), if  𝜌𝜌(𝐺𝐺𝑆𝑆𝑆𝑆𝑆𝑆 ) > 1. 
Proof 
From Theorem 3.1, 𝐺𝐺𝑆𝑆𝑆𝑆𝑆𝑆  and 𝐺𝐺2  are nonnegative and 

irreducible matrices. Suppose 𝜌𝜌(𝐺𝐺𝑆𝑆𝑆𝑆𝑆𝑆 ) = 𝜆𝜆 , then there 
exists a positive vector 𝑥𝑥 = (𝑥𝑥1,𝑥𝑥2,⋯ , 𝑥𝑥𝑛𝑛)𝑇𝑇, such that  

𝐺𝐺𝑆𝑆𝑆𝑆𝑆𝑆 𝑥𝑥 = 𝜆𝜆𝜆𝜆                 (64) 
That is, 

(𝐼𝐼 − 𝜔𝜔𝜔𝜔)−1{(1 − 𝜔𝜔) 𝐼𝐼 + 𝜔𝜔𝜔𝜔}𝑥𝑥 = 𝜆𝜆𝜆𝜆         (65) 
(1 − 𝜔𝜔)𝐼𝐼 + 𝜔𝜔𝜔𝜔 = 𝜆𝜆(𝐼𝐼 − 𝜔𝜔𝜔𝜔)        (66) 

Therefore, for this 𝑥𝑥 > 0, 

𝐺𝐺2𝑥𝑥 − 𝜆𝜆𝜆𝜆 = (𝐷𝐷�− 𝜔𝜔𝐿𝐿�)−1{(1 − 𝜔𝜔)𝐷𝐷� + 𝜔𝜔𝑈𝑈�}𝑥𝑥 − 𝜆𝜆𝜆𝜆                         (67) 
= (𝐷𝐷� − 𝜔𝜔𝐿𝐿�)−1{(1 − 𝜔𝜔)𝐷𝐷�+ 𝜔𝜔𝑈𝑈�− 𝜆𝜆(𝐷𝐷� − 𝜔𝜔𝐿𝐿�)}𝑥𝑥                  (68) 

= (𝐷𝐷� − 𝜔𝜔𝐿𝐿�)−1{(1 − 𝜔𝜔 − 𝜆𝜆)𝐷𝐷1 + 𝜆𝜆𝜆𝜆𝐿𝐿1 + 𝜆𝜆𝜆𝜆𝐿𝐿𝑆𝑆 + 𝜆𝜆𝜆𝜆𝜆𝜆 +𝜔𝜔𝑈𝑈𝑆𝑆 + 𝜔𝜔𝑈𝑈1 + (1 − 𝜔𝜔 − 𝜆𝜆)𝐼𝐼 + 𝜔𝜔𝜔𝜔)}𝑥𝑥   �    (69) 
From equation (66) 

(1 − 𝜔𝜔 − 𝜆𝜆)𝐼𝐼 + 𝜔𝜔𝜔𝜔 = −𝜆𝜆𝜆𝜆𝜆𝜆                                   (70) 
𝐺𝐺2𝑥𝑥 − 𝜆𝜆𝜆𝜆 = (𝐷𝐷�− 𝜔𝜔𝐿𝐿�)−1{(1 − 𝜔𝜔 − 𝜆𝜆)𝐷𝐷1 + 𝜆𝜆𝜆𝜆𝐿𝐿1 + 𝜆𝜆𝜆𝜆𝐿𝐿𝑆𝑆 + 𝜔𝜔𝑈𝑈𝑆𝑆 + 𝜔𝜔𝑈𝑈1)}𝑥𝑥                 (71) 

= (𝐷𝐷� − 𝜔𝜔𝐿𝐿�)−1{(𝜆𝜆 − 1)(−𝐷𝐷1 +𝜔𝜔𝐿𝐿1) + 𝜔𝜔𝜔𝜔𝜔𝜔 + 𝜔𝜔𝜔𝜔𝜔𝜔 + (𝜆𝜆 − 1)𝜔𝜔𝐿𝐿𝑆𝑆 + 𝜔𝜔(𝐿𝐿𝑆𝑆 + 𝑈𝑈𝑆𝑆)}𝑥𝑥                (72) 
= (𝐷𝐷� − 𝜔𝜔𝐿𝐿�)−1{(𝜆𝜆 − 1)(−𝐷𝐷1 +𝜔𝜔𝐿𝐿1 + 𝜔𝜔𝐿𝐿𝑆𝑆) + 𝑆𝑆[(1 − 𝜔𝜔)𝐼𝐼 + 𝜔𝜔𝜔𝜔]− 𝑆𝑆(𝐼𝐼 − 𝜔𝜔𝜔𝜔)}𝑥𝑥                 (73) 

= (𝜆𝜆 − 1) 𝜆𝜆⁄ [(𝐷𝐷� − 𝜔𝜔𝐿𝐿�)−1]{−𝜆𝜆𝐷𝐷1 + 𝜆𝜆𝜆𝜆𝐿𝐿1 + 𝜆𝜆𝜆𝜆𝐿𝐿𝑆𝑆 + (1 − 𝜔𝜔)𝑆𝑆 +𝜔𝜔𝜔𝜔𝜔𝜔}𝑥𝑥                  (74) 
Let 𝑅𝑅 = 𝑄𝑄𝑄𝑄 , with 𝑄𝑄 = (𝐷𝐷� − 𝜔𝜔𝐿𝐿�)−1{−𝜆𝜆𝐷𝐷1 + 𝜆𝜆𝜆𝜆𝐿𝐿1 + 𝜆𝜆𝜆𝜆𝐿𝐿𝑆𝑆 + (1 − 𝜔𝜔)𝑆𝑆 + 𝜔𝜔𝜔𝜔𝜔𝜔} . It is clear that −𝜆𝜆𝐷𝐷1 + 𝜆𝜆𝜆𝜆𝐿𝐿1 +

𝜆𝜆𝜆𝜆𝐿𝐿𝑆𝑆 + (1 − 𝜔𝜔)𝑆𝑆 + 𝜔𝜔𝜔𝜔𝜔𝜔 ≥ 0 , since (1 − 𝜔𝜔)𝑆𝑆 ≥ 0 , 𝜔𝜔𝜔𝜔𝜔𝜔 ≥ 0 , −𝜆𝜆𝐷𝐷1 ≥ 0,  𝜆𝜆𝜆𝜆𝐿𝐿1 ≥ 0 and  𝜆𝜆𝜆𝜆𝐿𝐿𝑆𝑆 ≥ 0.  Since 𝐷𝐷�  is a 
nonsingular matrix, we let  𝐷𝐷�− 𝜔𝜔𝐿𝐿�  be a splitting of some matrix 𝐾𝐾, i.e., 𝐾𝐾 = 𝐷𝐷�− 𝜔𝜔𝐿𝐿�. Also, 𝐷𝐷� is an 𝑀𝑀 −matrix and 
𝜔𝜔𝐿𝐿� ≥ 0. Thus, 𝐾𝐾 = 𝐷𝐷� − 𝜔𝜔𝐿𝐿� is an 𝑀𝑀−splitting. Now, 𝜔𝜔𝐷𝐷�−1𝐿𝐿� is a strictly lower triangular matrix, and by implication its 
eigenvalues lie  on its main d iagonal; in th is case they are all zeros. Therefore, 𝜌𝜌(𝜔𝜔𝐷𝐷�−1𝐿𝐿�) = 0. since 𝜌𝜌(𝜔𝜔𝐷𝐷�−1𝐿𝐿�) < 1, 
𝐾𝐾 = 𝐷𝐷� − 𝜔𝜔𝐿𝐿� is a convergent splitting. By the foregoing, 𝐾𝐾 = 𝐷𝐷�− 𝜔𝜔𝐿𝐿�  is an 𝑀𝑀 −splitting and 𝜌𝜌(𝜔𝜔𝐷𝐷�−1𝐿𝐿�) < 1. Lemma 3.3 
is invoked in order to establish that 𝐾𝐾 is an 𝑀𝑀 −matrix. Since 𝐾𝐾 is an 𝑀𝑀 −matrix, by defin ition, 𝐾𝐾−1 = (𝐷𝐷� − 𝜔𝜔𝐿𝐿�)−1 ≥ 0. 
Thus, 𝑄𝑄 ≥ 0 and 𝑅𝑅 ≥ 0. 

If 𝜆𝜆 < 1, then 𝐺𝐺2𝑥𝑥 − 𝜆𝜆𝜆𝜆 ≤ 0 but not equal to 0. 
Therefore, 

𝐺𝐺2𝑥𝑥 ≤ 𝜆𝜆𝜆𝜆                                        (75) 
From Lemma 3.2, we have 

𝜌𝜌(𝐺𝐺2 ) < 𝜆𝜆 = 𝜌𝜌(𝐺𝐺𝑆𝑆𝑆𝑆𝑆𝑆 )                                     (76) 
ii.  If 𝜆𝜆 = 1, then 𝐺𝐺2𝑥𝑥 − 𝜆𝜆𝜆𝜆 = 0  
Therefore, 

𝐺𝐺2𝑥𝑥 = 𝜆𝜆𝜆𝜆                                          (77) 
From Lemma 3.2, we have 

𝜌𝜌(𝐺𝐺2 ) = 𝜆𝜆 = 𝜌𝜌(𝐺𝐺𝑆𝑆𝑆𝑆𝑆𝑆 )                                    (78) 
iii. If 𝜆𝜆 > 1, then 𝐺𝐺2𝑥𝑥 − 𝜆𝜆𝜆𝜆 ≥ 0 but not equal to 0. 
Therefore, 

𝐺𝐺2𝑥𝑥 ≥ 𝜆𝜆𝜆𝜆                                          (79) 
From Lemma 3.2, we have 

𝜌𝜌(𝐺𝐺2 ) > 𝜆𝜆 = 𝜌𝜌(𝐺𝐺𝑆𝑆𝑆𝑆𝑆𝑆 )                                     (80) 
The proof is completed. 
If in 𝐺𝐺𝑆𝑆𝑆𝑆𝑆𝑆 ,𝐺𝐺1  and 𝐺𝐺2  the relaxat ion parameter 𝜔𝜔 = 1, the iteration matrices of the Gauss-Seidel method results in each 

case. Therefore, the following corollaries are direct implications of Theorem 3.1 and Theorem 3.2. 
Corollary 3.1 Let 𝐺𝐺𝐺𝐺𝐺𝐺 = (𝐼𝐼 − 𝐿𝐿)−1𝑈𝑈 be the Gauss-Seidel iteration matrix and 𝐺𝐺𝑃𝑃𝑃𝑃𝑃𝑃 = (𝐼𝐼 − 𝐿𝐿�)−1(𝑈𝑈�− 𝐷𝐷1)  be the 

preconditioned Gauss-Seidel iterat ion matrix. If 𝐴𝐴 is an irreducible 𝐿𝐿 −matrix with 0 < 𝑎𝑎1𝑖𝑖 𝑎𝑎𝑖𝑖1 + 𝑎𝑎𝑖𝑖 ,𝑖𝑖+1𝑎𝑎𝑖𝑖+1 ,𝑖𝑖  < 1,   𝑖𝑖 =
2(1)𝑛𝑛, then 

(i) 𝜌𝜌(𝐺𝐺𝑃𝑃𝑃𝑃𝑃𝑃 ) < 𝜌𝜌(𝐺𝐺𝐺𝐺𝐺𝐺 ), if  𝜌𝜌(𝐺𝐺𝐺𝐺𝐺𝐺 ) < 1; 
(ii) 𝜌𝜌(𝐺𝐺𝑃𝑃𝑃𝑃𝑃𝑃 ) = 𝜌𝜌(𝐺𝐺𝐺𝐺𝐺𝐺 ), if  𝜌𝜌(𝐺𝐺𝐺𝐺𝐺𝐺 ) = 1; 
(iii) 𝜌𝜌(𝐺𝐺𝑃𝑃𝑃𝑃𝑃𝑃 ) > 𝜌𝜌(𝐺𝐺𝐺𝐺𝐺𝐺 ), if  𝜌𝜌(𝐺𝐺𝐺𝐺𝐺𝐺 ) > 1. 
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Corollary 3.2 Let 𝐺𝐺𝐺𝐺𝐺𝐺 = (𝐼𝐼 − 𝐿𝐿)−1𝑈𝑈  be the Gauss-Seidel iteration matrix and 𝐺𝐺𝑃𝑃𝑃𝑃𝑃𝑃 = (𝐷𝐷�− 𝐿𝐿�)−1𝑈𝑈�  be the 
preconditioned Gauss-Seidel iterat ion matrix. If 𝐴𝐴 is an irreducible 𝐿𝐿 −matrix with 0 < 𝑎𝑎1𝑖𝑖 𝑎𝑎𝑖𝑖1 + 𝑎𝑎𝑖𝑖 ,𝑖𝑖+1𝑎𝑎𝑖𝑖+1 ,𝑖𝑖  < 1,   𝑖𝑖 =
2(1)𝑛𝑛, then 

(i) 𝜌𝜌(𝐺𝐺𝑃𝑃𝑃𝑃𝑃𝑃 ) < 𝜌𝜌(𝐺𝐺𝐺𝐺𝐺𝐺 ), if  𝜌𝜌(𝐺𝐺𝐺𝐺𝐺𝐺 ) < 1; 
(ii) 𝜌𝜌(𝐺𝐺𝑃𝑃𝑃𝑃𝑃𝑃 ) = 𝜌𝜌(𝐺𝐺𝐺𝐺𝐺𝐺 ), if  𝜌𝜌(𝐺𝐺𝐺𝐺𝐺𝐺 ) = 1; 
(iii) 𝜌𝜌(𝐺𝐺𝑃𝑃𝑃𝑃𝑃𝑃 ) > 𝜌𝜌(𝐺𝐺𝐺𝐺𝐺𝐺 ), if  𝜌𝜌(𝐺𝐺𝐺𝐺𝐺𝐺 ) > 1. 

4. Numerical Experiments 
Example 4.1 Consider a 4× 4 matrix of the form. 

�

1.000
−0.306
−0.265

0

−0.279
1.000

0
−0.236

−0.233
0

1.000
−0.273

0
−0.204
−0.245
1.000

� 

Table 1 displays the results of comparing the spectral rad ius es of 𝐺𝐺𝑆𝑆𝑆𝑆𝑆𝑆 ,𝐺𝐺1 and 𝐺𝐺2  iterative matrices corresponding to the 
matrix in example 4.1. 

Table 1 compares the spectral radiuses of 𝐺𝐺𝑆𝑆𝑆𝑆𝑆𝑆 ,𝐺𝐺1 and  𝐺𝐺2  iteration matrices. It  reveals that the two preconditioned SOR 
iteration matrices exhib it faster convergence than the SOR, because the spectral radiuses of 𝐺𝐺1  and 𝐺𝐺2  are less than the 
spectral rad ius of 𝐺𝐺𝑆𝑆𝑆𝑆𝑆𝑆  (𝜌𝜌(𝐺𝐺2 ) < 𝜌𝜌(𝐺𝐺1) < 𝜌𝜌(𝐺𝐺𝑆𝑆𝑆𝑆𝑆𝑆 ) < 1), for all values of relaxation parameter 𝜔𝜔. 

Example 4.2 Consider a 9 × 9 matrix of the form. 

⎝

⎜
⎜
⎜
⎜
⎜
⎛

1.000
−0.296

0
−0.253

0
0
0
0
0

−0.274
1.000
−0.315

0
−0.230

0
0
0
0

0
−0.296
1.000

0
0

−0.211
0
0
0

−0.233
0
0

1.000
−0.276

0
−0.281

0
0

0
−0.209

0
−0.253
1.000
−0.295

0
−0.258

0

0
0

−0.191
0

−0.276
1.000

0
0

−0.238

0
0
0

−0.253
0
0

1.000
−0.247

0

0
0
0
0

−0.229
0

−0.225
1.000
−0.267

0
0
0
0
0

−0.211
0

−0.247
1.000 ⎠

⎟
⎟
⎟
⎟
⎟
⎞

 

The results of example 4.2 are displayed in Table 2 as follows. 

Table 1.  Result of Spectral Radiuses  of 𝑮𝑮𝑺𝑺𝑺𝑺𝑺𝑺 , 𝑮𝑮𝟏𝟏 and 𝑮𝑮𝟐𝟐 Iterative 

Matrices for Example 4.1 

𝝎𝝎 𝝆𝝆(𝑮𝑮𝑺𝑺𝑺𝑺𝑺𝑺) 𝝆𝝆(𝑮𝑮𝟏𝟏) 𝝆𝝆(𝑮𝑮𝟐𝟐) 

0.1 0.9497367332 0.9343841025 0.9294898941 
0.2 0.8966535877 0.8664813907 0.8563024920 
0.3 0.8403551407 0.7960535419 0.7801233797 
0.4 0.7803331920 0.7228051902 0.7005500711 
0.5 0.7159112293 0.6463595589 0.6170462734 
0.6 0.6461456054 0.5662177654 0.5288570679 
0.7 0.5696315402 0.4816855287 0.4348316650 
0.8 0.4840647590 0.3917272446 0.3329801041 
0.9 0.3850038057 0.2946323649 0.2189565183 

Table 2.  Result of Spectral Radiuses  of 𝑮𝑮𝑺𝑺𝑺𝑺𝑺𝑺 , 𝑮𝑮𝟏𝟏  and 𝑮𝑮𝟐𝟐 Iterative 

Matrices for Example 4.2 

𝝎𝝎 𝝆𝝆(𝑮𝑮𝑺𝑺𝑺𝑺𝑺𝑺) 𝝆𝝆(𝑮𝑮𝟏𝟏) 𝝆𝝆(𝑮𝑮𝟐𝟐) 

0.1 0.9704634607 0.9620727092 0.9587537313 
0.2 0.9385935809 0.9213681941 0.9142487503 
0.3 0.9040263188 0.8774831690 0.8659661402 
0.4 0.8662980616 0.8299100531 0.8132363784 
0.5 0.8248024823 0.7779928048 0.7551667064 
0.6 0.7787177235 0.7208539881 0.6905110757 
0.7 0.7268771927 0.6572651779 0.6174182078 
0.8 0.6675138755 0.5853927211 0.5328622455 
0.9 0.5976821338 0.5022225352 0.4310404963 

Table 2 goes further to confirm the efficiency of the 
preconditioned iterations by revealing that the spectral 
radiuses of the preconditioned iterative matrices 𝐺𝐺1  and 𝐺𝐺2  
are less than the spectral radius of the SOR iterative matrix 
𝐺𝐺𝑆𝑆𝑆𝑆𝑆𝑆 . That is, ( 𝜌𝜌(𝐺𝐺2 ) < 𝜌𝜌(𝐺𝐺1 ) < 𝜌𝜌(𝐺𝐺𝑆𝑆𝑆𝑆𝑆𝑆 ) < 1) , for all  
values of relaxat ion parameter 𝜔𝜔. 

5. Conclusions 
In this research work, a preconditioning matrix is 

introduced. Two different forms of the  p reconditioned 
SOR-type iterat ions are formulated fo r the preconditioner. 
Some theorems are proposed and proven in order to establish 
the validity and efficiency of the preconditioned iterat ions. 
The preconditioned iterations are shown to satisfy standard 
convergence criteria under mild conditions imposed on the 
coefficient matrix of the linear system. Based on the results 
obtained, it is instructive to conclude that the preconditioned 
SOR iterative methods presented in this research work 
provide better and faster convergence properties than the 
SOR.  
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