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Preconditioned SOR Iterative Methods for L — matrices
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Abstract A preconditioner of the type I + S for speeding up convergence of the successive overrelaxation (SOR)
iterative method for solving linear system Ax = b is proposed. Two forms of'the preconditioned SOR iteration are obtained
and implemented, under limited conditions imposed on the coefficient matrix of the original linear system. Convergence
properties are analyzed and established in conformity with standard procedures. The rates of convergence of the
preconditioned iterations are shown to supersede that of the SOR method. Numerical experiments confirmed the established

theoretical results.
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1. Introduction

Suppose the linear system of equations
Ax =b )
is such that A € R™™ is an L — matrix, b € R" is the
right-hand side vector, and x € R™ is the vector of
unknown. All the numerical methods for solution of a linear
system can be categorised into two thus; direct and iterative
methods.
A direct method is one that produces the exact solution of
a linear system by performing a prescribed, finite number of
operations (steps), if there were no round-off error.
Examples of direct methods for solving linear systems
include, graphical method, matrix inversion method,
Cramer’s rule, elimination of unknowns, Gaussian
elimination and LU decomposition. However, because
direct methods are mostly restricted to small systems of
linear equations, iterative methods remain the dominating
and preferred techniques for solving very large linear
systems.
An iterative method for solving a linear system consists of
a process whereby the system Ax = b is converted into an
equivalent system ofthe form
x=0Gx+k 2)
What follows next is application of the general linear
iteration formula
x™ =G x® D +k, 3)
where G, , referred to as the Iteration matrix, is a matrix
depending upon A and x, and k, is a column vector. At
each step of the iteration a solution vector, x™, that more
accurately approximates the solution to the linear system
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than its predecessor, is produced. This sequence x™ should
be so defined that lim,_,, x™ = A~'h. For any iteration to
be convergent, the spectralrad ius ofthe iteration matrix must
be less than 1[1].

Iterative methods are further classified into two main
types, namely, stationary and nonstationary iterative
methods. Stationary iterative methods are those methods that
can be expressed in the form

x(n) — Gx(n—l) +k (4)
where neither G nor k depend upon the iteration count
n[2]. Stationary methods are simpler to implement and
understood compared to nonstationary methods. However,
they are usually not effective when used alone; hence the
need to implement them along with preconditioners.If  we
assume that A =1 — L — U, where [ is the identity matrix,
—L the strictly lower triangular part of A, and -U the
strictly upper triangular part of A, then the successive
overrelaxation method as invented by[3] has the following
matrix from

xM = Goorx™™ D + (I — wL)1wb (5)
where Gsop = I —wL) {1 — w)I + wU} is the SOR
iteration matrix. Various authors have introduced

preconditioners for accelerating the convergence of the SOR
method[4 -9].

2. Materials and Methods
Consider the preconditioner P = [ + S, where
0 — 0O 0 . . 0
:221 0 —ay 0 6)
| 9
“Ap_1n
-a, 0 0 . .0
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The above preconditioning matrix is applied to the
coefficient matrix A ofsystem(1) thus

PAx = Pb (7)
which results into the equivalent preconditioned system
Ax=Db )

where A = PA and b = Pb. The preconditioned coefficient
matrix A is further analyzed as follows.

A=PA={U+S)A=A+SA (9)

=[/—-L-U+S-SL-SU (10)

=I-L-U+ () —(SL+SU) (11)

Further splittings of the bracket terms in (11) are obtained

as follows.
S=—L¢—Us
—SL—-SU =D, —L, - U,

(12)
(13)
Thus
A=U+D)—UL+Lg+L)—WU+Ug+U;) (14)
or equivalently
A=D-L-U (15)
where D =1+ D, is the diagonal, —L = —(L + Lg + L;)
and —U = —(U + Ug + U;) are strictly lower and strictly
upper triangular parts of A respectively.
The application of overrelaxation parameter w to the
preconditioned linear system (8) yields

wAx = wb (16)

where,
wA=wD-L-07) (17)
=l -wl)-0-wI—-wl-D,) (18)

Thus
wA=U-wl)-[0-wI+w@-D)] (19

is a regular splitting of wA = M — N, where
M=(U-wl)and N =[(1 — w)I + w(@ — D;)] (20)
Hence, the following preconditioned SOR iterative
scheme is obtained.
x® 0 = 6 x™ + M~ wb (1)
And the preconditioned SOR iterative matrix G; has the
representation
G, =U-wl) A -wl+w@ - D]
Similarly,
=0 -wl)-[(1-wD + ] (23)
is another splitting of the the preconditioned coefficient
matrix wA = M — N, with
M=((D-wl)and N = [(1 —w)D + wl] (24)
And this leads to the second preconditioned SOR iterative
scheme

(22)

x(n+1) — sz(n) + M—le
One can also obtain that for 0 < w < 1,

Gsor = I+ wL + w?L? + -+ +" 1L [(1 — w) I + wU]
=1 -wl+wld-wl+oU+ 0?’LlU+ 0@ - wl?+ 03L2U+ -

with the second preconditioned iterative matrix G, having
the representation

G, =(D-wl)'[(1 —w)D +wl] (26)

3. Convergence Analysis

Convergence of the preconditioned iterative schemes (21)
and (25) is established by showing that the spectral radii of
the G; and G, are less than 1 in each case.

Lemma 3.1 (Varga[l0] ): Let A > O be an irreducible
n X n matrix. Then,

i. A has a positive real eigenvalue equal to its spectral

radius.

ii. To p(A) there corresponds an eigenvector x > 0.

iii. p(A) increases when any entry of A increases.

iv. p(A) is asimple eigenvalue of A.

Lemma 3.2 (Varga[10] ): Let A be a nonnegative matrix.
Then

i. If ax < Ax for some nonnegative vector x,x # 0, then

a < p(A).

ii. If Ax < Bx for some positive vector x, then p(4) <
B. Moreover, if A is irreducible and if 0 # ax < Ax < fx
for some nonnegative vector x, then a < p(A) < B and x
is a positive vector.

Lemma 3.1 (Li and Sun[11] ): Let A= M — N be an
M — splitting of A . Then the splitting is convergent,
ie., ((M™IN < 1), if and only if A is a nonsingular
M —matrix.

By employing the foregoing lemmas (lemmas 3.1 - 3.3),
the next three theorems are proposed to establish
convergence of the preconditioned iterative methods.

Theorem 3.1: Let Ggop = (I — wL) (1 — w) I + U]
be the SOR iteration matrix while G; = (I — wL)7![(1 -
wl+w(l/-P1)] and G2=D-wl—1[1-wD+wl/] be the
preconditioned SOR iteration matrices.If A is an irreducible
L —matrix with 0 <ay;a;1 +a;;11a;49; <1, 1= 2(Dn,
and 0 <w < 1, then Gspr, G; and G, are nonnegative
and irreducible matrices.

Proof

Since A is an L —matrix, L >0 and U = 0. Now,
(I—wl) =1+ oL+ w?L?+  +0™ 1L 1 >0,
A-w)l+wU=0, for 0<w<1. Thus Ggp =
I —wl)™ [ —w)+wU]=0. Hence, Ggpp is a
nonnegative matrix.

(25)
(27)
(28)
=1 -wl+ o —wL+ wU + nonnegative terms (29)

Since A =D — L —U is irreducible, so also is D"'A=1— L — U, because it inherits the nonzero structure of the
irreducible matrix A. The same thing applies to the matrix (1 — w)I+ w(1 — w)L + wU since the coefficients of
I,L and U are different from zero and less than 1 in absolute value. Hence, Ggyp is an irreducible matrix.

G =U—-wl) ' - w4+ - Dy)]

(30)

Since L>0, U>0,-D; >0, for 0 <w<1, 1—-wl+w(@—-D;)=0 and I —wl)™? =1+ oL+ w?L*+ -

+w™ 1["1 > 0. Consequently, one can find that G; = (I — wL)™'[(1 — w) [+ w(T — D;)] = 0. Hence

nonnegative matrix.

G, is a
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Now,
A=U+9)A=U~-L,—UJU-L-U) (3D
=1—-L—-U-L;+LL+L,U-U, +UL+UU (32)
=1-L-U~-Li+LL—-(LU), = (LU)y = Ug = (UsL), — (UsL)y + U U (33)
=1-L—L;+LL—(LU), — UsL), —U—=Us +U;U = (UsL)y = (L U)y (34
=1-@+L;—LiL+ @0, + WL)) =W +U; = U U + (WU L)y + (LU) ) (35)
=/-L-T (36)

where L=L+L;—L,L+ LU0, + WUsL),, U=U+U;,—U, U+ (U;L)y + (L,U)y; and —(T), and —(T), denote
the strictly lower and strictly upper parts of the matrix T respectively. A =1 — L — U is irreducible, since it inherits the
nonzero structure of the irreducible matrix A.

Now,
G =U—-wD A -w+w@ - D))] (37)
=0 -wl+wold-wl+wl-wD +w’llU - w?DL+ w1 —-wl?+- (38)
=1 -wl+wld—-wlL+ ol + nonnegative terms (39

The matrix (1 — w)I + w(1 — w)L + w0 is irreducible, since the coefficients of I, L and U are different from zero
and less than one in absolute value. Therefore, the matrix G; = (I — wL)™'[(1 — w)I + w (T — D,)] is irreducible. Hence
G; is anonnegative and irreducible matrix.

Similarly, consider

G, =(D—wl) [ —w)D + 0] (40)

= [DU — wD 'L M1 - wD + U] (41)

=U-wD DA -wI+ wD 0] (42)

=[I+wD 'L+ w?(D'L*+ -+ " 'O 'L x [ - wI +wD U] (43)
=1 -wl+wl@d—wD 'L+ wD U+ nonnegative terms (44)

Using similar arguments it is conclusive that G, = (D — wL)"*[(1 — w)D + wU] is a nonnegative and irreducible matrix.
The proofis completed.

Theorem 3.2: Let Ggop = (I — wL) (1 —w)I+ wU] and G, = U — wL)™[(1 — w)I + w(T — D;)] be the SOR
and preconditioned SOR iteration matrices respectively. If 0 < w <1 and if A is an irreducible L —matrix with0 <
Q@ + Qa4 <1, i =2()n. Then,

(i) p(Gy) < p(Gsor), if p(Gspr) < 1

(i) p(G,) = p(Gspr ), if p(Gspr) = 1

(i) p(G,) > p(Gsor), if p(Gsor) > 1

Proof

From Theorem 3.1, Ggpr and G, are nonnegative and irreducible matrices. Suppose p(Gspz) = A, then there exists a
positive vector x = (x1,X,, ,xn)T, such that

Ggop X = Ax (45)
That is,
I - wl)™A -+ oUlx = Ax (46)
1 -wI+wU=210-wL) (47)
Therefore, for this x > 0,
=U-wD™MA-wI+w-D)}x—A0 - wl) U — wDx (48)
=0 -wl) {0 - o - DI+ U + Aol + Awls + Awl; + 0Us — wD; + wU,;}x (49)
Fromequation (47)
oU + Aol = -1 —w — DI (50)
Gx—Ax = (U — wLl)™{Q - Dwl, + AwLg + wUs — w(D; — L; — U;)}x (51)
= -l MQA - Dol + AwLs — wLs+ wLg + wUs + wSL + wSU}x (52)
=0 -l ol -DU; +Ly) + (A — w)S —SU — wL) + wSU)}x (53)
=0 - wl) Ho@ - D@, + L) + S[(A — ) + U] —SU — wL)}x (54)
= - ol Mol - DU, +Lg) + 2SU — wL) — S — wL)}x (55)
=Q-1D0U -l Mo, + L)+ ST — wl)}x (56)
Gx—Ax=Q-1D/A[U - oL) A w(L;+ L) + (1 — w) S + wSUx (57)

Let R=Qx, where Q=0 —-wl) ' {Aw(l; +L)+ So,R=U-wl) Nl +L)+ 1 -w)S+ wSUx >
(1-wS +wSU}. Then Q = U — wD) A w(@; + L)+  0,since x > 0.

(1-wS+wSU} =0 , because Aw(l, +Ls) =0 , i. If A <1,then G;x — Ax < 0 but not equalto 0.
(1-wS=0and wSU=0 . Also, U—-wl) =1+ Therefore,
oL + w?L?+ -+ 4™ [ 1 > 0, since L > 0. Therefore, Gix < Ax (598)

Q=U-wlD) Aol +Lg)+ 1A —w)S + wSU} = 0. From Lemma 3.2, one obtains
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p(G) < 2 =p(Gspr) (59) 0<w<1 and if A is an irreducible L — matrix with
i.If A=1,then G;x —Ax =0 0<apa;+a;1a4; <1, i= 2(1)n. Then,
Therefore, () p(G;) < p(Gspr), if p(Gsor) < 1;

Gy x = Ax (60) (i) p(G,) = p(Gspp), if p(Gsor) = 1;

From Lemma 3.2, we have (iii) p(G,) > p(Ggor ), if p(Ggor) > 1.

p(G) = 24 = p(Gyop) (61) Proof
iii. If A > 1, then G;x — Ax = 0 but not equal to 0. From Theorem 3.1, Gsor and G, are nonnegative and
Therefore, irreducible matrices. Suppose p(Ggor) = A, then there

Gix = Ax (62) exists a positive vector x = (xq,X5,"*,%,)", such that

From Lemma 3.2, we have Gsorx = Ax (64)

p(G) > 2 = p(Ggpg) (63) That is,
The proofis completed. (I - wl) {0 — 0w + 0Ulx = Ax (65)
Theorem 3.3: Let Ggop = (I — wL) (1 —w) I + U] 1 - I+ wU=210-wL) (66)

and G, = (D — wL)™'[(1 — w) D + wU] be the SOR and Therefore, for this x > 0,
the preconditioned SOR iteration matrices respectively. If

Gyx—Ax =D - wl) {1 — w)D + wl}lx — Ax 67)

=D -wl) {1 -w D+ ol —A0D — wl)}x (68)

=0 - wl) M —w - DD, + Aol + AwLg + Aol + wUs + oU; + (1 — w — DI + wlU)}x (69)
Fromequation (66)

1-w-DI+wU=-20L (70)

Gyx—2Ax = (D — wl) "1 —w — DD; + Awl, + AwLs + wUg + wU;)}x (71)
=D - wl) {1 - 1D(=D; +wL,) + wSL + wSU + (A1 — DwLs + w(Ls + Ug)}x (72)
=D - wl) {1 — 1D(=D; + wL, + wLg) + S[(1 — w)I + wU] - SU — wL)}x (73)
=QU-1/2[(D - wL) ' Y{=AD; + AwL; + AdwLs + (1 — w)S + wSU}x (74)

Let R = Qx, with Q = (D — wL)™{-AD; + AwL; + AwLs + (1 — w)S + wSU} . 1t is clear that —AD; + AwL; +
AdwLs+ A —w)S+ wSU =0, since 1 —w)S =0, wSU =0, —AD; =0, AwL, = 0and AwL; = 0. Since D is a
nonsingular matrix, we let D — wL be a splitting of some matrix K, ie., K = D — wL. Also, D is an M —matrix and
wL > 0. Thus, K =D — wL is an M —splitting. Now, wD L is a strictly lower triangular matrix, and by implication its
eigenvalues lie on its main diagonal; in this case they are all zeros. Therefore, p(w D~'L) = 0. since p(wD L) < 1,
K = D — wL is a convergent splitting. By the foregoing, K = D — wL is an M —splitting and p(wD'L) < 1. Lemma 3.3
is invoked in order to establish that K is an M —matrix. Since K is an M —matrix, by definition, K™ = (D — wL)"* > 0.
Thus, Q = 0 and R = 0.

If A< 1,then G,x — Ax < 0 but not equal to 0.

Therefore,
Gyx < Ax (75)
From Lemma 3.2, we have
p(G,) < 1 = p(Ggpr) (76)
i. If A=1,then Gox—Ax =0
Therefore,
G, x = Ax 77
From Lemma 3.2, we have
p(G,) = 2 = p(Ggpr) (78)
iii. If 4 > 1, then G,x — Ax = 0 but not equal to 0.
Therefore,
G,x = Ax (79)
From Lemma 3.2, we have
p(G,) > 1 = p(Gspr) (80)

The proofis completed.

If in Gsop,G; and G, the relaxation parameter w = 1, the iteration matrices of the Gauss-Seidel method results in each
case. Therefore, the following corollaries are direct imp lications of Theorem 3.1 and Theorem 3.2.

Corollary 3.1 Let Gz = (I — L)7'U be the Gauss-Seidel iteration matrix and Gpgg = (I — L)"1(T — D;) be the
preconditioned Gauss-Seidel iteration matrix. If A is an irreducible L —matrix with 0 < ay;a;; + a;;41a0;41; <1, i=
2(1) n, then

(1) p(Gpgs) < p(Ggg), if p(Ggg) < 1;

(i) p(Gpgs) = p(Ggs), if p(Ggs) = 1;

(iii) p(Gpgs) > p(Ggg), if p(Ggg) > 1.
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Corollary 3.2 Let G = (I —L)"'U be the Gauss-Seidel iteration matrix and Gpgs = (D —L)™'U be the
preconditioned Gauss-Seidel iteration matrix. If A is an irreducible L —matrix with 0 < aj;a; +a;;41041; <1, =
2(1) n, then

(i) p(Gpgs) < p(Ggs), if p(Ggs) < 1;

(i) p(Gpgs) = p(Ggs), if p(Ggs) = 1;

(iii) p(Gpgs) > p(Ggs), if p(Ggg) > 1.

4. Numerical Experiments

Example 4.1 Consider a 4x 4 matrix of the form.
1.000 —0.279-0.233 0

—0.306 1.000 0 —0.204
—0.265 0  1.000 —0.245
0 —0.236—0.273 1.000

Table 1 displays the results of comparing the spectral radius es of Ggop, G;and G, iterative matrices corresponding to the
matrix in example 4.1.

Table 1 compares the spectral radiuses of Ggyp , G; and G, iteration matrices. It reveals that the two preconditioned SOR
iteration matrices exhibit faster convergence than the SOR, because the spectral radiuses of G; and G, are less than the
spectral radius of Ggop (p(G,) < p(Gy) < p(Gsp ) < 1), for all values of relaxation parameter w.

Example 4.2 Considera 9 X 9 matrix of the form.

1.000 -0.274 0 —-0.233 0 0 0 0 0
—0.296 1.000 —0.296 0 -—-0.209 O 0 0 0

0 —0.315 1.000 0 0 -0191 0 0 0
—-0.253 0 0 1.000 —0.253 0 -0.253 O 0

0 -0230 0 -0.276 1.000 —0.276 0 —0.229 0

0 0 -0.211 0 -0.295 1.000 0 0 -0.211

0 0 0 -0.281 O 0 1.000 —0.225 0

0 0 0 0 -0258 0 —0.247 1.000 —0.247

0 0 0 0 0 -0238 0 —0.267 1.000

The results of example 4.2 are displayed in Table 2 as follows.

Table 1. Result of Spectral Radiuses of Ggpp, Gy and G, lterative Table 2 goes further to confirm the efficiency of the

Matrices for Example 4.1 preconditioned iterations by revealing that the spectral
radiuses of the preconditioned iterative matrices G; and G,
® p(Gsor) p(G) p(G) are less than the spectral radius of the SOR iterative matrix
0.1 09497367332 09343841025 09294898941 Gsor - That is, (p(G,) < p(G;) < p(Gspr) < 1), for all
02 0.8966535877 0.8664813907 0.8563024920 values of relaxation parameter w.

03 0.8403551407 0.7960535419  0.7801233797
04  0.7803331920  0.7228051902 0.7005500711

0.5 0.7159112293 0.6463595589 0.6170462734 0

0.6 0.6461456054 0.5662177654 0.5288570679 5' COI]CIUSIOI]S

0.7 0.5696315402 04816855287 0.4348316650 . e . . .
08 04840647590 03917272446 03329801041 In this research work, a preconditioning matrix is
09 03850038057 02946323649 02189565183 introduced. Two different forms of the preconditioned

SOR-type iterations are formulated for the preconditioner.
Table 2. Result of Spectral Radiuses of Gsog, Gy and G, lterative ~ Some theorems are proposed and proven in order to establish
the validity and efficiency of the preconditioned iterations.

Matrices for Example 4.2 o . ) .
The preconditioned iterations are shown to satisfy standard

® p(Gsor) p(G) p(Gy) convergence criteria under mild conditions imposed on the
01 09704634607 09620727092 09587537313 coefﬁc 1enF I.na.mx of t.he linear system. Based on the 'rfasults
02 09385935809 09213681941 09142487503 obtained, it is instructive to conclude that the preconditioned
03 0.9040263 188 0.8774831690 0.8659661402 SOR iterative methods presented in this research work
04 08662980616  0.8299100531  0.8132363784 provide better and faster convergence properties than the
05 0.8248024823 0.7779928048 0.7551667064 SOR

06  0.7787177235 0.7208539881 0.6905110757
0.7 07268771927  0.6572651779  0.6174182078
08  0.6675138755 0.5853927211 0.5328622455

09 05976821338 0.5022225352 04310404963 ACKNOWLEDGEMENTS
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