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Abstract Inthe present paperwe use princip les of fuzzy logic to develop a general model representing several processes in
asystem’s operation characterized by a degree of vagueness and/oruncertainty. For this, the main stages ofthe corresponding
process are represented as fuzzy subsets ofa set of linguistic labels characterizing the system’s performance at each stage. We
also introduce three alternative measures of a fuzzy system’s effectiveness connected to our general model. These measures
include the system’s total possibilistic uncertainty, the Shannon’s entropy properly modified for use in a fuzzy environment
and the “centroid” method in which the coordinates of the center of mass of the graph of the membership function involved
provide an alternative measure of the system’s performance. The advantages and disadvantages of the above measures are
discussed and a combined use of them is suggested for achieving a worthy of credit mathematical analysis of the
corresponding situation. An application is also developed for the Mathematical Modelling process illustrating the use of our

results in practice.
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1. Introduction

A system is a set of interacting or interdependent
components forming an integrated whole. A system
comprises multiple views such as planning, analysis, design,
implementation, deployment, structure, behavior, input and
output data, etc. As an interdisciplinary and multi-
perspective domain systems’ theory brings together
principles and concepts from ontology, philosophy of
science, information and computer science, mathematics, as
well as physics, biology, engineering, social and cognitive
sciences, management and economics, strategic thinking,
fuzziness and uncertainty, etc. Thus, it serves as a bridge for
an interdisciplinary dialogue between autonomous areas of
study. The emphasis with systems’ theory shifts fromparts to
the organization of parts, recognizing that interactions of the
parts are not static and constant, but dynamic processes.
Most systems share common characteristics including
structure, behaviour, interconnectivity (the various parts ofa
systemhave functional and structural relations to each other),
sets of functions, etc. We scope a system by defining its
boundary; this means choosing which entities are inside the
systemand which are outside, part of the environment.

The systems’ modelling is abasic principle in engineering,
in natural and in social sciences. When we face a problem
concerning a system’s operation (e.g. maximizing the
productivity of an organization, minimizing the functional
costs of a company, etc) a model is required to describe and
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represent the system’s multiple views. The model is a
simplified representation of the basic characteristics of the
real system including only its entities and features under
concem. In this sense, no model of a complex system could
include all features and/orall entities belonging to the system.
In fact, in this way the model’s structure could become very
complicated and therefore its use in practice could be very
difficult and sometimes impossible. Therefore the
construction ofthe model usually involves a deep abstracting
process on identifying the system’s dominant variables and
the relationships governing them. The resulting structure of
this action i known as the assumed real system (see Figure
1). The model, being an abstraction of the assumed real
system, identifies and simplifies the relationships among
these variables in a formamenable to analysis.
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Figure 1. A graphical representation of the modelling process

A systemcan be viewed as a bounded transformation, i.e.
as a process or a collection of processes that transforms
inputs into outputs with the very broad meaning of the
concept. For example, an output of a passengers’ bus is the
movement of people from departure to destination.

Many ofthese processes are frequently characterized by a
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degree of vagueness and/or uncertainty. For example, during
the processes of learning, of reasoning, of problem-solving,
of modelling, etc, the human cognition utilizes in general
concepts that are inherently graded and therefore fuzzy. On
the other hand, fromthe teacher’s point of view there usually
exists an uncertainty about the degree of students’ success in
each of the stages of the corresponding didactic
situation.

There used to be a tradition in science and engineering of
turning to probability theory when one is faced with a
problem in which uncertainty plays a significant role. This
transition was justified when there were no alternative tools
for dealing with the uncertainty. Today this is no longer the
case. Fuzzy logic, which is based on fuzzy sets theory
introduced by Zadeh[17] in 1965, provides a rich and
meaningful addition to standard logic. The applications
which may be generated from or adapted to fuzzy logic are
wide-ranging and provide the opportunity for modelling
under conditions which are inherently imprecisely defined,
despite the concemns of classical logicians. Many systems
may be modelled, simulated and even replicated with the
help of fuzzy logic, not the least of which is human reasoning
itself (e.g.[3].[4],[7],[81,[12],[14],[15],[ 16] etc)

A real test of the effectiveness of an approach to
uncertainty is the capability to solve problems which involve
different facets ofuncertainty. Fuzzy logic has a much higher
problem solving capability than standard probability theory.
Most importantly, it opens the door to construction of
mathematical solutions of computational problems which are
stated in a natural language. In contrast, standard probability
theory does not have this capability, a fact which is one of'its
principal limitations.

All these gave us the impulsion to introduce principles of
fuzzy logic to describe in a more effective way a system’s
operation in situations characterized by a degree of
vagueness and/or uncertainty.

For general facts on fuzzy sets and on uncertainty theory
we refer freely to the book of Klir and Folger[1].

2. The General Fuzzy Model

Assume that one wants to study the behavior of a system’s
n entities (objects), n > 2, during a process involving
vagueness and/oruncertainty. Denote by S;,i=17,2,3 the main
stages of this process and by a, b, ¢, d, and e the linguistic
labels of very low, low, intermediate, high and very high
success respectively of a system’s entity in each of the S;’s.
Set

U={a, b,c,d,e}.

We are going to attach to each stage S; a fuzzy subset, 4, of
U. For this, if n;, n;p, n;., ny and n;, denote the number of
entities that faced very low, low, intermediate, high and very
high success at stage S; respectively, i=1,2,3, we define the
membership function my; for each x in U, as follows:

1, it M<n <n

5
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0,75, it M<n, M

5 5

mAi(X)= 0,5, if @<n,~x33?”
025, if f<p, 2
5 5
0, if 0 Sn,-ng
5

Then the fuzzy subset 4; of U corresponding to S; has the
form:

Ai= {(x, ma(x)): xeU}, i=1, 2, 3.

In order to represent all possible profiles (overall states) of
the system’s entities during the corresponding process we
consider a fizzy relation, say R, in U° of the form:

R= {(s. me(s)):s=(x,y, 2) U’}.

We assume that the stages of the process that we study are
depended to each other. This means that the degree of
system’s entity success in a certain stage depends upon the
degree of its success in the previous stages, as it usually
happens in practice. Under this hypothesis and in order to
determine properly the membership function mg we give the
following definition:

Definition: A profile s=(x, y, z), with x, y, z in U, is said to
be well ordered if x corresponds to a degree of success equal
or greater than y and y corresponds to a degree of success
equal or greater than z.

Forexample, (¢, ¢, a) is a well ordered profile, while

(b, a, c) is not.

We define now the membership degree of a profile s to be

mR(s)=m 4 (Ym 4 (y)m 4 ()

if s is well ordered, and 0 otherwise.

In fact, if for example the profile (b, a, ¢) possessed a
nonzero membership degree, how it could be possible for an
object that has failed during the middle stage, to perform
satisfactorily at the next stage?

Next, for reasons of brevity, we shall write m; instead of
mg(s).

Then the probability p, of the profile s is defined in a way
analogous to crisp data, i.e. by

We define also the possibility ry of s by
r=_ M
max {m,}
where max{m} denotes the maximal value of m;, for all s
in 7. In other words the possibility of s expresses the
“relative membership degree” of's with respect to max{m,}.
Assume further that one wants to study the combined
results of behaviour of k£ different groups of a system’s
entities, k> 2, during the same process.
For this we introduce the fiuzzy variables A;(t), A5(t) and
Asz(t) with t=1, 2,..., k. The values of these variables
represent fuzzy subsets of U corresponding to the stages of
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the process for each of the k£ groups; e.g. 4;(2) represents the
fuzzy subset of U corresponding to the first stage of the
process for the second group (r=2). It becomes evident that,
in order to measure the degree of evidence of the combined
results of the k& groups, it is necessary to define the
probability p(s) and the possibility »(s) of each profile s with
respect to the membership degrees of s for all groups. For
this reason we introduce the pseudo-frequencies

k
fs)= D m (1)

=1
and we define the probability of a profile s by

f(5)

p(s)= :
> f(s)
seU?
We also define the possibility of s by
f(s)

1)~ hax{ ()}
where max{f(s)} denotes the maximal pseudo-frequency.
Obviously the same method could be applied when one
wants to study the combined results of behaviour of a group
during £ different situations.

3. Fuzzy Measures of a System’s
Effectiveness

There are natural and human-designed systems. Natural
systems may not have an apparent objective, but their
outputs can be interpreted as purposes. On the contrary,
human-designed systems are made with purposes that are
achieved by the delivery of outputs. Their parts must be
related, i.e. they must be designed to work as a coherent
entity.

The most important part of a human-designed system’s
study is probably the assessment, through the model
representing it, of its performance. In fact, this could help the
system’s  designer to make all the necessary
modifications/improvements to the system’s structure in
order to increase its effectiveness.

In this article we’ll present three fuzzy measures of a
system’s effectiveness connected to the general fuzzy model
developed above. The advantages and disadvantages of these
measures will be also discussed and an application for the
problem solving process will be presented illustrating our
results.

The amount of information obtained by an action can be
measured by the reduction of uncertainty resulting fromthis
action. Accordingly a system’s uncertainty is connected to
its capacity in obtaining relevant information. Therefore a
measure of uncertainty could be adopted as a measure of a
system’s effectiveness in solving related problems.

Within the domain of possibility theory uncertainty
consists of strife (or discord), which expresses conflicts
among the various sets of alternatives, and non-specificity
(or imprecision), which indicates that some alternatives are
left unspecified, i.e. it expresses conflicts among the sizes
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(cardinalities) of the various sets of alternatives ([2]; p.28).
Strife is measured by the function S7{7) on the ordered
possibility distribution
rrn=l>nmn>.... > Ty >t
ofa group of a system’s entities defined by

ST(r) =@{i(’? —ml)logi}

i=2
Non-specificity is measured by the function

1 & .
N(r) = @[; (1, —r,y)logil

The sum 7(r) = ST(r) + N(r) is a measure of the rotal
possibilistic uncertainty for ordered possibility distributions.
The lower is the value of 7(7), which means greater reduction
of the initially existing uncertainty, the better the system’s
performance.

Another fuzzy measure for assessing a system’s
performance is the well known from classical probability and
information theory Shannon’s entropy[6]. Foruse in a fuzzy
environment, this measure is expressed in terms of the
Dempster-Shafer mathematical theory of evidence in the
form:

1 n
H=-—

([21, p- 20).

In the above formula n denotes the total number of the
system’s entities involved in the corresponding process. The
sumis divided by In n (the natural logarithm of n) in order to
be normalized. Thus H takes values in the real interval[0, 1].
The value of H measures the system’s total probabilistic
uncertainty and the associated to it information. Similarly
with the total possibilistic uncertainty, the lower is the final
value of H, the better the system’s performance.

An advantage ofadopting H as a measure instead of 7(7) is
that His calculated directly from the membership degrees of
all profiles s without being necessary to calculate their
probabilities p,. In contrast, the calculation of T{(7)
presupposes the calculation of the possibilities r; of all
profiles first. However, according to Shackle[5] human
reasoning can be formalized more adequately by possibility
rather, than by probability theory. But,as we have seen in the
previous section, the possibility is a kind of “relative
probability”. In other words, the “philosophy” of possibility
is not exactly the same with that of probability theory.
Therefore, on comparing the effectiveness of two or more
systems by these two measures, one may find non
compatible results in boundary cases, where the systems’
performances are almost the same.

Another popular approach is the “centroid” method, in
which the centre of mass of the graph of the membership
function involved provides an alternative measure of the
system’s performance.

For this, given a fuzzy subset

A = {(x, m(x)): x €U}
of the universal set U with membership function
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m: U 5[0, 1], we correspond to each x € U an interval of
values froma pre fixed numericaldistribution, which actually
means that we replace U with a set of real intervals. Then, we
construct the graph F of the membership function y=m(x).

There is a commonly used in fuzzy logic approach to
measure performance with the pair of numbers (x., y¢) as the
coordinates of the centre of mass, say F., of the graph F,
which we can calculate using the following well-known [10]

formulas:
.” xdxdy _U vdxdy
F

B ”dxdy e ].J.dxdy o
F F

For example, assume that the set U of the linguistic labels
defined in the previous section characterizes the performance
ofa group of students. When astudent obtains a mark, say y,
then his/her performance is characterized as very low (a) ify
[0, 1), as low (b) ify [l, 2), as intermediate (c) ify €[2,
3), as high (d) if y €[3, 4) and as very high (e) if y €[4,5]
respectively. In this case the graph F of the corresponding
fuzzy subset of U is the bar graph of Figure 2

w(d)

M) ¢--

Ae(0) e——

ai(c)
mee)

S
e
o

Figure 2. Bar graphical data representation

It is easy to check that, if the bar graph consists of n
rectangles (in Figure 2 we have n=5), the formulas (1) can be
reduced to the following formulas:

Z v

Z (2i-1)y,
=l Y, = b))

Zyi Zyl
i=1

Indeed, in this case ” dxdy is the total mass of the system
F

which is equal to Zy, s IIdedy is the moment about the
i=1

y-axis which is

to Z”xdxdy Z I dyj xdx

=l F =19 i1

equal

= ;yi [L xdx =
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%Z(Zi—l)yi , and ”ydxdy is the moment about the

y-axis which is equal to Z”ydxdy ijdyjdx =

IlF i=1 g i-1

Zﬂxdxdy Zj.dyj. xdx = Zj.ydy:_zyl

i=l i=lo -l i=1 0

From the above argument, where F;, i=1,2,...,n , denote
the n rectangles of the bar graph, it becomes evident that the
transition from (1) to (2) is obtained under the assumption
that all the intervals have length equalto 1 and that the first
ofthem is the interval[0, 1].

In our case (n=5) formulas (2) are transformed into the
following form:

. :l(yl +3y, +5, +7y4+9y5J
CO20 nA Y+
2 2 2 2 2
l(% TV, +V tV, H s ]
2 NtV Y3+ Y, + Vs
Normalizing our fuzzy data by dividing each m(x), x €U,
with the sum of all membership degrees we can assume
without loss of the generality that

yitystystystys = L
Therefore we can write:

Ve =

1
= (1 +37; +5y + 7y, +975)
) 3
2 2 2 2 2
yc=5(yl tY, ty; tY, tYs )

1 x;)

with y;= , where x,=a, % =b, 3=c,
> ()
xeU
x4 =d and x5 =e.
But
0=(y1y2l =y’ +y2 2y1y2,
therefore

yitys' =21y,
with the equality holding if, and only if, y;=y,.
In the same way one finds that
yityst =2y1ys,
and so on. Hence it is easy to check that
(Y1+y2tystystys)” < S(yi*+y2 tys tydtys),
with the equality holding if, and only if y;=y,=y;=y,=ys.
But y;+y,+y;+y,+ys =1, therefore
I < 51 4y2 +ys +yattys)) (),
with the equality holding if, and only if y;=y,=y;=y,=ys=1.
S, Furthe%,
2
combining the inequality (4) with the second of formulas (3)
one finds that

Then the first of formulas (3) gives that x. =

1 =10y, ory. > 1.
10
Therefore the unique minimum for y. corresponds to the



Michael Gr. Voskoglou: A Study on Fuzzy Systems

centre of mass F,,(2, ).
210
The ideal case is when y;=y,=y;=y,=0 and ys=1. Then
from formulas (3) we get that x. = 9 and y.= | Therefore
2 2

the centre of mass in this case is the point F;(2, 1).
2 2
On the other hand the worst case is when y;=/ and
y2=y3=y4= ys=0. Then for formulas (3) we find that the

centre of mass is the point 7, (1, 1).
22

Therefore the “area” where the centre of mass F, lies is
represented by the triangle Fy, F,, F; of Figure3

¥ a
1 F, ; F
2 - T
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] 1 1
I I 1
i ] i ! i
i I : i 1
i I i H 1
! 1
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2 2 2

Figure 3. A graphical representation of the“area” of the centre of mass

Then from elementary geometric considerations it follows
that for two groups of a system’s objects with the same x,
>2,5 the group having the centre of mass which is situated
closer to F; is the group with the higher y.; and for two
groups with the same x. <2.5 the group having the centre of
mass which is situated farther to F), is the group with the
lower y..

Based on the above considerations it is logical to
formulate our criterion for comparing the groups’
performances in the following form:

e Among two or more groups the group with the biggest x.
performs better.

o If two or more groups have the same x. > 2.5, then the
group with the higher y. performs better.

o If two or more groups have the same x. < 2.5, then the
group with the lowery, performs better.

From the above description it becomes clear that the
application of the “centroid” method in practice is simple
and evident and needs no comp licated calculations in its final
step. However, we must emphasize that this method treats
differently the idea of a system’s performance, than the two
measures of uncertainty presented above do. In fact, the
weighted average plays the main role in this method, i.e. the
result of the system’s performance close to its ideal
performance has much more weight than the one close to the
lower end. In other words, while the measures of uncertainty
are dealing with the average system’s performance, the
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“centroid” method is mostly looking at the quality of the
performance. Consequently, some differences could appear
in evaluating a system’s performance by these different
approaches. Therefore, it is argued that a combined use of all
these (3 in total) measures could help the userin finding the
ideal profile of the system’s performance according to
his/her personal criteria of goals.

4. Modelling the Process of
Mathematical Modelling

In earlier papers we have developed models similar to the
above general model for a more effective description of
several situations involving fuzziness and/or uncertainty in
the areas of Education (for the processes of Learning and of
Problem Solving), of Artificial Intelligence (for Case-Based
and Analogical Reasoning) and of Management (for
evaluating the fuzzy data obtained by a market’s research
and for Decision Making); see for example[15] and its
references. Notice also, that Subbotin et al., based on our
fuzzy model for the process of Learning[12], have applied
the “centroid” method on comparing students’ mathe matical
learning abilities[7] and for measuring the scaffolding
(assistance) effectiveness provided by the teacher to
students[8], while Perdikaris ([3],[4]) has used the total
possiblistic uncertainty and the Shannon’s entropy for
measuring student’s geometrical reasoning skills in terms of
the corresponding van Hieles’ levels.

In this article we shall apply our general model developed
above for the representation of the process of Mathematical
Modelling (MM).

The representation of a system’s operation through the use
ofa mathematical model is achieved by a set of mathematical
relations (equalities, inequalities, etc) and functions properly
related to each other.

It is well known (e.g.[9]; paragraph 1.4) that the stages of
the MM process involve:

o Analysis of the given real world problem, i.e.
understanding the statement and recognizing limitations,
restrictions and requirements of the real system.

e Mathematization, i.e. formulation of the real situation in
such a way that it will be ready for mathematical treatment
(assumed real system, see first section) and construction of
the model.

o Solution of the model, achieved by proper mathematical
manipulation.

e Validation (control) of the model, usually achieved by
reproducing through it the behavior of the real systemunder
the conditions existing before the solution of the model
(empirical results, special cases etc). A simulation model is
also frequently used for this purpose as a secondary model.

o Implementation of the final mathematical results to the
real system, i.e. “translation” of the mathematical solution
obtained in terms of the corresponding real situation in order
to reach the solution ofthe given real problem.

For the development of our fuzzy model for the MM
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process we consider a group of n modellers, n >2, working
(each one individually) on the same modelling problem. In
order to make our model technically simpler, we can,
without loss of the generality, reduce the stages of the MM
process to the following three:

S; : Analysis/Mathematization,

S, : Solution of the model,

S3 : Validation/Imp lementation

In fact, the analysis of the given problem is an
introductory stage of the MM process that can be naturally
seen as being a sub step of mathematization. Further, the
stage of implementation of the final mathematical results to
the real systemis an expected action following the validation
of the model, which means that the joined stage of
Validation/Implementation can be considered without loss
of'the generality as the final stage of the MM process.

To each ofthe S; s we attach a fuzzy subset, say 4;, of the
set U ofthe linguistic labels considered in the second section
defining also the membership function m,; as we did in this
section. The development of the rest of our model for the
MM process relies then upon the lines of our general fuzzy
model presented in detail in the two previous sections.

In order to illustrate the use of our results in practice, we
performed the experiments presented in the next section.

5. Applications of the Model for MM

The following two experiments took place recently at the
Graduate Technological Educational Institute (T. E. I.) of
Patras in Greece. In the first of them our subjects were 35
students of the School of Technological Applications, i.e.
future engineers, and our basic tool was a list of 10 problems
(see Appendix) given to them for solution (time allowed 3
hours). Before starting the experiment we gave the proper
instructions to students emphasizing among the others that
we are interested for all their efforts (successful or not)
during the MM process, and therefore they must keep
records on their papers for all of them, at all stages of the
MM process. This manipulation enabled as in obtaining
realistic data from our experiment for each stage of the MM
process and not only those based on students’ final results
that could be obtained in the usual way by graduating their
papers.

Our characterizations of students’ performance at each
stage of the MM process involved:

e Negligible success, if they obtained (at the particular
stage) positive results for less than 2 problems.

e Low success, if they obtained positive results for 2, 3, or
4 problems.

e Intermediate success, ifthey obtained positive results for
5, 6, or 7 problems.

o High success, if they obtained positive results for 8, or 9
problems.

e Very high success, if they obtained positive results for
all problems.
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Examining students’ papers we found that 15, 12 and 8
students had intermediate, high and complete success
respectively at stage S; of analysis/mathematization.
Therefore we obtained that n;,=n;;,=0, n;.=15, n;;=12 and
n;.=8. Thus, by the definition of the corresponding
membership function given in the second section, S; is
represented by a fuzzy subset of U of the form:

A ={(a,0),(b,0),(c, 0,5),(d, 0,25),(¢,0,.25),

In the same way we represented the stages S, and S; as
fuzzy sets in Uby
Ar={(a,0),(b,0),(c, 0,5),(d, 0,25),(e,0)}
and
Az ={(a, 0,25),(b, 0,25),(c, 0,25),(d,0),(e,0)}

respectively.

Next we calculated the membership degrees of the 5
(ordered samples with replacement of 3 objects taken from5)
in total possible students’ profiles as it is described in the
second section (see column of my(1) in Table 1). Forexample,
for the profile

s=(c, ¢, a) one finds that

ms=m 4 (c).m 4 (c).m A (a) =0,5.0,5.0,25 =0,06225.

It is straightforward then to calculate in terms of the
membership degrees the Shannon’s entropy for the student
group, which is H ~0,289.

Further, fromthe values ofthe column of my(1) it turns out
that the maximal membership degree of students’ profiles is
0,06225. Therefore the possibility of each s in U” is given by

m
I a

0,06225
Calculating the possibilities of all profiles (column of (1)
in Table 1) one finds that the ordered possibility distribution
for the student group is:
rn=n=1,n=nu=r5=rg=r,=13=0,5, 19=r10=111=112=
3= 1‘14:0,258, T157T 16— eennnn. =TI125=V.
Thus with the help of a calculator one finds that

14 :
- —r.)log—
STe= 1og2[,.=2;'(r’ ml)ogz,: ]

Jj=1

[0,5 log%+0,24210g§+0,25810g ]

1
~ 0,301 6,548

~3,32.0,242 . 0,204 + 0,258. 0,33 =0,445. and

1 & .
N(r)= @[; (r; =1 logi ]

~oa2 (0,5 log2+0,2421og8+0,258log14)
og

~ (,5+3.0,242+0,857.1,146 2,208 .
Therefore we finally have that T(r) 2,653
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Table 1. Profiles with non zero membership degrees (The outcomes of the above Table were obtained with accuracy up to the third decimal point)

A A; As m(1) rs(1) my2) rs(2) f(s) K(s)
B b b 0 0 0.016 0258 0.016 0.129
B b a 0 0 0.016 0258 0.016 0.129
B a a 0 0 0016 0258 0016 0.129
C c c 0.062 1 0.062 1 0.124 1

C c a 0.062 1 0.062 1 0.124 1

C c b 0 0 0.031 05 0.031 025
C a a 0 0 0.031 0.5 0.031 0.25
C b a 0 0 0.031 05 0.031 025
C b b 0 0 0.031 05 0.031 025
D d a 0.016 0258 0 0 0.016 0.129
D d b 0016 0258 0 0 0016 0.129
D d c 0.016 0258 0 0 0.016 0.129
D a a 0 0 0.016 0258 0.016 0.129
D b a 0 0 0.016 0258 0.016 0.129
D b b 0 0 0016 0258 0016 0.129
D c a 0.031 05 0.031 05 0.062 0.5

D c b 0.031 05 0.031 05 0.062 05

D c c 0.031 05 0.031 05 0.062 05

E c a 0.031 0.5 0 0 0.031 0.25
E c b 0.031 05 0 0 0.031 025
E c c 0.031 05 0 0 0.031 025
E d a 0.016 0258 0 0 0.016 0.129
E d b 0016 0258 0 0 0016 0.129
E d c 0.016 0258 0 0 0.016 0.129

A few days later we performed the same experiment with a
group of 30 students of the School of Management and
Economics. Working as above we found that

A1={(a, 0),(b, 0,25),(c, 0,5),(d, 0,25),(e, 0)},
Ar={(a, 0,25),(b, 0,25),(c, 0,5),(d, 0),(e, 0)}
As={(a, 0,25),(b, 0,25),(c,0,25),(d, 0),(e, 0)}.

Then we calculated the membership degrees of all
possible profiles of the student group (column of mg (2) in
Table 1) and the Shannon’s entropy, which is H ~0,312.

Since the maximal membership degree is again 0,06225,
the possibility of each s is given by the same formula as for
the first group. Calculating the possibilities of all profiles
(column of ry(2) in Table 1) one finds that the ordered
possibility distribution of the second group is:
rr=n=1,n=u=15=1=1r7=13=0,5, r9=119 =111 =T112=

1‘1320,258, T4=r15=....... :I'125=0

Finally, working in the same way as above one finds that
T(r) =0,432+2,179 =2,611.

Therefore, since 2,611<2,653, it turns out that the second
group had in general a slightly better performance than the
first one. Notice that the values of the Shannon’s entropy
lead to the opposite conclusion (since 0,3712>0,289), but this,
as we have already explained in the third section, is not
surprising in cases, where the difference between the
performances of the two groups is very small. Further, using
formulas (3) one can compare the performances of the two
groups by the “centroid” method in each of the listed above
stages ofthe MM process as follows:

Denote by Ajjthe fuzzy subset of U attached to the stage S;,
=1,2,3, of the MM process with respect to the student group
i, i=1,2.

At the first stage of analysis/mathematization we have
Ay = {(a, 0),(b, 0),(c, 0,5),(d, 0,25),(e, 0,25)
A= {(a, 0),(b, 0,25),(c, 0,5),(d , 0,25),(e, 0)}
and respectively

Xe11 = 1(5.0,5+7.0,25+9.0,25) = 3,25
2

X2 = 1(3.0,25+5.0,5+7.0,25) =225.
2

By our criterion the first group demonstrates better
performance.
At the second stage of solution we have:
A= {(a, 0),(b, 0),(c, 0,5).(d, 0,25),(e, 0)},
Axn={(a, 0,25),(b, 0,25),(c, 0,5),(d, 0),(e, 0)}.
Normalizing the membership degrees in the first of the
above fuzzy subsets of U (0,5 : 0,75 ~ 0,67and 0,25:0,75 ~
0,33) we get
Ap={(a, 0),(b, 0),(c, 0,67),(d, 0,33),(e, 0)},
Axn={(a, 0,25),(b, 0,25),(c, 0,5),(d, 0),(e, 0)}
and respectively

Xe12= 1(5.0,67+7.0,33) = 5,66
2

X2 = 1(0,2543.0,25+5.0,25) = 3,25 .
2

By our criterion, the first group again demonstrates a
significantly better performance.

Finally, at the third stage of validation/imple mentation we
have

A3=Ax={(a, 0,25),(b, 0,25),(c, 0,25),(d, 0),(e, 0)},

which obviously means that at this stage the performances of
both groups are identical.

Based on our calculations we can conclude that the first
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group demonstrated a significantly better performance at the
stages of analysis/mathematization and of solution, but
performed identically with the second one at the stage of
validation/imp lementation.

Remark: In ecarlier papers ([11],[13]) we have also
developed a stochastic model for the representation of the
MM process by applying a Markov chain on its stages.
However, our stochastic model is self restricted to give
quantitative information only for the MM process through
the description of the ideal behavior of a group of modelers
(i.e. how they must act for the solution of a problem and not
how they really act in practice). In contrast, the above
developed fuzzy model has the advantage of giving, apart of
quantitative information, a qualitative/realistic view of the
MM process through the calculation of the probabilities
and/or possibilities of all possible modellers’ profiles.
Nevertheless, the characterization of the modellers’
performance in terms of a set of linguistic labels, which are
fuzzy themselves, is a disadvantage of the fuzzy model,
because this characterization depends on the user’s personal
criteria. A “live” example about this is the different
evaluations for the two groups of modellers obtained in our
classroom experiments by using our fuzzy measures for the
MM skills. Therefore the stochastic could be used as a tool
for the validation of the fuzzy modelin an effort of achieving
a worthy of credit mathematical analysis ofthe MM process.

6. Conclusions

The following conclusions can be drawn from the
discussion performed in this paper:

e We developed a general fuzzy model for representing
several processes in a system’s operation involving
vagueness and/or uncertainty.

o We presented 3 alternative methods of measuring a
system’s effectiveness connected to the above model.

e We applied our general fuzzy model for the description
of the MM process. Our corresponding stochastic model
developed in earlier papers could be used as a tool for the
validation of the fuzzy model in achieving a worthy of credit
mathematical analysis of the MM process.

Appendix

List of the problems given for solution to students in our
classroom experiments

Problem 1: We want to construct a channel to run water by
folding the two edges of an orthogonal metallic leaf having
sides of length 20cmand 32 cm, in such a way that they will
be perpendicular to the other parts of the leaf. Assuming that
the flow of the water is constant, how we can run the
maximum possible quantity of the water?

Remark: The correct solution is obtained by folding the
edges of the longer side of the leaf. Some students solved the
problem by folding the edges of the other side and failed to
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realize (validation of the model) that their solution was
wrong.

Problem 2: A car dealer has a mean annual demand of 250
cars, while he receives 30 new cars per month. The annual
cost of storing a car is 100 euros and each time he makes a
new order he pays an extra amount 0of 2200 euros for general
expenses (transportation, insurance etc). The first cars of a
new order arrive at the time when the last car of the previous
orderhas been sold. How many cars must he order in order to
achieve the minimum total cost?

Problem 3: An importation company codes the messages
for the arrivals of its orders in terms of characters consisting
of a combination of the binary elements 0 and 1. If it is
known that the arrival of a certain order will take place from
Ist until the 16" of March, find the minimal number of the
binary elements of each character required for coding this
message.

Problem 4: Let us correspond to each letter the number
showing its order into the alphabet (A=1, B=2, C=3 etc). Let
us correspond also to each word consisting of 4 letters a 2X2

19 15}

5
to the word SOME. Using the matrix

matrix in the obvious way; e.g. the matrix [

corresponds

8
E=
L 1

message LATE in the form of a camouflaged matrix to a
receiver knowing the above process and how he (she) could
decode your message?

Problem 5: The demand function P(Qd):25-Qd2 represents
the different prices that consumers willing to pay for
different quantities Qg of a good. On the other hand the
supply function P(Q)=2Q,+1 represents the prices at which
different quantities Q, of the same good will be supplied. If
the market’s equilibrium occurs at (Qg,Py), the producers
who would supply at lower price than Py benefit. Find the
total gain to producers’.

Problem 6: A ballot box contains 8 balls numbered from 1
to 8. One makes 3 successive drawings of a lottery, putting
back the corresponding ball to the box before the next lottery.
Find the probability of getting all the balls that he draws out
of the boxdifferent.

Problem 7: A box contains 3 white, 4 blue and 6 black
balls. If we put out 2 balls, what is the probability of
choosing 2 balls of the same colour?

Problem 8: The population of a country is increased
proportionally. If the population is doubled in 50 years, in
how many years it will be tripled?

Problem 9: A wine producer has a stock of wine greater
than 500 and less than 750 kilos. He has calculated that, if he
had the double quantity of wine and transferred it to bottles
of 12, 25, or 40 kilos, it would be left over 6 kilos each time.
Find the quantity of stock.

Problem 10: Among all cylindrical towers having a total
surface of 180 m’, which one has the maximal volume?

Remark: Some students didn’t include to the total surface

} as an encoding matrix how you could send the
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the one base (ground-floor) and they found another solution,
while some others didn’t include both bases (roof and
ground-floor) and they found no solution, since we cannot
construct a cylinder with maximal volume from its
surrounding surface.
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