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Abstract   In the present paper we use princip les of fuzzy  logic to develop a general model representing several processes in 
a system’s operation characterized by a degree of vagueness and/or uncertainty. For this, the main stages of the corresponding 
process are represented as fuzzy subsets of a set of linguistic labels characterizing the system’s performance at  each stage. We 
also introduce three alternative measures of a fuzzy system’s effect iveness connected to our general model. These measures 
include the system’s total possibilistic uncertainty, the Shannon’s entropy properly modified for use in a fuzzy environment 
and the “centroid” method in which the coordinates of the center of mass of the graph of the membership function involved 
provide an alternative measure of the system’s performance. The advantages and disadvantages of the above measures are 
discussed and a combined use of them is suggested for achieving a worthy of credit mathemat ical analysis of the 
corresponding situation. An application is also developed for the Mathematical Modelling process illustrating the use of our 
results in practice. 
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1. Introduction 
A system is a set of interacting or interdependent 

components forming an integrated whole. A system 
comprises mult iple views such as planning, analysis, design, 
implementation, deployment, structure, behavior, input and 
output data, etc. As an interdisciplinary and multi- 
perspective domain systems’ theory brings together 
principles and concepts from ontology, philosophy of 
science, information and computer science, mathematics, as 
well as physics, biology, engineering, social and cognitive 
sciences, management  and economics, strategic thinking, 
fuzziness and uncertainty, etc. Thus, it serves as a bridge for 
an interdisciplinary d ialogue between autonomous areas of 
study. The emphasis with systems’ theory shifts from parts to 
the organization of parts, recognizing that interactions of the 
parts are not static and constant, but dynamic processes. 
Most systems share common characteristics including 
structure, behaviour, interconnectivity (the various parts of a 
system have functional and structural relations to each other), 
sets of functions, etc. We scope a system by defin ing its 
boundary; this means choosing which entities are inside the 
system and which are outside, part of the environment.  

The systems’ modelling is a basic principle in engineering, 
in natural and in  social sciences. When we face a problem 
concern ing  a system’s operat ion  (e.g . maximizing  the 
productivity of an organization, min imizing the functional 
costs of a company, etc) a  model is required to describe and 
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represent the system’s mult iple views. The model is a 
simplified representation of the basic characteristics of the 
real system including only its entities and features under 
concern. In this sense, no model of a complex system could 
include all features and/or all entities belonging to the system. 
In fact, in th is way the model’s structure could become very 
complicated and therefore its use in practice could  be very 
difficult  and sometimes impossible. Therefore the 
construction of the model usually involves a deep abstracting 
process on identifying the system’s dominant variables and 
the relationships governing them. The resulting structure of 
this action is known as the assumed real system (see Figure 
1). The model, being an abstraction of the assumed real 
system, identifies and simplifies the relat ionships among 
these variables in a form amenable to analysis. 

 
Figure 1.  A graphical representation of the modelling process 

A system can be viewed as a bounded transformat ion, i.e. 
as a process or a collection of processes that transforms 
inputs into outputs with the very broad meaning of the 
concept. For example, an output of a passengers’ bus is the 
movement of people from departure to destination. 

Many of these processes are frequently characterized by a 
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degree of vagueness and/or uncertainty. For example, during 
the processes of learning, of reasoning, of problem-solving, 
of modelling, etc, the human cognit ion utilizes in general 
concepts that are inherently graded and therefore fuzzy. On 
the other hand, from the teacher’s point of view there usually 
exists an uncertainty about the degree of students’ success in 
each of the stages of the corresponding didactic          
situation. 

There used to be a tradit ion in  science and engineering of 
turning to probability theory when one is faced with a 
problem in which uncertainty plays a significant role. This 
transition was justified when there were no alternative tools 
for dealing with the uncertainty. Today this is no longer the 
case. Fuzzy logic, which is based on fuzzy sets theory 
introduced by Zadeh[17] in 1965, provides a rich and 
mean ingful addition to standard logic. The applications 
which may be generated from or adapted to fuzzy logic are 
wide-ranging and provide the opportunity for modelling 
under conditions which are inherently imprecisely defined, 
despite the concerns of classical logicians. Many systems 
may  be modelled, simulated and even replicated with the 
help of fuzzy logic, not the least of which is human  reasoning 
itself (e.g.[3],[4],[7],[8],[12],[14],[15],[16] etc) 

A real test of the effectiveness of an approach to 
uncertainty is the capability to solve problems which involve 
different facets of uncertainty. Fuzzy  logic has a much h igher 
problem solving capability than standard probability theory. 
Most importantly, it opens the door to construction of 
mathematical solutions of computational p roblems which are 
stated in a natural language. In contrast, standard probability 
theory does not have this capability, a fact which is one of its 
principal limitations. 

All these gave us the impulsion to introduce principles of 
fuzzy logic  to describe in  a more effective way a system’s 
operation in situations characterized by a degree of 
vagueness and/or uncertainty. 

For general facts on fuzzy sets and on uncertainty theory 
we refer freely to the book of Klir and Fo lger[1]. 

2. The General Fuzzy Model 
Assume that one wants to study the behavior of a system’s 

n entities (objects), n ≥ 2, during a p rocess involving 
vagueness and/or uncertainty. Denote by Si , i=1,2,3 the main 
stages of this process and by a, b, c, d, and e the linguistic 
labels of very low, low, intermediate, high and very high 
success respectively of a system’s entity in each of the Si’s.  
Set  

U = {a, b, c, d, e}. 
We are going  to attach to each stage Si a fuzzy subset, Ai of 

U. For this, if nia, nib, nic, nid and nie denote the number of 
entities that faced very low, low, intermediate,  h igh and very 
high success at stage Si respectively, i=1,2,3, we define the 
membership function mAi  for each x in U, as follows:  
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5
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0,75 ,   if    
5
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4n  
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5
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Then the fuzzy  subset Ai of U corresponding to Si   has the 
form: 

Ai = {(x, mAi(x)):  x∈U}, i=1, 2, 3. 

In order to represent all possible profiles (overall states) of 
the system’s entities during the corresponding process we 
consider a fuzzy relation, say R, in U3 of the form: 

R= {(s, mR(s)): s=(x, y, z) ∈U3}. 
We assume that the stages of the process that we study are 

depended to each other. This means that the degree of 
system’s entity success in a certain stage depends upon the 
degree of its success in the previous stages, as it usually 
happens in practice. Under this hypothesis and in order to 
determine properly the membership function mR we give the 
following definit ion:  

Definition: A profile  s=(x, y, z), with x, y, z in U, is said to 
be well ordered if x corresponds to a degree of success equal 
or greater than y and y  corresponds to a degree of success 
equal or greater than z.  

For example, (c, c, a) is a well ordered profile , while  
(b, a, c) is not.  
We define now the membership degree of a profile s to be 

mR(s) = m
1A (x)m

2A (y)m
3A (z) 

if s is well ordered, and 0 otherwise.  
In fact, if for example the profile  (b, a, c) possessed a 

nonzero membership degree, how it could be possible for an 
object that has failed during the middle stage, to perform 
satisfactorily at the next stage?  

Next, for reasons of brevity, we shall write ms instead of 
mR(s).  

Then the probability ps of the profile  s is defined in a way 
analogous to crisp data, i.e.  by  

Ps =  

3

s

s
s U

m
m

∈
∑

   . 

We define also the possibility rs of s by   
rs=

max{ }
s

s

m
m

, 

where max{ms} denotes the maximal value of ms , for all s 
in U3. In other words the possibility of s expresses the 
“relative membership degree” of s with respect to max{ms}. 

Assume further that one wants to study the combined 
results of behaviour of k  different groups of a system’s 
entities, k ≥2, during the same process.  

For this we introduce the fuzzy variables A1(t), A2(t) and 
A3(t) with t=1, 2,…, k. The values of these variables 
represent fuzzy subsets of U corresponding to the stages of 
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the process for each of the k  groups; e.g. A1(2) represents the 
fuzzy subset of U corresponding to the first stage of the 
process for the second group (t=2). It becomes evident that, 
in order to measure the degree of evidence of the combined 
results of the k  groups, it is necessary to define the 
probability p(s) and the possibility r(s) of each profile s with 
respect to the membership degrees of s  fo r all groups. For 
this reason we introduce the pseudo-frequencies  

f(s) =
1

( )
k

s
t

m t
=
∑  

and we define the probability of a profile s by 

p(s) = 

3

( )
( )

s U

f s
f s

∈
∑

. 

We also define the possibility of s by 

r(s) = )}(max{
)(
sf

sf
, 

where max{f(s)} denotes the maximal pseudo-frequency.  
Obviously the same method could be applied when one 

wants to study the combined results of behaviour of a group 
during k  different situations.  

3. Fuzzy Measures of a System’s 
Effectiveness 

There are natural and human-designed systems. Natural 
systems may not have an apparent objective, but their 
outputs can be interpreted as purposes. On the contrary, 
human-designed systems are made with purposes that are 
achieved by the delivery of outputs. Their parts must be 
related, i.e . they must be designed to work as a coherent 
entity. 

The most important part of a human-designed system’s 
study is probably the assessment, through the model 
representing it, of its performance. In fact, this could help the 
system’s designer to make all the necessary 
modifications/improvements to the system’s structure in 
order to increase its effectiveness. 

In this article we’ll present three fuzzy measures of a 
system’s effectiveness connected to the general fuzzy model 
developed above. The advantages and disadvantages of these 
measures will be also discussed and an application for the 
problem solving process will be presented illustrating our 
results. 

The amount of in formation obtained by an action can be 
measured by the reduction of uncertainty resulting from this 
action.  Accordingly a system’s uncertainty is connected to 
its capacity in obtaining relevant informat ion. Therefore a 
measure of uncertainty could be adopted as a measure of a 
system’s effectiveness in solving related problems. 

Within the domain of possibility theory uncertainty 
consists of strife (or discord), which expresses conflicts 
among the various sets of alternatives, and non-specificity 
(or imprecision), which indicates that some alternatives are 
left unspecified, i.e. it expresses conflicts among the sizes 

(cardinalit ies) of the various sets of alternatives ([2]; p.28). 
Strife is measured by the function ST(r) on the ordered 

possibility distribution 
r:  r1=1 ≥  r2 ≥……. ≥  rn ≥ rn+1 

of a group of a system’s entities defined by  

( )1
2

1( ) log
log 2

m

i i
i

ST r r r i+
=

 = −  
∑  

Non-specificity is measured by the function 

N(r) = 1
2

1 [ ( ) log
log 2

m

i i
i

r r i+
=

−∑ ]. 

The sum T(r) = ST(r) + N(r) is a measure of the total 
possibilistic uncertainty for ordered possibility distributions. 
The lower is the value of T(r), which  means greater reduction 
of the initially existing uncertainty, the better the system’s 
performance.  

Another fuzzy measure for assessing a system’s 
performance is the well known from classical probability and 
informat ion theory Shannon’s entropy[6].  For use in a fuzzy 
environment, this measure is expressed in terms of the 
Dempster-Shafer mathematical theory of evidence in the 
form:  

H= -
1

1 ln
ln

n

s s
s

m m
n =
∑  

([2], p. 20). 
In the above formula n denotes the total number of the 

system’s entities involved in the corresponding process. The 
sum is divided by ln n (the natural logarithm of n) in order to 
be normalized.  Thus H takes values in the real interval[0, 1]. 
The value of H measures the system’s total probabilistic 
uncertainty and the associated to it informat ion. Similarly 
with the total possibilistic uncertainty, the lower is the final 
value of H, the better the system’s performance.  

An advantage of adopting H as a measure instead of T(r) is 
that H is calculated direct ly from the membership degrees of 
all profiles s without being necessary to calculate their 
probabilit ies ps. In contrast, the calculation of T(r) 
presupposes the calculation of the possibilit ies rs of all 
profiles first. However, according to Shackle[5] human 
reasoning can be formalized more adequately by possibility 
rather, than by probability  theory. But, as we have seen in the 
previous section, the possibility is a kind of “relative 
probability”. In other words, the “philosophy” of possibility 
is not exactly the same with that of probability theory. 
Therefore, on comparing the effectiveness of two or more 
systems by these two measures, one may find non 
compatible results in boundary cases, where the systems’ 
performances are almost the same. 

Another popular approach is the “centroid” method, in 
which the centre of mass of the graph of the membership 
function involved provides an alternative measure of the 
system’s performance.  

For this, given a fuzzy subset  
A = {(x, m(x)): x∈U} 

of the universal set U with membership function  
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m: U →[0, 1], we correspond to each x∈U an interval of 
values from a prefixed numerical d istribution, which actually 
means that we rep lace U with a set of real intervals. Then, we 
construct the graph F of the membership function y=m(x).  

There is a commonly used in fuzzy logic approach to 
measure performance with the pair of numbers (xc, yc) as the 
coordinates of the centre of mass, say Fc, of the graph F, 
which we can calculate using the following well-known [10] 
formulas:  

,F F
c c

F F

xdxdy ydxdy
x y

dxdy dxdy
= =
∫∫ ∫∫

∫∫ ∫∫
              (1). 

For example, assume that the set U of the linguistic labels 
defined in  the previous section characterizes the performance 
of a group of students. When a student obtains a mark, say y, 
then his/her performance is characterized as very low (a) if y 
∈[0, 1) , as low (b) if y ∈[1, 2), as intermediate (c) if y∈[2, 
3), as high (d ) if  y ∈[3, 4) and as very high (e) if  y ∈[4,5] 
respectively. In this case the graph F of the corresponding 
fuzzy subset of U is the bar graph of Figure 2  

 
Figure 2.  Bar graphical data representation 

It is easy to check that, if the bar graph consists of n 
rectangles (in Figure 2 we have n=5), the formulas (1) can be 
reduced to the following formulas: 
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Indeed, in this case
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From the above argument, where Fi, i=1,2,…,n , denote 
the n rectangles of the bar graph, it becomes evident that the 
transition from (1) to (2) is obtained under the assumption 
that all the intervals have length equal to  1 and that the first 
of them is the interval[0, 1].  

In our case (n=5) formulas (2) are transformed into the 
following form: 

1 2 3 4 5

1 2 3 4 5

2 2 2 2 2
1 2 3 4 5

1 2 3 4 5

3 5 7 91 ,
2

1 .
2

    

c

c

y y y y yx
y y y y y

y y y y yy
y y y y y

 + + + +
=  + + + + 

 + + + +
=  

+ + + +   
Normalizing our fuzzy  data by divid ing each m(x), x∈U, 

with the sum of all membership degrees we can assume 
without loss of the generality that   

y1+y2+y3+y4+y5 = 1. 
Therefore we can write: 

( )

( )
1 2 3 4 5

2 2 2 2 2
1 2 3 4 5

1 3 5 7 9 ,
2
1
2

c

c

x y y y y y

y y y y y y

= + + + +

= + + + +
     (3) 

with yi = 
∑
∈Ux

i

xm
xm

)(
)( , where x 1= a, x2 =b, x3 = c,  

x4 = d and x5 = e. 
But  

0 ≤ (y1-y2)2=y1
2+y2

2-2y1y2, 
therefore  

y1
2+y2

2 ≥2y1y2 
with the equality holding if, and only if, y1=y2.   

In the same way one finds that 
y1

2+y3
2 ≥2y1y3, 

and so on. Hence it is easy to check that  
 (y1+y2+y3+y4+y5)2 

≤  5(y1
2+y2

2+y3
2+y4

2+y5
2), 

with the equality holding if, and only if y1=y2=y3=y4=y5. 
But y1+y2+y3+y4+y5 =1,  therefore 

1 ≤  5(y1
2+y2

2+y3
2+y4

2+y5
2)  (4), 

with the equality holding if, and only if  y1=y2=y3=y4=y5=
5
1 . 

Then the first of formulas (3) g ives that xc = 
2
5 . Further, 

combin ing the inequality (4) with the second of formulas (3) 
one finds that 

1 ≤10yc, or yc ≥  
10
1 . 

Therefore the unique minimum for yc corresponds to the 
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centre of mass Fm (
2
5 ,

10
1 ). 

The ideal case is when y1=y2=y3=y4=0 and y5=1. Then 
from formulas (3) we get that xc = 

2
9  and yc = 

2
1 .Therefore 

the centre of mass in this case is the point Fi (
2
9 , 

2
1 ). 

On the other hand the worst case is when y1=1 and 
y2=y3=y4= y5=0. Then for formulas (3) we find that the 
centre of mass is the point Fw (

2
1 ,

2
1 ). 

Therefore the “area” where the centre of mass Fc lies is 
represented by the triangle Fw Fm Fi  of Figure3 

 
Figure 3.  A graphical representation of the “area” of the centre of mass 

Then from elementary geometric considerations it follows 
that for two  groups of a system’s objects with  the same xc 
≥2,5 the group having the centre of mass which is situated 
closer to Fi   is the group with the higher yc; and for two 
groups with the same xc <2.5 the group having the centre of 
mass which is situated farther to Fw is the group with the 
lower yc. 

Based on the above considerations it is logical to 
formulate our criterion for comparing the groups’ 
performances in the following form: 
• Among two or more groups the group with the biggest xc   

performs better. 
• If two or more groups have the same xc ≥ 2.5, then the 

group with the higher yc performs better. 
• If two or more groups have the same xc < 2.5, then the 

group with the lower yc   performs better. 
From the above description it becomes clear that the 

application of the “centroid” method in practice is simple 
and evident and needs no complicated calculations in  its final 
step. However, we must emphasize that this method treats 
differently the idea of a system’s performance, than the two 
measures of uncertainty presented above do. In fact, the 
weighted average plays the main ro le in this method, i.e . the 
result of the system’s performance close to its ideal 
performance has much more weight than the one close to the 
lower end.  In other words, while the measures of uncertainty 
are dealing with the average system’s performance, the 

“centroid” method is mostly looking at the quality o f the 
performance. Consequently, some differences could appear 
in evaluating a system’s performance by these different 
approaches. Therefore, it  is argued that a combined use of  all 
these (3 in  total) measures could help the user in finding the 
ideal profile of the system’s performance according to 
his/her personal criteria of goals. 

4. Modelling the Process of 
Mathematical Modelling 

In earlier papers we have developed models similar to the 
above general model fo r a more effective description of 
several situations involving fuzziness and/or uncertainty in 
the areas of Education (fo r the processes of Learning and of 
Problem Solving), of Artificial Intelligence (for Case-Based 
and Analogical Reasoning) and of Management (for 
evaluating the fuzzy data obtained by a market ’s research 
and for Decision Making); see for example[15] and its 
references. Notice also, that Subbotin et al., based on our 
fuzzy model for the process of Learn ing[12], have applied 
the “centroid” method on comparing students’ mathematical 
learning abilit ies[7] and for measuring the scaffolding 
(assistance) effectiveness provided by the teacher to 
students[8], while Perd ikaris ([3],[4]) has used the total 
possiblistic uncertainty and the Shannon’s entropy for 
measuring student’s geometrical reasoning skills in terms of 
the corresponding van Hieles’ levels. 

In this article we shall apply our general model developed 
above for the representation of the process of Mathematical 
Modelling (MM). 

The representation of a system’s operation through the use 
of a mathemat ical model is achieved by a set of mathematical 
relations (equalit ies, inequalities, etc) and functions properly 
related to each other. 

It is well known (e.g.[9]; paragraph 1.4) that the stages of 
the MM process involve: 
• Analysis of the given real world prob lem, i.e. 

understanding the statement and recognizing limitations, 
restrictions and requirements of the real system. 
• Mathematization, i.e. formulation of the real situation in 

such a way that it will be ready for mathematical treatment 
(assumed real system, see first section) and construction of 
the model. 
• Solution of the model, achieved by proper mathemat ical 

manipulation. 
• Validation (control) of the model, usually achieved by 

reproducing through it the behavior of the real system under 
the conditions existing before the solution of the model 
(empirical results, special cases etc). A simulat ion model is 
also frequently used for this purpose as a secondary model. 
• Implementation of the final mathematical results to the 

real system, i.e. “translation” of the mathematical solution 
obtained in terms of the corresponding real situation in order 
to reach the solution of the given real problem. 

For the development of our fuzzy model for the MM 
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process we consider a group of n modellers, n ≥2, working 
(each one individually) on the same modelling problem. In 
order to make our model technically simpler, we can, 
without loss of the generality, reduce the stages of the MM 
process to the following three: 

S1 : Analysis/Mathematizat ion, 
S2 : Solution of the model,  
S3 : Validation/Implementation 
In fact, the analysis of the given problem is an 

introductory stage of the MM process that can be naturally 
seen as being a sub step of mathemat ization. Further, the 
stage of implementation of the final mathematical results to 
the real system is an expected action following the validation 
of the model, which means that the joined stage of 
Validation/Implementation can be considered  without loss 
of the generality as the final stage of the MM process. 

To each of the Si’ s we attach a fuzzy subset, say Ai, of the 
set U of the linguistic labels considered in the second section 
defining also the membership function mAi as we did in this 
section. The development of the rest of our model for the 
MM process relies then upon the lines of our general fuzzy 
model presented in detail in the two previous sections. 

In order to illustrate the use of our results in practice, we 
performed the experiments presented in the next section. 

5. Applications of the Model for MM  
The following two experiments took place recently at  the 

Graduate Technological Educational Institute (T. E. I.) of 
Patras in Greece. In the first of them our subjects were 35 
students of the School of Technological Applicat ions, i.e. 
future engineers, and our basic tool was a list of 10 problems 
(see Appendix)  given to them for solution  (t ime allowed  3 
hours). Before starting the experiment we gave the proper 
instructions to students emphasizing among the others that 
we are interested for all their efforts (successful or not) 
during the MM process, and therefore they must keep 
records on their papers for all of them, at  all stages of the 
MM process. This manipulation enabled as in obtaining 
realistic data from our experiment for each stage of the MM 
process and not only those based on students’ final results 
that could be obtained in the usual way by graduating their 
papers.   

Our characterizat ions of students’ performance at each 
stage of the MM process involved: 
• Neg lig ible success, if they obtained (at the particu lar 

stage) positive results for less than 2 problems. 
• Low success, if they obtained positive results for 2, 3, or 

4 problems. 
• Intermediate success, if they obtained positive results for 

5, 6, or 7 problems. 
• High success, if they obtained positive results for 8, or 9 

problems. 
• Very high success, if they obtained positive results for 

all problems. 

Examining students’ papers we found that 15, 12 and 8 
students had intermediate, high and complete success 
respectively at stage S1 of analysis/mathemat izat ion. 
Therefore we obtained that n1a=n1b=0, n1c=15, n1d=12 and 
n1e=8. Thus, by the definition of the corresponding 
membership function given in the second section, S1 is 
represented by a fuzzy subset of U of the form:  

A1 = {(a,0),(b,0),(c, 0,5),(d, 0,25),(e,0,.25), 

In the same way we represented the stages S2 and S3 as 
fuzzy sets in U by  

A2 = {(a,0),(b,0),(c, 0,5),(d, 0,25),(e,0)}  
and 

A3 = {(a, 0,25),(b, 0,25),(c, 0,25),(d,0),(e,0)} 
respectively. 

Next we calculated the membership degrees of the 53 
(ordered samples with replacement of 3 objects taken from 5) 
in total possible students’ profiles as it is described in the 
second section (see column of ms(1) in Table 1). For example, 
for the profile  

s=(c, c, a) one finds that  
ms = m

1A (c). m 2A (c). m
3A (a) = 0,5.0,5.0,25 = 0,06225. 

It is straightforward then to calculate in terms of the 
membership degrees the Shannon’s entropy for the student 
group, which is H ≈0,289. 

Further, from the values of the column of ms(1) it turns out 
that the maximal membership degree of students’ profiles is 
0,06225. Therefore the possibility of each s in U3 is given by 

rs=
06225,0

sm . 

Calculating the possibilities of all profiles (column of rs(1) 
in Table 1) one finds that the ordered possibility distribution 
for the student group is:  
r: r1 = r2 = 1, r3 = r4 = r5 = r6 = r7 = r8 = 0,5, r9 = r10 = r11= r12 = 

r13= r14 = 0,258, r15=r 16=……..=r125=0. 
Thus with the help of a calcu lator one finds that  

ST(r)=

14

1
2

1

1 [ ( ) log ]
log 2 i i i

i
j

j

ir r
r

+
=

=

−∑
∑  

≈ 1
0,301 [0,5

2 8 14log 0,242log 0,258log ]
2 5 6,548
+ +  

≈3,32 . 0,242 . 0,204 + 0,258 . 0,33 ≈0,445. and  

Ν(r)=
14

1
2

1 [ ( ) log
log 2 i i

i
r r i+

=
−∑ ] 

= 2log
1

(0,5 log 2 0,242log8 0,258log14)+ +  

≈  0,5+3.0,242+0,857.1,146 ≈2,208 .  

Therefore we finally have that T(r) ≈2,653 
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Table 1.  Profiles with non zero membership degrees (The outcomes of the above Table were obtained with accuracy up to the third decimal point) 

A1 A2 A3 ms(1) rs(1) ms(2) rs(2) f(s) r(s) 
B b b 0 0 0.016 0.258 0.016 0.129 
B b a 0 0 0.016 0.258 0.016 0.129 
B a a 0 0 0.016 0.258 0.016 0.129 
C c c 0.062 1 0.062 1 0.124 1 
C c a 0.062 1 0.062 1 0.124 1 
C c b 0 0 0.031 0.5 0.031 0.25 
C a a 0 0 0.031 0.5 0.031 0.25 
C b a 0 0 0.031 0.5 0.031 0.25 
C b b 0 0 0.031 0.5 0.031 0.25 
D d a 0.016 0.258 0 0 0.016 0.129 
D d b 0.016 0.258 0 0 0.016 0.129 
D d c 0.016 0.258 0 0 0.016 0.129 
D a a 0 0 0.016 0.258 0.016 0.129 
D b a 0 0 0.016 0.258 0.016 0.129 
D b b 0 0 0.016 0.258 0.016 0.129 
D c a 0.031 0.5 0.031 0.5 0.062 0.5 
D c b 0.031 0.5 0.031 0.5 0.062 0.5 
D c c 0.031 0.5 0.031 0.5 0.062 0.5 
E c a 0.031 0.5 0 0 0.031 0.25 
E c b 0.031 0.5 0 0 0.031 0.25 
E c c 0.031 0.5 0 0 0.031 0.25 
E d a 0.016 0.258 0 0 0.016 0.129 
E d b 0.016 0.258 0 0 0.016 0.129 
E d c 0.016 0.258 0 0 0.016 0.129 

 

A few days later we performed the same experiment with a 
group of 30 students of the School of Management and 
Economics. Working as above we found that  

A1={(a, 0),(b, 0,25),(c, 0,5),(d, 0 ,25),(e, 0)}, 
A2={(a, 0,25),(b, 0,25),(c, 0,5),(d, 0),(e, 0)} 
A3={(a, 0,25),(b, 0,25),(c,0,25),(d, 0),(e, 0)}. 

Then we calculated the membership degrees of all 
possible profiles of the student group (column of ms (2) in 
Table 1) and the Shannon’s entropy, which is H ≈0,312. 

Since the maximal membership degree is again 0,06225, 
the possibility o f each  s is g iven by the same fo rmula as for 
the first group. Calculat ing the possibilit ies of all profiles 
(column of rs(2) in Tab le 1) one finds that the ordered 
possibility distribution of the second group is: 
r: r1 = r2 = 1, r3 = r4= r5 = r6 = r7 = r8 = 0,5 ,  r9 = r10  = r11 = r12 = 

r13 = 0,258,  r14 = r15 =…….= r125=0 
Finally, working in the same way  as above one finds that 

T(r) = 0,432+2,179 = 2,611. 
Therefore, since 2,611<2,653, it turns out that the second 

group had in general a slightly better performance than the 
first one. Notice that the values of the Shannon’s entropy 
lead to the opposite conclusion (since 0,312>0,289), but this, 
as we have already explained in the third section, is not 
surprising in cases, where the difference between the 
performances of the two groups is very small. Further, using 
formulas (3)  one can compare the performances of the two 
groups by the “centroid” method in  each of the listed above 
stages of the MM process as follows: 

Denote by Aij the fuzzy subset of U attached to the stage Sj , 
j=1,2,3 , of the MM process with respect to the student group 
i,  i=1,2. 

At the first stage of analysis/mathematizat ion we have 
A11 = {(a, 0),(b, 0),(c, 0,5),(d, 0,25),(e, 0,25) 
A21= {(a, 0),(b, 0,25),(c, 0,5),(d , 0,25),(e, 0)} 

and respectively 

xc11 = 
2
1 (5.0,5+7.0,25+9.0,25) = 3,25 

xc21 = 
2
1 (3.0,25+5.0,5+7.0,25) = 2,25 . 

By our criterion the first group demonstrates better 
performance. 

At the second stage of solution we have:  
A12 = {(a, 0),(b, 0),(c, 0,5),(d, 0,25),(e, 0)}, 

A22={(a, 0,25),(b, 0,25),(c, 0,5),(d, 0),(e, 0)}. 
Normalizing the membership degrees in the first of the 

above fuzzy  subsets of U (0,5 : 0,75 ≈  0,67 and  0,25 : 0,75 ≈  
0,33) we get  

A12 = {(a, 0),(b, 0),(c, 0,67),(d, 0,33),(e, 0)}, 
A22={(a, 0,25),(b, 0,25),(c, 0,5),(d, 0),(e, 0)} 

and respectively 

xc12 = 
2
1 (5.0,67+7.0,33) = 5,66 

xc22 = 
2
1 (0,25+3.0,25+5.0,25) = 3,25 . 

By our criterion, the first group again demonstrates a 
significantly better performance. 

Finally, at the third stage of validation/implementation we 
have 

A13= A23 = {(a, 0,25),(b, 0,25),(c, 0,25),(d, 0),(e, 0)}, 
which obviously means that at this stage the performances of 
both groups are identical.  

Based on our calculat ions we can conclude that the first 
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group demonstrated a significantly better performance at the 
stages of analysis/mathematization and of solution, but 
performed identically with the second one at the stage of 
validation/implementation.  

Remark: In earlier papers ([11],[13]) we have also 
developed a stochastic model for the representation of the 
MM process by applying a Markov chain on its stages. 
However, our stochastic model is self restricted to give 
quantitative informat ion only for the MM process through 
the description of the ideal behavior of a group of modelers 
(i.e . how they must act for the solution of a problem and not 
how they really act in practice). In contrast, the above 
developed fuzzy model has the advantage of giving, apart of 
quantitative information, a qualitative/realistic view of the 
MM process through the calculation of the probabilities 
and/or possibilities of all possible modellers’ profiles. 
Nevertheless, the characterization of the modellers’ 
performance in terms of a set of linguistic labels, which are 
fuzzy themselves, is a disadvantage of the fuzzy model, 
because this characterizat ion depends on the user’s personal 
criteria. A “live” example about this is the different 
evaluations for the two groups of modellers obtained in our 
classroom experiments by using our fuzzy measures for the 
MM skills. Therefore the stochastic could be used as a tool 
for the validation of the fuzzy model in an effort of achieving 
a worthy of credit mathematical analysis of the MM process. 

6. Conclusions  
The following conclusions can be drawn from the 

discussion performed in this paper: 
• We developed a general fuzzy model for representing 

several processes in a system’s operation involving 
vagueness and/or uncertainty.  
• We presented 3 alternative methods of measuring a 

system’s effectiveness connected to the above model.  
• We applied our general fuzzy model for the description 

of the MM process. Our corresponding stochastic model 
developed in earlier papers could be used as a tool for the 
validation of the fuzzy model in achieving a worthy of credit 
mathematical analysis of the MM process. 

Appendix 
List of the problems given for solution to students in our 

classroom experiments 
Problem 1: We want to construct a channel to run water by 

folding the two edges of an orthogonal metallic leaf having 
sides of length 20cm and 32 cm, in such a way that they will 
be perpendicular to the other parts of the leaf. Assuming that 
the flow of the water is constant, how we can run the 
maximum possible quantity of the water? 

Remark: The correct solution is obtained by folding the 
edges of the longer side of the leaf. Some students solved the 
problem by fold ing the edges of the other side and failed to 

realize (validation of the model) that their solution was 
wrong. 

Problem 2: A car dealer has a mean annual demand of 250 
cars, while he receives 30 new cars per month. The annual 
cost of storing a car is 100 euros and each time he makes a 
new order he pays an extra amount of 2200 euros for general 
expenses (transportation, insurance etc). The first cars of a 
new order arrive at the time when the last car of the previous 
order has been sold. How many cars must he order in order to 
achieve the minimum total cost? 

Problem 3: An importation company codes the messages 
for the arrivals of its orders in terms of characters consisting 
of a combination of the binary  elements 0 and 1. If it  is 
known that the arrival of a certain order will take place from 
1st until the 16th of March, find the min imal number of the 
binary elements of each character required for coding this 
message. 

Problem 4: Let us correspond to each letter the number 
showing its order into the alphabet (A=1, B=2, C=3 etc). Let 
us correspond also to each word consisting of 4 letters a 2X2 

matrix in the obvious way; e.g. the matrix 







513

1519
 

corresponds to the word SOME. Using the matrix 

E= 







711
58

 as an encoding matrix how you could send the 

message LATE in the form of a camouflaged matrix to a 
receiver knowing the above process and how he (she) could 
decode your message? 

Problem 5: The demand function P(Qd)=25-Qd
2 represents 

the different prices that consumers willing to pay for 
different quantities Qd of a good. On the other hand the 
supply function P(Qs)=2Qs+1 represents the prices at which 
different quantities Qs of the same good will be supplied. If 
the market’s equilibrium occurs at (Q0,P0), the producers 
who would  supply at lower price than P0 benefit. Find the 
total gain to producers’. 

Problem 6: A ballot box contains 8 balls numbered from 1 
to 8. One makes 3 successive drawings of a lottery, putting 
back the corresponding ball to the box before the next lottery. 
Find the probability of getting all the balls that he draws out 
of the box d ifferent. 

Problem 7: A box contains 3 white, 4 b lue and 6 black 
balls. If we put out 2 balls, what is the probability of 
choosing 2 balls of the same colour?  

Problem 8: The population of a country is increased 
proportionally. If the population is doubled in  50 years, in 
how many years it will be trip led?  

Problem 9: A wine producer has a stock of wine greater 
than 500 and less than 750 kilos. He has calculated that, if he 
had the double quantity of wine and transferred it to bottles 
of 12, 25, or 40 kilos, it would be left over 6 kilos each time. 
Find the quantity of stock. 

Problem 10: Among all cylindrical towers having a total 
surface of 180π m2, which one has the maximal volume?  

Remark: Some students didn’t include to the total surface 
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the one base (ground-floor) and they found another solution, 
while some others didn’t include both bases (roof and 
ground-floor) and they found no solution, since we cannot 
construct a cylinder with maximal volume from its 
surrounding surface.  
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