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A Generalization and Study of New Mock Theta Functions
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Abstract Two sets of mock theta functions were developed, one by Andrews and the other by Bringmann et al. We have

given two generalizations and shown they belong to the class of F, -functions. Relations between these generalized functions

is established. Later we give g-Integral representation and multibasic expansions of these generalized F, -functions.
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1. Brief History of Mock Theta
Functions

Ramanujan in his last letter to Hardy, dated January 12,
1920, to be specific [18, pp. 354-355] gave a list of seventeen
functions which he called “mock theta functions”. The
functions are of a complex variable ¢ defined by a g-series
convergent for |q| < 1. As g approaches a root of unity.
Ramanujan stated, they have certain asymptotic properties,
similar to the properties of theta functions, but he conjec-
tured that they are not theta functions. He also stated some
identities relating some of the functions to each other. The
list was divided into four group of functions of order three,
five, five and seven. Watson[23] studied the third order
mock theta functions and introduced three new one. Watson
proved that the third order functions have asymptotic prop-
erties, as stated by Ramanujan and also that they are not theta
functions. Watson proved the asymptotic formula, for the
fifth order mock theta functions and Selberg for the seventh
order mock theta functions, but neither author proved that the
functions are not theta functions.

In 1976, Andrews discovered “Lost” Notebook while
visiting Trinity College, Cambridge in the mathematical
library of the college, written by Ramanujan towards the end
of his life. In the “lost” notebook were six more mock theta
functions and linear relations between them, Andrews and
Hickerson [6] called them of sixth order. On the page 9 of the
“Lost” Notebook appears four more mock theta functions,
which were called by Choi [9] of tenth order.

Gordon and Mclntosh, listed eight functions and called
them of eighth order. Later in their survey paper [12] called
only four functions of eighth order, the other four were of
lower order. Hikami [13] in his work on Mathematical
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Physics Quantum Invariant of three manifold came across a
mock theta function and called it of second order.

Recently in his path breaking paper [5] while studying the
g-orthogonal polynomials found some new mock theta
functions. The following two mock theta functions are in-

teresting
2
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Bringmann, Hikami and Lovejoy [8] also found two more
new mock theta functions

(D) =.4"(q)2n1
n=0
and
h(@)=2.4" (D2,
n=0

In this paper we have given two generalizations of these
mock theta functions and have shown they belong to the

family of £, —functions. Being F, -functions they have

unified properties, for example:

i) The inverse operator D.' of g-differentiation is re-
p q,x q

lated to g-integration as
D\ f()=(-g)"' [ f(x)d, (x)
(i) Dj.F(z,a)=F(z,a+n), where n is a non-negative in-

teger.
The scheme of the paper is as follows:
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We define a F, -function in section 3.

The definition of one generalization of these mock theta
functions is in section 4.

Section 5 contains relations between these generalized
functions.

In section 6 we define a second generalization of these
functions and show they are F, -functions.

Section 7 contains more relations between these general-
ized functions.
In section 8 the generalized F, =functions are represented

as g-Integrals.
In section 9, multibasic expansions are given for these
generalized F, -functions.

2. Basic Facts

We shall use the following usual basic hypergeometric
notations :
For |qk| <1,
(a:¢") ,=(1-a)(1-ag")..(1-ag"" ™), n =1
(a:9"), =1,
(a;4"),, =] [ -aq")
j=0
For convenience we shall write
(a,ay,...... ,am;qk) nz(a,;qk)n(az;qk)n ...... (am;qk)n.

When k=1, we usually write (a), and (a), instead of
(a;9), and (a;q),,, respectively.
Apseves @y D€y eens Cp g 2o Cp e Cpy
¢ . . . aq qla ------- 1qm;z
bysby eyl g iy ey
l+s-r ST,
S (al “““ z’q)n n n HZT_n 5 (Cj'l’ ........ ,C'i’r];qj)” n % -
=)—— | —|(-1)'g;
n=| 0(‘]:1717 """" ’byq) J 1 (/17 """ ’ j,gjﬂq/)

A generalized basic hypergeometric series with base ¢, is
defined as

1P anay,.a5byby by g,z
:i (al;ql)n""(aA;ql)nZn
=0 05q1) (B30, (41391,

Z|<l.

3. Definition of F, -Functions

Truesdell [22] in his book, “Unified theory of special
functions” calls a function F' -function, if it satisfies the
functional equation

EF(z,oc) =F(z,a+1).
0z

The g-analogue is: A function is called F,=Function if it

satisfies the functional equation
D,. F(z,a)=F(z,a+1),
where
zD,. F(z,a)=F(z,a)-F(zq,a).

4. Generalization of Mock Theta Func-
tions and are 7, -Functions
We give a generalization of these mock theta functions

and show they are F g ~functions.
Definition of the generalized functions:

_ 1 (t) n —n+na

ta,q)=— nd 4.1

Volt:.4) ()wg (-4:9),, “1)
1 (t) q2n +n+na
fag)= 4.2
v (t,0,q) ()OCHZ:,) ‘I‘I)z,,+1 ( )
1 (l) q2n +n+na(q;q2)
W, (t,a,q) =—— L) (4.3)
e (t)wz(:) (@*:9),(-4:9),,
1 & 0 q” N (=q39),

(t,a,q)=—o 1 , 4.4
Vilbad (txm $(@:0),@70), (-4 9), (@4
h(t.a,q) = o Z() 7" (-4:9),,,,- (4.5)

and
h(t,a,q) = Z(t)nq”“’”( %4),, (4.6)

(9 Fpr)

For t =0 and « =1, the generalized functions defined in
(4.1)-(4.4) reduce to mock theta functions w,(q), ¥;(q)
W,(q) and ,(q), respectively. Fort=0, o =0 the gen-
eralized functions defined in (4.5)-(4.6) reduce to the mock
theta functions ¢,(¢) and #(q), respectively.

Theorem 1
Po(t,0,9), 7,(1,a,9), W,(t,a,9), Ws5(t,a,q), dy(t,2,q) and
¢ (t,a,q) are F, -functions.

We shall give the proof for y,(z,a,q) only. The proofs for
the other functions are similar, hence omitted.

Proof
Applying the difference operator D,,, we have

t Dy, wy(t,a,.q)= wo(t,a,q) —v,(tg,2,q)

Z(t) 2n —n+na 1 (tq)ann —n+no
(t)oo n=0 ( q; q)Zn (tq)oo n=0 ( q’q)Zn
—n+na 0 w2 —ntna n
_ 1< 0,61 & 0,6 (= 1q")
(t)oo n=0 (_q;q)Zn (t)oo n=0 (_9;q)2n
2
_L 0 (t)ann —n+n(a+1)
(t)oc n=0 (_q;q)Zn
So
Dq,t '/70(1‘,05,@: (70(2‘,05+1,q)

Hence y(t,a,q) is a F, =function. By similar working

all the generalized functions given in Theorem 1 are F,

=functions.
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5. Relation between the Generalized F,
-functions v, (t,a,9), ¥,(t,a,q) and
a()(t’a’q)j al(t’ a’ q)

Theorem 2

Dyitag)= 7i(ta.q) + gD’ pitasg) . (5.1)

Proof

Now
D’ o(tanq) =ylta+2,4)
0,49 202 —ntn(a+2)
(t)m,z:‘) (-4:9),,
_ 1 (t) 2n +n+na
0.5 (~@a),,,
1 ®).q ®),q
T, Z:: -4 61)2,,+l o, Z:: ~49),,4,

- l//l(t’aaq) + qD q.t l//l([’aaq) )
which proves Theorem 2.

(1 + q2n+1)

2n +n+na 2n +3n+na

Theorem 3
h(t.a.q) =g(t.a.q) +q D’y hltag).  (52)

Proof
By definition

h(t.aq) = 1 Z() 7" (-4:9),,.,
( )sc n=0

(t) zo(t) qn+na(1+q2n+l)(_q;q)2n

Z(t) qn+na -q; q z( )n 3n+na+l( -q: q)

(t)oonO wnO

=h(t.a.q) +q D7y, mt,a,q),
which proves Theorem 3.

6. Another Generalization of i (¢),
v,(¢) and areF, -functions

We now give another generalization for iz, (¢),
¥,(q) and define :

‘/70052,(1) ! Z(t) q

6.1
) 15 ,q) ' €D

and

(t),, 2n2 +2nZ4n+2

wit,2,9) = (6.2)

0.5 (~¢aq),,,

Ifweput#=0, z=1 in (6.1) and (6.2), the generalized
functions reduce to mock theta functions ,(q) andw,(q)
respectively.

By taking z=q**

in (6.1) and (6.2), it can be shown, as
is done in section 4, that they are F, -functions.

7. Relations between Generalized
Functions

Theorem 4

TotNz,9)+ Foltzq, D=5 Hq%(w— 9 (1.1

and

HNz,)+ TNz20.9) = 2 Ty(taJzg.9)  (7.2)

Proof

1
Writing for z*for z in (6.1) and (6. 2) we have

ACRER I 0T
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2
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212 +4n+2 2n+2
n=0 492

2
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(0.,

which is (7.1).

Again

TNz )+ Tz =—— 3 Dnd

which is (7.2).
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1 t
Z( )n

Zn +4n+1 2n+1
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Theorem 5
l/70(f,l'Z,¢I)= 1/70(1,2,([) (73)
and
1/71(t,i2,q)= _1/71(t,2,q) (74)
Proof
_ 1 0,9
Wo(t.iz,q) =
0 (), Z‘ -4 q)
:Wo(t’zaq)a

which is (7.3).

Again
2n*+2n 4n+2

10
Vit g) == Z (-4 q)zw

= _V71 (t,Z, q):
which is (7.4).

8. g-Integral Representation for the
Generalized F, -functions

The g-integral was defined by Thomae and Jackson [11, p.
19] as

j FOd,1=0-03 f@"

n=0

Theorem 6
o -9 't _
(@) V/o(q’,a,q)=%J‘W’ \wg:q). Wo(0,aw,q)d W,
(9
(1-¢)"

1
(i) w(q'a.q) = [w 7 vgs0),, w1 O.aweg)d W,

(69w

o -9t .- _
(iif) Wz(q’,a,q):%IW’ ‘wasq), Vo (0.aw,q)d W,

(iv) %(q’,a,m—(( D[ gy, FOamayd, W,
© 0
(V) %(qtaa:q) = %CI)J.WI_I(WQQQ)DO a()(ovawaq) dq w E)
? 0
. (-9t -
Vi) A(q'a.q) =~—2—[w ™ (wg:q).. #(0.amq)d W
(69w

Proof
We give a detailed proof of Theorem 6(i) only. The proofs
for Theorem 6 (ii)-6(vi) are on the same line, hence omitted.
Limiting case of g-beta integral [ 11, p.19 (1.11.7)] is

1 (-9 T i
=———|t""(tq:9),, d ;I .
@59 (@D B

(8.1)

Now

211 —n+na

1 (ON']
t -
wo(t,a.q) 0. nz;] q,q)

Replacing ¢ by qt and q by a, we have

2n —n+na

_ (4.9
wo(q' a,q) = z
’ (q' )w Z:‘) (-4:9),,
© 2»12—n+na
§ ~4:9),,(q" e

© 2n —n+na =
q (1 q) n+t71
= (wg;9),, d ,w by (8.1)
Z ~449),, (@D l 1

(-9 ¢ > " (aw)"
= (Wg:q9) 7d w. (8.2)
(69 j z ~4:9),,
But
0 2n2 —n+na
vo(0,a,9) = )
0 Z o (~4:9),,
and since ¢“ =a,
0 2n —n
q ()"
vo(0,a,9)= ) —
‘ Zo (-a:9),,
Hence
© 2112711( )n
ZoO,amq) = L0 (8.3)
’ ’lzz(:) (7q;q)2n
By (8.3), (8.2) can be written as
_ o, l—g) ' b _
l//O(q aaaq):%.[wt l(wqﬁq)oo I//O(Oaawsq)dqwa
(49w 3

which proves (i).

9. Multibasic ¢g-Hypergeometric Series
Expansions for Generalized Functions

We shall be using the following summation formula [11,
(3.6.7), p. 71] and [17, Lemma 10, p. 57] in writing the
multibasic expansions of the generalized functions:

3y (-ap'q )= bp'q Yabipyicalbeag’ 5,
part (1—a)<1 b)(g.aq ! biq)i(ap ! c.bepip),  amp "
_ v~ _(ap.bpip)y(cq.a9/bciq), ©.1)
woo(ap ! e,bep;p),(q.aq/byq),, "

Corollary 1
Letting ¢ —¢° and ¢ — 0 in (9.1), we have

5k2 45k

Z (1-ap*)1-bp*qa* Nabip)g 2 &
Z . 2 ZanHk

k=0 5 5 P
(1-a)1-b)q ,aq’ 1 b;q”);b"p 2

5m2 +5m

i (ap,bp; p) 4 2 a. . 9.2)

"gaq’ I by, 2
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Corollary 2
Letting ¢ —¢* and ¢ —> o in(9.1), we have

2
i (1-ap*q* )1 -bp* g™ )a,b; p), g™ T &
2

ik
k=0 4 4 ay kB w0
(I1-a)(1-b)q",aq" / b;q")b"p 2
© (a ,b ) 2m +2m
Z_ Fo o m?+m i (93)
(gt .aq* 14,0 p 2
Corollary 3
Letting ¢ —¢*> and ¢—>© in(9.1), we have
& (1= ap*g? 1= bpt g Y abi p)yg” &
Z 2.k ke
Y (- a)1-0)q aq? I gy 2"
0 ( b ) m2+m
ap, 5 m
-3 PRI g (9.4)

m-+m
m=0

(¢°.aq’ 1 b;47),,b"p 2
Theorem 7

The generalized functions have the following multibasic
hypergeometric series expansion:

—4k+2)(t,q) ) 2k224k
N=4:47) (4107,

Z (l—zq"’k (-

(1) V70(tazaq) - k+2

XM

ockO

q,O 00 tq5k+2 q5k+5

2 5. 4
q2k+1’_q2k+2 -0 0,’q’q 452 }

VIRV N

;2 2 (1-1g% )1 = )i D ]q2k 2k 4k

(i) y(t.z.q) =

(I+9) (t)mk = S R N )
. q2k+2’_q2k+3 . 0’0 :7qaq .4 59 .
2,
(111) [/70([ a q) — Z(1+q +q )(lq) q2k 3k+ka

()ookO

2k+2 .

(=4:9)2x

4.9 ;qz“”l} .

k
q,1q" 1 —q
X ¢ [ ey

0,0,0: -

2_
1 i (1+q™ + 4"V t9) g™

s 120 (=49 241

(iv) v (t.a.q) =

2k+2 .

k
q,1q" :—q
x ¢ { 2/c+3

,qq q2k+a+1 .
0,0,0:—¢q

6k 1 242 —k+ka+1

)9 (g; q )iq

z“

(V) ‘/72(taaaq) =

o= A CET T N
,t 2k+1.,
¢ %oqo.;zm 4,4 q2k+a+z]_

K2 —2k+ka

1 Z(Hq NGO )i
()wk 0 (@D (697

10,9 qk+a l:|

(Vl) ‘/73 (ta a, q) =

y ¢ q’tqk:q2k+2
. 2k+1
0,0:q
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Proof of (i)

We shall give the proof for y,(t,z,q) in detail, for other
functions we shall only give the value of the parameters .

(@%0)utg"37), 2"
(@39)n(~4:47) (=470,

. t
Taking a=—, b=¢",p=gand a,=
q

in (9.2), we have

2
$ 0 D= 0.4%9)8™
Fort l—t/q)(l ~)tq.q0:47 )y

4(m+k)

0 4m

5.5 2.5 o 2m?
(q ,q )m+k([q 9 )m+kz — Z q (t;q)mz (9 5)
m=0 (qz;q)erk (_q;qZ )m+k (_q2;q2)m+k m=0 (—f];qz )m (_q2;q2 )m

The right hand side of (9.5) is equal to
(tﬂq)cc ‘/70(I,Z, Q)

The left hand side of (9.5) is equal to

R A (o B (T

e R (e (O S W G R
0 (q5k+5;q5) (tq5k+2’q )
Y
four Y (/AR W G R W qz"*z,q Do
i 1 lq6k l)(l —4k+2)(t.q)k 1qZk 4k
- 4" ;") (~4:07),
0:0.0:¢ S5k+2 5k+5:
X ¢ q’ 9 q >q

2 5. 4
34,9 -9 52
G g g2 0.0

which proves (i).
Proof of (ii)

m_4m

Take a=£, b=q,p=gand o - (¢:4°)ultg*:47),,9"2
q (@D (07307 (~47:07),

in (9.2).
Proof of (iii)

m =2m+ma

_ 9, 730),4
¢:4°),

Letting ¢-¢', p-¢’ a=b=1 and a,

in (9.3).
Proof of (iv)

m2 +ma

_ (694 q )mq
454",

Letting ¢—>¢*, p-¢* a=b=1 and aq,

in (9.3).
Proof of (v)

Letting ¢—¢°, P-4 a=— b and

1]
<

m +m+ma

_ (9, (a:9 )mq
(797,

Proof of (vi)

in (9.3).

m

2
m”=3m+2ma

: 9 1\ (4 2, 2 2
Letting ¢-¢’, p—g, a=b=-1, and am:( ) (t,q)m(zi .q2))mq
G4 )

in (9.4).
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10. Conclusions

I have given two generalizations of these mock theta
functions and shown they are £, -functions, so they satisfy
the properties of the general class of F, -functions. The
generalization helps in giving relationship between these
functions. Apart from these values, we can give other values
to have another set of functions having these properties.

I think these relations may yield interesting results in the
theory of partitions.
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