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Abstract

In this paper, the modified Kudryashov method (the rational Exp-function method) with the aid of symbolic

computation has been applied to obtain exact solutions of the (2+1)-dimensional modified Korteweg-de Vries equations
(mKdV) and nonlinear Drinfeld-Sokolov system. New exact solitary wave solutions are obtained with comparison of other

solutions obtained before in literature.
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1. Introduction

Nonlinear partial differential equations have an important
place in the study of nonlinear optics, elasticity theory and
plasma physics. As an important aspect of nonlinear science
known of these are solitary waves.

In this paper, we going to find solitary wave solutions for
the (2 + 1)-dimensional modified Korteweg-de Vries equa-
tions equation[1].
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+o2t 2Av,u + 2Au,v =0, (l.1a)

U, = v, (1.1b)

with A being an arbitrary constant, Egs. (1.1a) and (1.1b)

studied using variable separation and nonlinear phenom-
ena[ 1] and it possesses Painlevé property[2, 3].

Also, in this paper, we aim to cast light on the Drin-

feld—Sokolov system which is given by
u + (%), =0, (1.2a)
V¢ — AUy xp + 3bu, v + 3cuv, =0, (1.2b)
where a, b and c are constants. This system was intro-
duced by Drinfeld and Sokolov as an example of a system
of nonlinear equations possessing Lax pairs of a special
form[4-6].

In this paper, we use the modified Kudryashov method
(the rational Exp-function method)[7-9] to obtain new exact
solitary wave solutions of the (2+1)-dimensional
Korteweg-de Vries (mKdV) equation and the nonlinear
Drinfeld-Sokolov system.
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2. The Modified Kudryashov Method

To illustrate the basic idea of the modified Kudryashov
method, we first consider a general form of nonlinear equa-
tion

DU, Up, Un, U, Ugr, U ) = 0.

@2.1)

where P is a polynomial function with respect to the in-
dicated variables or some function can be reduce to a poly-
nomial function by using some transformation.

Making use of the travelling wave transformation

u=u(), §=alx—po), (2.2)

where aand f are arbitrary constants to be determined
later. Then Eq. (2.1) reduces to a nonlinear ordinary differ-
ential equation (ODE)

p(u, —apu,au’, a®u”, a’f*u’, —a?pu’,..) = 0. (2.3)
We shall seek a rational function type solution for a given

partial differential equation, in terms of exp (&), of the fol-
lowing form

_ym ak
w(®) = Zk=0 e O’ (2.4)
where ag,aq, ... ... and a,, are constants to be deter-

mined to form the solution of (2.1).

We can determine m by balance the linear term of the
highest order in (2.3) with the highest order nonlinear term.

Differentiating (2.4) with respect to &, introducing the
result into Equation (2.3), and setting the coefficients of the
same power of e equal to zero, we obtain algebraic equa-
tions. The rational function solution of the Equation (2.1)
can be solved by obtaining ay,a, . a, from this sys-
tem[6].

........
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3. Solutions of (2+1)-Dimensional
Modified Korteweg-De Vries
Equation

Eq. (1) can be rewritten as
4y, + 4ulu,,, — 6uuu,, + 3ud + 84Aulv,u +
8Au*u,v = 0, (3.1a)
Uy =V, (3.1b)
By using the transformation

ulx,y,t) =UE), vix,y,t) =V(§), § =alx+ By —yt),

(3.2)

where o, B and y are arbitrary constant, then Egs. (3.1a)
and (3.1b) become

—4yU%U" + 42?U%U

" —6a’UU'U" +3a?(U) +

8AU3V' + 8AUU'V =0, (3.3a)

U =pv. (3.3b)

In order to determine values of m and n , we balance the

linear term of the highest order partial derivative terms and

the highest order nonlinear terms in Eq. (3.3a) and (3.3b) ,

then we get m=n=2.

By using the rational function in exp (§), we may choose

the solutions of (3.3a) and (3.3b) in the form

— at az

U@ =ap+ 7+ 57 (3.4a)
_ by by

V@ =bo+ st ot (3.4b)

where ay,ay a,,by, by and b, are arbitrary constants to
be determined later

Differentiating (3.4a) and (3.4b) with respect to & intro-
ducing the result into equations (3.3a) and (3.3b), and setting
the coefficients of the same power of e equal to zero, we
obtain these algebraic equations

2 2 2 2 3 _
—4yaga, +4c aga, +84aja, b0+8Aa0b1—0’

2 2
16 4 aya, bO + 324 aga, b1

+564a)b, +320° aday~ 8yaday— 28yada, + 564

2 2 22 _
ag a, bo-l- 16Aa0alb0+4(x aoalfo,

3 2 2 2
+164ayb, —8yaya] +20 a,a;

84a, by+964ayay by —48yaga, — 84vaga, — 48ya a;
+564ala by +404adayb, + 0@ — 180 aya’
+1924 aga, b, —4va) + 96 Aaya, by + 964 a3 b,

+3607 aya, a, +484.a by + 1684.a b, + 1684

091 % 0%1% Y%
2 2 2 2 2
aga by =360 aya; —24vaya, a, +404 aya; b, + 720
2 —
a0a270,

164a> b, +2804a} b, + 2404 a} b, + 4804 aja, b, + 2804
2 2 2 2
aga, by +2004aya,b, +644a,a,b,+ 2004 aya; b,
+64d4ayad b, + 964 aya, ayb, — 1000° ada, — 240
2 2 2 2 2 2 2
aga, — 840 aya; + 160 aya, + 1600 aja, +2404 a,
alby+ 2804 aga, b, — 140yaja, —20ya;
2 2
+2404aya,a,b,+ 2404 aya, by +324a,a,b,+ 324
A ayby+404d by~ 70’ a — 120y} a, — 12074, a>
2 2 2
—16vaya, —16va,a, — 120vaya, a, — 1200 aya, a,=0,

3 3 3 3
6444, b, +244.a) b, + 2804 ay b, + 3204 ay b, + 6404

2 2 2 2
aya, b1 + 5604 aya, b2 + 4004 aya, b1 + 2564 aya, b2

2 2 2
+ 4004 ayd; b1 + 2564 a, 4 b2 + 564 a, azb1 + 564
2

)
aja, b1 + 3844 aya, a2b1 + 1444 aya, a, b2 — 1000 aya
2

2 2 9 2 9 2
O512—1160c ay - 560 a0a2—26oc ajd,

2 2 2 2
+ 200 a, a, + 3204 aya bO + 2804 aya, b0

—40ya) + 4804 aya, a, by + 3204 a a, by + 1284 a,

2 2 2 3 23
ayby +1284a,a,by+404a ayb, + 804 a; by, — 230 a;
— 160yag a, — 160ya, a} — 64ya, a5 — 64yar a, — 20ya,

a5 — 24074 0,

1
1760’ a

- 1407a3a1

2
0a1a2—2280c aga, a,=

64d4a,a3b, +164a3by+ 807 a3 +964a> b+ 124d) b,
+ 1684 a3 b, + 24040 b, + 4804 a, b, + 5604 a7 a b,

+4004 a3 a, b, + 3844 ag a, b, + 4004 agal b, + 3844 a,

arb, +1684a,a3b, + 804,03 b, + 16844 a, b, + 804

2 + 4324 aya, a,b, 360 a}

aja, b2 + 576 4 aya, a2bl ,b, 04
- 1440(2 ag ay = 540(2 a, a? - 1440L2 a a% - 840(2 a? a,

2 2 2 2 2
— 600 aya, + 2404 aya, by + 1684 aya, by —84ya;a,

—40Ya; + 4804 aya, ay by + 2404 aj ay b + 1924,

04 %
b +1924d%a, b, + 1204 a, b
2°0 17270 17270

— 120ya3a, — 120yaya} = 96Ya, a5 — 96va; a, — 60ya,

+804a by~ 170 ¢
a —8ya3 ~ 240ya,a, 4, ~ 2520 aya, a, =0,

1840, a2b, +324a3 b~ 320’63 + 6444 b, + 4 b,
+244ayb, +5640) b, +964ay b, + 8840 a3 b,
+1924a5a, b, +2804 a7 a b, + 2004 a ay b, +2564
afayby+ 2004 ayatby + 2564 a) b, + 1684 ay a3 b,
+ 1604 aya3 by + 168447 a,b, + 1604 0] a, b,
+3844aga a,b +4324 a4, a)b) + s aéa1 ~ 4
aéa2 + 60(2a0a% - 560L2a0a§ ~ 260’ a%a2 - 60()L2a1 ag
+964aya; b+ S64a;a, b, —28yara, 0y,

2 2
+ 2404 a,a, 4, b0 1+ 964 a,a, b0 + 1284 a, b0 + 1284
dab

2 3 23 2
[0y b T 12040, ;b0 +404 a0 by + 200 a; — B4 a,
— 48ya,a> — 64y0,; - 64ya) 0, — 6074, &) - 16Y0)
—48a2a0a1a2=0,

— 120454, a,
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(@b +164a3b +80 a3+ 16443 b, + 244 b,

3 3 3 3
+24Aa2b1 +32Aa2b2+8Aa0b1+ 1()141610l92+88/1a1
2 2 2 2

a2b2+32A a4, b1 +56Aa0a1b2+40Aa0a2b1 + 644
2 2 2 2
aoazb2-|-40A a,4, b1 + 644 a0a1b2+56A aoazb1

64da atb

2 2 2
+ 804 a0a2b2-|-56A alazb1 + 804 a4, a, b2
22 2
+96Aa0a1a2b1+144Aa0a1a2b2+40t a0a1+80c

2

aéa2+8a2a0a%+ 160(2a0a§+ 160L2a%a2+200c2a1a2

2 2
+ 16Aa0a1 bO-I-SAaOa1 b0

2 2
+ 484 a,4, 4, b0 + 164 a0a2b0 +324 a0a2b0-|- 324
aza b

2 3 23 2
14y by +404a ayby+84a by + 40 a;—8va;a,

—8v4q, a% = 1674, ag - 16ya% a, = 20ya, ag - 8ya§

—4ya(2)a1 —4ya?

—24va,a,a -|-240c2a0a1a2=0,

07172

-a,+2Bby—2a,+Bb,=0,

Bby—a, =0 (3.5)

Solving the system of algebraic equations (3.5) with the
aid of Maple, we obtain two cases of solutions

Case 1

3 pa? -3 Ba’
WO Mmoo
G 3a? 302
bo =3 (aA Y, by _5%’ b2 _7%’ (3.6)

By back substitution we get the following new exact solution
for the (2+1)-dimensional mKdV equation

(7,0 = 222 :
ux,y,t) = 2 A [1+expla(x+ By —yt)]
1

(1 +explalx + By — Vt)])z]'

v (x,y,t) =
—_i([l:;_) _ 3a? n 3a2 ]
24 14 14 1+exp [a(x+By —yt)] = (1+exp [a(x+By —yt)D2)
3.7
Case 2
_ —3pa? _ 3pa? _ —3pa?
% ="g A(’Zal)_ZA’Zaz 2 4’
_oileto) 302 3
bo_s a4 Pl T o bZ_ZA' 3-8)

By back substitution new exact solution for the
(2+1)-dimensional modified Korteweg-de Vries equation is
obtained

—3Ba?(1 1 1
Wy, = 5= [Z TTrep® (7 exp(f))z]'
-1 5 3a?
vy (x,y,t) = SAlze Y “Trexp®
3a? ]
A+ @)

where & = a(x + By — yt). (3.9)

4. Solutions for Nonlinear
Drinfeld-Sokolov System

Let u(x,t) = U(§), v(x,t) = V(§),

where § = a(x — fft) 4.1
Egs. (1.2a) and (1.2b) becomes

—BU +2VV' =0, (4.2a)

—BV' —aa?vV" +3bU'V +3cUV = 0. (4.2b)

In order to determine values of m and n, we balance the
highest order linear terms with the highest order nonlinear
terms in Eqs. (4.2a) and (4.2b), then we get m=2 and n=1.

By using the rational function in exp (§), we may choose
the solutions of (4.2a) and (4.2b) in the form

— a az
U = a0+t o (4.32)
b
V(&) =bo+ 7 (4.3b)

where ay,a; a,,by and by are arbitrary constants to be
determined. Differentiating (4.3a) and (4.3b) with respect to
& introducing the result into equations (4.2a) and (4.2b), and
setting the coefficients of the same power of e® equal to
zero, we obtain these algebraic equations

2
—ab, o +3cbiay+3ba b,—b B=0,
~b B+3cb ayg+3ba by+6bayby+3ch a —ab, o
+3cb1a2+3balbl+6ba2bl=0,
2
6cbyay+3ba b +6baby+6ba,by+4ab o —2b
+3cb1a1:0,

Ba, —2b, b, =0,
2 _
Ba, —2b>+2Ba, —2b, by=0. @.4)
Solving the system of algebraic equations (4.4) with the
aid of Maple, we obtain the solutions

ag = bo, (a?b—ca? —8b3), a,=a;, a,=-ay,
—4b}
bo = b(); b1 =-2 b(], B = a10'
_ —2a1b—-ajc
a=+ /—Za . (4.5)

Inserting Eqs. (4.5) in to (4.3a) and (4.3b), we get the
following solitary wave solutions of Nonlinear Drin-
feld-Sokolov system as follows

w5 (x.1) = atb—cal —8h; q 4
12 (% 6cay Lexp(§)  (1+exp(&)’
2bg
Ulyz(x, t) = bo - _1 T exp(f)'
— _ 2
where & = + —Zalzl; e (X + %t) (4.6)

5. Conclusions

In this paper, we have applied the modified Kudryashov
method (the rational Exp-function method) to obtain new
solitary wave solutions of the (2+1)-dimensional modified
Korteweg-de Vries equation, and Nonlinear Drin-
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feld-Sokolov system. The obtained solutions are new and it
reflexes how the method is powerful and can be applied on
other nonlinear models.
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