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Abstract  In this paper we introduce, briefly, Clenshaw method which is a kind of spectral method and then by exploiting 
the trigonometric identity property of Chebyshev polynomial in this method we try to get more accurate approximate solution 
of linear differential equations. We compare the results by some numerical examples. 
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1. Introduction 
Spectral methods arise from the fundamental problem of 

approximation of a function by interpolation on an interval, 
and are very much successful for the numerical solution of 
ordinary or partial differential equations[1]. Since the time of 
Fourier (1882), spectral representations in the analytic study 
of differential equations have been used and their applica-
tions for numerical solution of ordinary differential equa-
tions refer, at least, to the time of Lanczos[2].  

Spectral methods have become increasingly popular, es-
pecially, since the development of Fast transform methods, 
with applications in problems where high accuracy is desired. 
A survey of some applications is given in[3]. 

The basis of spectral methods to solve differential equa-
tions is to expand the solution function as a finite series of 
very smooth basis functions, as follows  

0
( ) ( )

N

N n n
n

y x a xϕ
=

= ∑              (1) 

in which, nφ  is one of choice of the eigenfunctions of a 
singular Sturm-Liouville problem. If the solution is infinitely 
smooth, the convergence of spectral method is more rapid 
than any finite power of 1/N. That is the produced error of 
approximation (1), when N → ∞ , approaches zero with 
exponential rate[1]. This phenomenon is usually referred to 
as “spectral accuracy”[3]. The accuracy of derivatives ob-
tained by direct, term by term differentiation of such trun-
cated expansion naturally deteriorates[1]. Although there 
will be problem but for high order derivatives truncation and 
round off errors may deteriorate, but for low order deriva-
tives and sufficiently high-order truncations this deteriora-
tion is negligible. So, if the solution function and coefficient 
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functions of the differential equation are analytic on [ , ]a b , 
spectral methods will be very efficient and suitable. We call 
function y is analytic on [ , ]a b if is infinitely differentiable 
and with all its derivatives on this interval are bounded 
variation.  

In next section, first, we introduce Clenshaw method and 
then by exploiting the trigonometric identity property of 
Chebyshev polynomial, we develop a numerical scheme 
referred to as Pseudo-Clenshaw method. 

2. Procedures 
(i)-Clenshaw method 

Consider the following differential equation: 

0
( ) ( ), [ 1,1],

M
i

M iLy f x D y f x x−= = ∈ −∑      (2) 

y CΒ =                 (3) 

where
0

( )
M

i
M iL f x D−= ∑ , and if , 0 ,1,..., ,i M f= , are 

known real functions of , ix D  denotes thi  order of differ-
entiation with respect to ,x Β  is a linear functional of rank 
M  and MC ∈ℜ . 

Here (3) can be initial, boundary or mixed conditions. The 
basis of spectral methods to solve this class of equations is to 
expand the solution function, y , in (2) and (3) as a finite 
series of very smooth basis functions, as given below  

0
( ) ( )

N

N n n
n

y x a T x
=

= ∑              (4) 

where, { }0
( ) N

nT x  is sequence of Chebyshev polynomials of 

the first kind. By replacing Ny in (2), we define the residual 
term by ( )Nr x  as follows 

( )N Nr x Ly f= −                 (5) 
In spectral methods, the main target is to minimize ( )Nr x  
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throughout the domain as much as possible with regard to (3), 
and in the sense of point-wise convergence. Implementation 
of these methods leads to a system of linear equations with 

1N +  equations and 1N +  unknowns 0 1, ,..., .Na a a  
Consider the following differential equation: 

( ) ( ) ( ) ( ) , ( 1,1) ,
( 1) , (1) .

P x y Q x y R x y S x x
y yα β

′′ ′+ + = ∈ −
− = =

   (6) 

First, for an arbitrary natural number N , we suppose that 
the approximate solution of equations (6) is given by (4). Our 
target is to find t

Naaaa ),...,,( 10= . For this reason, we 
put  

0 0 0
( ) ( ), ( ) ( ), ( ) ( ).

N N N

i i i i i i
i i i

P x T x Q x T x R x T xξ γ λ
= = =

≅  ≅  ≅∑ ∑ ∑   (7) 

Using this fact that the Chebyshev expansion of a function 
2 ( 1,1)wu L∈ −  is 
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can find coefficients ,i iξ γ  and iλ  as follows: 
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           (8) 

where, 0 2c =  and 1ic = for 1.i ≥  
To compute the right-hand side of (8) it is sufficient to use 

an appropriate numerical integration method. Here, we use  
( 1)N +  - point Gauss - Chebyshev - Lobatto quadrature  

cos , , 0j j
j

jx w j N
N c N

π π
= = ≤ ≤



, 

where 0 2Nc c= =  and 1jc =  for 1, 2,..., 1j N= − . 
Note that, for simplicity of the notation, these points are 

arranged in descending order, namely, 

011 ... xxxx NN <<<< − , 
with weights 

, 1 1 ,

, 0 , ,
2
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π
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and nodes cos , 0,1,..., .k
kx k N

N
π

= = That is, we 

put[4]: 
"
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and using 1( ) cos( cos ) ,iT x i x−=  we get 
"
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where, notation 
″

∑ means first and last terms become 

half. Therefore, we will have: 
"

0
"

0
"

0

(cos( )) cos( ) ,

(cos( )) cos( ) ,

(cos( )) cos( ) .

N

i
k
N

i
k
N

i
k

k ikP
N N N

k ikQ
N N N

k ikR
N N N

π π πξ

π π πγ

π π πλ

=

=

=

≅

≅

≅

∑

∑

∑

       (9) 

Now, substituting (4) and (9) in equations (6), and using 
the fact that 

(1) (1) (1)
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m+p=even 
in this manner, we get 
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Now, we multiply both sides of (10) by
2
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integrate from -1 to 1, to obtain 
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with, , 1i jδ = ,when i j= , and zero when i j≠ [5]. 
We can also compute the integrals in the right-hand side of 

(12) by the method of numerical integration using 1N +  
-point Gauss-Chebyshev-Lobatto quadrature. Therefore, 
substituting (13) in (12) and using the fact that 

( 1) ( 1) ,i
iT ± = ± equations (12) and (11) make a system of 

1+N  equations for 1N +  unknowns 0 1, ,..., Na a a , and 
we can obtain 0 1( , ,..., )t

Na a a  from this system. 

(ii)-Pseudo-Clenshaw method 
We assume that an approximate solution to Eq. (6) is 

given by 
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0
( ) ( ).
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n n
n

y x a T x
=

= ∑             (14) 

Recall the Chebyshev polynomial given by: 
𝑇𝑇𝑛𝑛(𝑥𝑥) = 𝑐𝑐𝑐𝑐𝑐𝑐�𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐−1(𝑥𝑥)�. 

Let 𝜃𝜃 = 𝑐𝑐𝑐𝑐𝑐𝑐−1(𝑥𝑥), then 𝑇𝑇𝑛𝑛(𝜃𝜃) = 𝑐𝑐𝑐𝑐𝑐𝑐 𝑛𝑛𝑛𝑛. By using this 
identity (14) becomes  

𝑦𝑦�(𝑥𝑥) =
0

N

n
n
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=

∑ 𝑐𝑐𝑐𝑐𝑐𝑐 𝑛𝑛𝑛𝑛.       (15) 

The first and second derivatives of (15) are given, re-
spectively, as 
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𝑠𝑠𝑠𝑠𝑠𝑠3 𝜃𝜃 �. 

Substituting 𝑦𝑦�(𝑥𝑥),𝑦𝑦′�(𝑥𝑥) and 𝑦𝑦′� ′(𝑥𝑥) in Eq. (6) with the 
functions 𝑃𝑃,𝑄𝑄,𝑅𝑅 and 𝑆𝑆 in term of 𝜃𝜃, we get 
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where 𝜃𝜃𝜃𝜃[−𝜋𝜋,𝜋𝜋], 𝑦𝑦�(−𝜋𝜋) = 𝛼𝛼,𝑦𝑦�(𝜋𝜋) = 𝛽𝛽 and 

0 0 0
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Some more substitutions through 8-13 lead to desire rela-
tions. 

3. Numerical Examples 
Now, we consider some examples with Clenshaw and 

Pseudo-Clenshaw methods and observe the power of this 
method comparing with usual numerical methods such as 
Euler’s or Runge-Kutta’s, Adams methods.  
Problem 1. Consider 

4 3 7( ) 3 ( ) ( ) 6 9 , [ 1,1],
( 1) 1 , (1) 1 ,

y x xy x x y x x x x x
y y
′′ ′+ + = + + ∈ −

− = − =
 

with exact solution 3( )y x x= . 
We solved it by Runge-Kutta with orders two and four and 

also Adams method. For these methods we used, the same 
step size and step number. The maximum errors were 

5 7 51.5 10 ,1.8 10 ,1.2 10− − −× × × , respectively. We, also, solved 
it by shooting method with the same step size for steps N=14, 
17. We had maximum errors 5 52.9 10 ,1.3 10 ,− −× × respec-
tively. As we see the rate of improvement of accuracy is very 
low. But we used the Clenshaw method with Chebyshev e 
basis for 14N =  and 17N =  .The maximum errors were 
about, 132.2 10−× , and 143.4 10−× , respectively, and we used 
the Pseudo- Clenshaw method with 14,17N = , and maxi-
mum errors were 168.9 10−× , and 164.4 10−× , respectively. 
As we can see, Clenshaw and Pseudo- Clenshaw methods for 
solving such problems have high rate of convergency. Ex-
istence of 7x , indicates when N get the value 7, the error 
becomes zero. If we observe above errors they are rounding 

errors. 
Example 2. Let us consider 

( ) ( ) cos( ) , [ 1,1],
( 1) sin( 1) , (1) sin(1) ,

y x xy x y x x x
y y
′′ ′+ + = ∈ −
− = − =

 

with the exact solution ( ) sin( )y x x= . This example was 
chosen from[6]. We solved it by Runge-Kutta with orders 
two and four and also Adams method. The maximum errors 
are 4 7 52.5 10 2.4 10 , 1.1 10− − −× , ×  × , respectively. That is, 
these methods give good results for such problems. For these 
methods we used the same step size and step number. We 
also solved it by the Clenshaw and Pseudo-Clenshaw 
methods with 5,8,16N = , the maximum errors produced 
from this method are given in Table 1, where 𝑦𝑦𝑐𝑐(𝑥𝑥) and 
𝑦𝑦𝑝𝑝𝑝𝑝 (𝑥𝑥) mean the Clenshaw and Pseudo-Clenshaw methods, 
respectively. 

Table 1. 

N  ( ) ( )cy x y x
∞

−   ( ) ( )pcy x y x
∞

−   

5 52.11 10−×  51.10 10−×  

8 85.71 10−×  90.01 10−×  
16 161.11 10−×  178.98 10−×  

Problem 3: Consider 

),1sin()1(
),1,1(),(

5 +=±

−∈=−′+′′
±ey

xxfyyxy
 

where,  
5 2 2 2 2( ) (24 5 ) (2 2 )cos( ) (4 1)sin( ),xf x x e x x x x= + + + − +  

so that the exact solution is 5 2( ) sin( ).xy x e x= +  
For comparison, we solved this problem by finite differ-

ence method, using the central differences for the derivatives. 
The mesh points are given by 21 ,i Nx ih h= − + = . The 
maximum errors given by this method are, 

1 1 2

2 3

3.100, 7.898 10 , 1.984 10 , 4.968 10 ,
1.242 10 , 3.106 10

− − −

− −

× × ×

× ×
 

for 16, 32, 64, 128, 256, 512N = , respectively. 
We solved it by the Clenshaw and Pseudo-Clenshaw 

methods with 10,11,12N = , the maximum errors produced 
from this method are given in Table 2 shows the results of 
solving this problem by these methods. 

Table 2. 

N  ( ) ( )cy x y x
∞

−   ( ) ( )pcy x y x
∞

−   

10 21.07 10−×  38.22 10−×  
11 32.20 10−×  49.83 10−×  
12 46.14 10−×  57.24 10−×  

4. Conclusions 
Results in these examples show the efficiency of Pseudo- 

Clenshaw method for obtaining a better numerical result. 
Unfortunately, for equations with non-analytical coefficient 
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functions these methods have low convergence, because 
when N increases the rate of improvement of accuracy is 
very low. This is because of the lack of smoothness of the 
coefficient function. But, when we solved it by the 
pseudo-spectral method, since coefficient functions do not 
need expansion in the form of (9), the error produced from 
using this method, will be better than Clenshaw and 
Pseudo-Clenshaw methods[6]. 

Author next goal is to work more on this method to get 
better results. 
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