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Abstract  This paper proposed a numerical method for nonlinear singular ordinary differential equations, that arises in 

biology and some diseases. We solved these nonlinear problems by a new method based on shifted Legendre polynomials. 

Operational matrices of derivatives for this function are presented to reduce the nonlinear singular boundary value prob-

lems to a system of nonlinear algebraic equations. The method is computationally very simple and attractive, and applica-

tions are demonstrated through illustrative examples. The results obtained are compared by the known results. 
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1. Introduction 

The aim of this paper is to introduce a new method for 

the numerical solution of the following class of singular 

boundary value problems 
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,=(0)(0) 111  yy               (2) 

,=(1)(1) 222  yy               (3) 

which arising in biology and physiology problems. We as-

sume that ),( yxf  is continuous, yf  / exists and is 

continuous and also yf  / 10  0,  xx . The 

boundary value problem (1)-(3) with 0,1,2=m  and 

0=a  arise in the study of various tumor growth problems, 

see ([1-6]), with linear ),( yxf  and with nonlinear 

),( yxf  of the form 

0,>  0,>   ,=)(),( 


n
y

ny
yfyxf


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A mathematical model of tumor growth is a mathematical 
expression of the dependence of tumor size on time. 

And when 0=2,= am  in the study of oxygen diffu-

sion problem in a spherical cell with Michaelis-Menten 

Kinetics, see ([7-9]). A similar problem arise with = 2m  
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and 0=a  in modelling of heat conduction in human 

head, see[10-13], with ),( yxf  of the form 

0.>  0,>   ,=)(),(  yeyfyxf     (5) 

Existence-uniqueness results for such problems have 

been established by several researchers[14-16]. In recent 

years, finding numerical solutions of singular differential 

equations, particularly those arising in physiology, has been 

the focus of a number of authors, which you can see some 

of them in[17-20]. 

The purpose of this paper is to introduce a novel method 

based on operational matrices of derivatives of shifted Le-

gandre polynomials that have been introduced recently in 

Saadatmandi and Dehghan work's[21] for the numerical 

solution of the class of singular second-order boundary 

value problems given in the (1-3) that arise in physiology. 

In this work by use of shifted Legendre polynomials as ba-

sis and operational matrices of derivatives of them we con-

vert these kinds of equations to algebraic equations. The 

advantage of this method analogy to other existed method 

for these problems is its trusty and simply in implementa-

tion, we compared our results with some existed results to 

prove this claim. 

This paper is organized as follows: Section 2 represents 

preliminaries, in this section we introduced shifted Legen-

dre polynomials, and some properties of them, specially the 

operational matrices of derivatives, in Section 3 we imple-

mented them on physiology problems. In Section 4, a num-

ber of applied models in physiology are discussed to show 

the efficiency and accuracy of the proposed method, the 

results obtained are compared by the known results. Finally, 

Section 5 includes a conclusion for the paper. 
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2. Definitions and Properties of Shifted 

Legendre Polynomials 

2.1. Shifted Legendre Polynomials 

Consider the Legendre polynomials )(zLm  on the in-

terval 1,1][  

,)(,1)( 10 zzLzL 
 

the set 0,1,...}= : )({ mzLm  in Hilbert space 1,1][2 L  

is a complete orthogonal set[22,23]. In order to use these 

polynomials on the interval [0,1]x  we define the 

so-called shifted Legendre polynomials by introducing the 

change of variable 12= xz . Let the shifted Legendre 

polynomials 1)(2 xLi  be denoted by )(xPi . Then 

)(xPi  can be obtained as follows: 

 (6) 

where 1=)(0 xP  and 12=)(1 xxP . The analytic form 

of the shifted Legendre polynomials )(xPi
 of degree i  

given by 
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Note that 
i

iP 1)(=(0)   and 1=(1)iP . The or-

thogonality condition is 
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2.2. Function Approximation 

Any function [0,1])( 2Lxy   can be expanded in terms 

of shifted Legendre polynomials as 

,)(=)(
1=

xPcxy jj

j




 

where the coefficients jc  are given by 

 

In practice, only the first 1)( m -terms shifted Legen-

dre polynomials are considered. Then we have 

),(=)()(
0=

xxPcxy T

ji

m

j

BC            (9) 

where the shifted Legendre coefficient vector C  and the 

shifted Legendre vector B  are given by: 

,],...,,[= 10

T

mcccC               (10) 

.)](),...,(),([=)( 10

T

m xPxPxPxB    (11) 

2.3. Operational Matrix of Derivative 

The derivative of the vector )(xB  can be expressed by 

),(=
)( (1) x

dx

xd
BD

B                (12) 

where (1)
D  is the 1)(1)(  mm  operational matrix of 

derivative given by[21] 
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as if m  is odd mk 1,3,...,=  and if m  is even 

11,3,...,= mk . For example for even m  we have 
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By using Eq. (12), it is clear that 

),()(=
)( (1) x

dx

xd n

n

n

BD
B               (13) 

where n  and the superscript, in (1)
D , denote matrix 

powers. Thus 

.1,2,=   ,)(= (1))( nnn
DD           (14) 

3. Implementation of Shifted Legendre 

Polynomials Method on Physiology 

Problems 

In this section we solve nonlinear singular boundary value 

problem of the form Eq.(1) with the mixed conditions (2) and 

(3) by using shifted Legendre polynomials. 

From Eq. (9) we can approximate our unknown as 

),(=)( xxy T
BC                  (15) 

where )(xB  and C  are defined in Eqs.(10) and (11). By 

using Eqs.(12) and (13) we have 

),(=)('=)( (1) xxxy TT
BDCBC      (16) 

and 

).()(=)('=)( 2(1) xxxy TT
BDCBC    (17) 

By substituting Eqs.(15), (16) and (17) in Eq. (1) we have 

)).(,(=)()()()( (1)2(1) xxfx
x

m
ax TTT

BCBDCBDC  (18)

 

Also by using Eqs.(2), (3), (15) and (16) we have 

,=(0)(0) 1

(1)

11  BDCBC
TT       (19) 

.=(1)(1) 2

(1)

22  BDCBC
TT       (20) 

Eqs.(19) and (20) give two linear equations. Since the total 

unknowns for vector C  in Eq.(15) is 1)( m , we collo-

cate Eq.(18) in 1)( m  points ix  in the interval [0,1]  

that are roots of shifted Legendre polynomial 1mP , then we 

have, 
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for 11,...,= mi . Now the resulting Eqs. (19), (20) and 

(21) generate a system of 1)( m  nonlinear equations 

which can be solved using Newton's iterative method[24,25]. 

We used the Mathematica 7 software to solve this nonlinear 

system. 
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4. Illustrative Examples and Applied 

Models 

To show the efficiency of the proposed numerical method, 

we implement it on three nonlinear singular boundary 

problems that arise in real physiology applications. Our 

results are compared with result in Refs.[17-20]. The aus-

terity of our method in implementation in analogy to other 

existed methods and its trusty answers is considerable. 

4.1. Example 1 

Consider the following oxygen diffusion problem 

,
0.03119

0.76129
=)(

2
)(




y

y
xy

x
xy

 

with the boundary conditions: 

5.=(1)(1)5       0,=(0) yyy   

Table 1 shows the numerical results for various number of 

meshes, and present method solutions are compared with 

results in Refs.[17] and[18]. 

Table 1.  Approximate solutions for Example 1. 

x  
Present method 

with 15=m  

Method in[17] 

With 20=n  

Method in[18] 

with 60=n  

0.0 0.82848329035968 0.82848329481355 0.82848327295802 

0.1 0.82970609243380 0.82970609688790 0.82970607521884 

0.2 0.83337473359100 0.83337473804308 0.83337471691089 

0.3 0.83948991395370 0.83948991833986 0.83948989814383 

0.4 0.84805278499606 0.84805278876051 0.84805277036165 

0.5 0.85906492716923 0.85906492753032 0.85906491397434 

0.6 0.87252831995828 0.87252831569855 0.87252830841853 

0.7 0.88844530562319 0.88844529949702 0.88844529589927 

0.8 0.90681854806680 0.90681854179965 0.90681854026297 

0.9 0.92765098836558 0.92765098305256 0.92765098252660 

1.0 0.95094579849648 0.95094579480523 0.95094579461056 

Table 2.  Numerical errors for Example 2. 

 

x  

Present method 

with 15=m  

Present method 

with 20=m  

Approach II[17] 

with 20=n  

0.0 
16103.88   

16102.22   
6102.00   

0.1 
16103.88   

16103.33   
6101.99   

0.2 
16103.33   

16104.99   
6101.97   

0.3 
16103.88   

16102.77   
6101.94   

0.4 
16102.22   

16103.88   
6101.83   

0.5 
16106.10   

16104.44   
6101.78   

0.6 
17108.32   

17108.32   
6101.67   

0.7 
16104.44   

16103.33   
6101.34   

0.8 
17108.32   

16102.35   
7109.20   

0.9 
16101.94   

16101.24   
7104.57   

1.0 
17101.96   

18107.11   0  

4.2. Example 2 

Consider the following singular two point boundary value 

problem: 

 

 

with the exact solution 
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where 223= c . Table 2 shows numerical errors of this 

example in analogy to errors for this example in[17]. 

4.3. Example 3 

Consider this problem that is coincide by heat conduction 

model of the human head, 

,=)(
2

)( yexy
x

xy   

we consider the solution of this problem with conditions as 

follows: 

0.=(1)(1)     0,=(0) yyy   

Table 3 illustrates results for this example by proposed 

method alongside numerical solutions for this example that 

have been given in Refs[19-20]. 

Table 3.  Approximate solutions for Example 3. 

x  
Present method 

with 15=m  

Method in[19] 

with forth-order 

Method 

in[20] 

0.0 0.3675168151 0.3675181074 0.3675169710 

0.1 0.3663623292 0.3663637561 0.3663623697 

0.2 0.3628940661 0.3628959378 0.3628941066 

0.3 0.3570975457 0.3570991429 0.3570975842 

0.4 0.3489484206 0.3489499903 0.3489484612 

0.5 0.3384121487 0.3384136581 0.3384121893 

0.6 0.3254435224 0.3254450019 0.3254435631 

0.7 0.3099860402 0.3099878567 0.3099860810 

0.8 0.2919711030 0.2919789654 0.2919711440 

0.9 0.2713170101 0.2713185637 0.2713170512 

1.0 0.2479277233 0.2479292837 0.2479277646 

Table 4.  The maximum absolute errors in solution of Example 4 for

= 0.25, = 0.75h h
.
 

m  
Case (i) 

0.25=h  

Case (i) 

0.75=h  

Case (ii) 

0.25=h  

Case (ii) 

0.75=h  

15 5101.39   
5101.66   

5103.67   
5103.49   

20 8102.98   
9102.06   

8102.94   
8102.97   

25 16108.88   
16106.66   

15102.22   
15101.55   

30 16108.88   
16108.88   

16106.66   
16108.88   

Table 5.  The maximum absolute errors in solution of Example 4 for 

2= 1,= hh . 

m  
Case (i) 

1=h  

Case (i) 

2=h  

Case (ii) 

1=h  

Case (ii) 

2=h  

15 5101.50   
6107.78   

5103.51   
5103.70   

20 10109.06   
10101.80   

8102.99   
8103.08   

25 15101.33   
14102.39   

15101.33   
16108.88   

30 16108.88   
14101.84   

16106.66   
16106.66   

4.4. Example 4 

Consider the following singular two point boundary value 

problem: 

 

for the following two cases: 
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with the exact solution 
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Maximum absolute errors for this problem have been 

displayed for 1<h  in Table 4 and for 1h  in Table 5, 

which show the accuracy of proposed method and these 

results in analogy to exhibited results for this example 

in[19-20] show advantage of this method. 

5. Conclusions 

This paper present a new approach, based on shifted Le-

gendre polynomials for the numerical solution of a class of 

singular boundary value problems arising in biology and 

physiology problems. By use of shifted Legendre polyno-

mials as basis and operational matrices of derivatives of 

these functions we convert such problems to an algebraic 

system. The implementation of current approach in analogy 

to existed methods is more convenient and the accuracy is 

high and we can execute this method in a computer speedy 

with minimum CPU time used. The numerical applied 

models that have been presented in the paper and the com-

pared results support our claim. 
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