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Abstract  The method of Lie group invariance is used to obtain a class of self-similar solutions for a one-dimensional, 
time-dependent problem in shock hydrodynamics, with a chemical reaction taking place behind the shock. The forms of the 
initial specific volume v0 and the reaction rate Q, for which the problem is invariant and admits self-similar solutions, are 
also found. 
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1. Introduction 
Many flow fields involving wave phenomena are gov-

erned by quasi linear hyperbolic system of partial differential 
equations (PDEs). For nonlinear systems involving discon-
tinuities such as shocks, we do not generally have the com-
plete exact solutions, and we have to rely on some ap-
proximate analytical or numerical methods which may be 
useful to provide information to understand the physics 
involved. One of the most powerful methods to obtain the 
similarity solutions to PDEs is similarity method which is 
based upon the study of their invariance with respect to one 
parameter Lie group of transformations. Indeed, with the 
help of infinitesimals and invariant surface conditions, one 
can construct similarity variables which can reduce these 
PDEs to ordinary differential equations (ODEs). 

The physical situation that motivates this study is a hy-
drodynamic medium in which a chemical reaction occurs. 
The reaction is initiated by a plane shock wave which is 
introduced into the medium at time 𝑡𝑡 =  0 by a driving 
piston. For detonation waves, it is experimentally observed 
that after a time, a steady-state condition is reached from the 
viewpoint of an observer riding on the shock. This problem 
was first st udied by Chapman[1] and Jouget[2], who as-
sumed that the chemical reaction takes place instantaneously 
in the shock front. Later, their theory was refined b y Zeldo-
vich[3], J. Von Neumann[4] and Doering[5], to include a 
zone of finite width behind the shock, where chemical reac-
tion occurs. A thorough discussion can be found in Courant 
and Friedrichs[6], and Fickett and Davis[7]. 

Self-similar solutions in non-reactive shock hydrody-
namics and gas dynamics have been studied extensively in 
planar, cylindrical and spherical geometry. We mention the 
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work of Guderley[8], Taylor[9], Sedov[10], Zeldovich and 
Raizer[11], Sharma and Radha[12], Arora and Sharma 
[13,14], Sharma and Radha[15] and L. P. Singh et al. [16]. 

In the present paper, following Bluman and Cole[17], 
Bluman and Kumei[18], and in a spirit closer to 
Logan[19,20], we obtain the self-similar solutions to a 
one-dimensional time- dependent problem in shock hydro-
dynamics with a chemical reaction taking place. Also, we 
obtain the form of the initial specific volume 𝑣𝑣0  and the 
reaction rate 𝑄𝑄, for which the problem is invariant and ad-
mits self-similar solutions. 

Our attention is directed towards the so-called initiation 
problem of describing the flow from the initial time when the 
piston impacts, so the time when a steady-state solution takes 
effect. In recent years there has been much interest in ex-
perimentally measuring the flow parameters (particle veloc-
ity, pressure, specific volume, shock velocity etc.) in this 
regime, and numerical solutions have been extensively de-
veloped. 

2. Formulation of the Model 
We will use a Lagrangian description of the flow, with  h 

denoting the Lagrangian position and 𝑡𝑡 denoting time. Our 
convention is defined by the equation 

dx = u dt + v
v0

 dh                (1) 
which relates the Eulerian position 𝑥𝑥  to the Lagrangian 
position ℎ. The quantities 𝑢𝑢 and 𝑣𝑣, both functions of 𝑡𝑡 and 
ℎ, will denote particle velocity and specific volume, respe c-
tively. 

3. Basic Equations and Shock 
Conditions 

The basic equation can be written as [19,21]: 
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∂v
∂t
− v0(h) ∂u

∂h
= 0,                 

 ∂u
∂t

+ v0(h) ∂p
∂h

= 0,                 
∂p
∂t

+ γp
v

 ∂v
∂t
− (γ−1)q

v
∂λ
∂t

= 0,                 
∂λ
∂t

= Q(u, p, v, λ),                 (2) 
where v is the specific volume,  u the particle velocity and p 
the pressure; all are functions of t and h. The dimensionless 
quantity λ, also a function of t and h, will denote the progress 
variable (mass fraction of the product) of an irreversible 
chemical reaction involving a single reactant and a single 
product. The quantity Q is the reaction rate that depends on 
the states u, p, v and λ. At present, we do not assume any 
specific form for Q. The constant quantity q is the energy 
liberated per unit mass in the chemical reaction, and γ is the 
polytropic exponent which is same for both the reactant and 
the product. 

Let the initial condition at time t = 0 be given by u = 0, v = 
v0(h) and p = p0, where the initial specific volume v0(h) is a 
function of h, and p0 > 0 is an appropriate constant. The 
Rankine-Hugoniot jump conditions for the strong shock, x = 
φ(t), give conditions just behind the shock (see[18]) as 

u1 = 2
γ+1

D, v1
v0

= γ−1
γ+1

 ,               

p1  = (γ+1)
2v0

 u1
2,                (3) 

where u1, v1 and p1 are the values of u, v and p, respectively, 
just behind the shock, and D = dφ/dt is the shock velocity. 

4. Similarity Analysis by Invariance 
Groups 

In order to obtain the similarity solutions of the system of 
equations (2) we derive its symmetry group such that the 
system (2) is invariant under this group of transformations. 
The idea of the calculation is to find a one-parameter 
infinitesimal group of transformations (see,[14,15]) 

h ∗ =  h + ε H, t ∗ =  t + ε T, u ∗ =  u + ε U,        
v ∗ =  v + ε V, p ∗ =  p + ε P, λ ∗ =  λ + ε Λ ,     (4) 

where the infinitesimals H, T, U, V, P and Λ are functions of 
t, h, u, p, v and λ. These infinitesimals are to be determined in 
such a way that the system (2), together with the jump con-
ditions (3), is invariant under the group of transformations 
(4); the entity ε is a small parameter such that its square and 
higher powers may be neglected. The existence of such a 
group reduces the number of independent variables by one, 
which allows us to replace the system (2) of partial 
differential equations by a system of ordinary differential 
equations. 

We introduce the notation x1 = h, x2 = t, u1 = u, u2 = v, u3 = 
p, u4 = λ and pj

i= ∂ui / ∂xj , where i = 1, 2, 3, 4 and j = 1, 2. 
The system (1), which can be represented as 

Gr (xj ,ui, pj
i  )= 0, r = 1,2,3,4 

is said to be constantly conformally invariant under the 
infinitesimal group of transformations (4) if there exist con-

stants αrm ( r, m =  1, 2, 3, 4) such that 
ℒ Gr =  αrm Gm , r, m =  1,2,3,4,       (5) 

where ℒ is the extended infinitesimal generator of the group 
of transformations (4), and is given by 

ℒ = ξj ∂
∂ xj

+ ηi ∂
∂ ui

+ βj
i ∂
∂ pj

i
,           (6) 

where   ξ1 = H,  ξ2 = T,  η1 = U,  η2 = V,  η3 = P,  η4 = Λ 
and 

βj
i = ∂ηi

∂ xj

+ ∂ηi

∂ uk

pj
k − ∂ξi

∂ xj

pℓi −
∂ξl

∂ un

pℓi pj
n ,   (7) 

where l = 1, 2, n = 1, 2, 3, 4, j = 1, 2, i = 1, 2, 3, 4 and k = 1, 2, 
3, 4; here repeated indices imply summation convention. 

Equation (5) implies 

ξj ∂Gr

∂ xj

+ ηi ∂Gr

∂ ui

+ βj
i ∂Gr

∂ pj
i

= αrm Gm ,      (9) 

where r, m = 1,2,3,4. Substitution of βj
i  from (7) into (8) 

yields an identity in pj
k  and pℓi pj

n ; hence we equate to zero 
the coefficients of  pj

i  and pℓi pj
n ; to obtain a system of 

first-order linear partial differential equations in the 
infinitesimals H, T, U, V, P and Λ. This system, called the 
system of determining equations of the group of transfor-
mations, is solved to find the invariance group of transfor-
mations. We apply the above procedure to each equation of 
the system (1) and R-H conditions, and obtain the system of 
determining equations in H, T, U, V, P and Λ. We solve this 
system of determining equations to obtain 

H =  bh +  d, T =  at +  c, U =  (b −  a) u, 
V =  ( a +  α11) v, P =  (2b −  3a –  α11) p, 

Λ =  2(b −  a)λ,              (9) 
where a, b, c, d and α11 are the arbitrary constants. Thus, the 
infinitesimals of the invariant group of transformations are 
completely known. 

Also, we find that the reaction rate  Q has the following 
form: 

Q = pβ/k1  F � λ
k 1

p
, u2k 1

p
, v

 k 1
k 2

p
 � ,         (10) 

where 
k1 = 2b−3a−α11

2(b−a)
,                    

k2 = α11 +a
2(b−a)

, β = 2b−3a
2(b−a)

.         (11) 

5. Self-Similar Solutions 
We use the invariant surface conditions to determine the 

similarity variable and the similarity solution. In the present 
case these conditions for u, p, v and λ, respectively, are 

𝑇𝑇 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝐻𝐻 𝜕𝜕𝜕𝜕
𝜕𝜕ℎ

= 𝑈𝑈,                   

𝑇𝑇 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝐻𝐻 𝜕𝜕𝜕𝜕
𝜕𝜕ℎ

= 𝑃𝑃,                   

𝑇𝑇 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝐻𝐻 𝜕𝜕𝜕𝜕
𝜕𝜕ℎ

= 𝑉𝑉,                   

𝑇𝑇 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝐻𝐻 𝜕𝜕𝜕𝜕
𝜕𝜕ℎ

= 𝛬𝛬.               (12) 
The characteristic equations corresponding to the equation 
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(12) is 
𝑑𝑑𝑑𝑑
𝑎𝑎𝑎𝑎+𝑐𝑐

= 𝑑𝑑ℎ
𝑏𝑏ℎ+𝑑𝑑

= 𝑑𝑑𝑑𝑑
(𝑏𝑏−𝑎𝑎)𝑢𝑢

.            (13) 
One first integral yields the similarity variable as 

𝑠𝑠 = 𝑐𝑐4ℎ+1
(𝑐𝑐3𝑡𝑡+1)𝑐𝑐2

,                (14) 
where  

𝑐𝑐2 =
𝑏𝑏
𝑎𝑎

, 𝑐𝑐3 =
𝑎𝑎
𝑐𝑐

 , 𝑐𝑐4 =
𝑏𝑏
𝑑𝑑

. 
The second first integral gives 

𝑢𝑢(𝑡𝑡, ℎ) = (𝑐𝑐3𝑡𝑡 + 1)𝑐𝑐2−1 𝑢𝑢�(𝑠𝑠).             (15) 
In the same manner, the second, third and fourth equations 

in (12) upon integration yield 
𝑝𝑝(𝑡𝑡, ℎ) = 𝑝̂𝑝(𝑠𝑠)(𝑐𝑐3𝑡𝑡 + 1)2𝑐𝑐2−𝑐𝑐5−3, 
𝑣𝑣(𝑡𝑡, ℎ) = 𝑣𝑣�(𝑠𝑠)(𝑐𝑐3𝑡𝑡 + 1)𝑐𝑐5+1 , 
𝜆𝜆(𝑡𝑡, ℎ) = 𝜆̂𝜆(𝑠𝑠)(𝑐𝑐3𝑡𝑡 + 1)2(𝑐𝑐2−1),             (16) 

where 𝑢𝑢�(𝑠𝑠), 𝑝̂𝑝(𝑠𝑠) ,  𝑣𝑣�(𝑠𝑠) and 𝜆̂𝜆(𝑠𝑠)  are the functions of the 
similarity variable s. 

By substituting the self-similar forms of the solutions u, p, 
v and 𝜆𝜆 from equation (16) into the system (2) of partial 
differential equations, we obtain the following system of 
ordinary differential equations in 𝑢𝑢� , 𝑝̂𝑝, 𝑣𝑣� and 𝜆̂𝜆: 
𝑐𝑐3(𝑐𝑐5 + 1)𝑣𝑣� − 𝑐𝑐2𝑐𝑐3𝑠𝑠

𝑑𝑑𝑣𝑣�
𝑑𝑑𝑑𝑑
− 𝑘𝑘 𝑐𝑐4 𝑑𝑑(𝑎𝑎+𝑎𝑎11 )/𝑏𝑏  𝑠𝑠(𝑐𝑐5+1)/𝑐𝑐2 𝑑𝑑𝑢𝑢�

𝑑𝑑𝑑𝑑
= 0,  

(𝑐𝑐2 − 1)𝑐𝑐3𝑢𝑢� − 𝑐𝑐2𝑐𝑐3𝑠𝑠
𝑑𝑑𝑢𝑢�
𝑑𝑑𝑑𝑑

+ 𝑘𝑘𝑑𝑑(𝑎𝑎+𝑎𝑎11 )/𝑏𝑏 𝑑𝑑𝑝̂𝑝
𝑑𝑑𝑑𝑑

= 0, 

(2𝑐𝑐2 − 𝑐𝑐5 − 3)𝑐𝑐4𝑝̂𝑝 − 𝑐𝑐2𝑐𝑐4𝑠𝑠
𝑑𝑑𝑝̂𝑝
𝑑𝑑𝑑𝑑

+ 𝛾𝛾
𝑝̂𝑝
𝑣𝑣�
�(𝑐𝑐5 + 1)𝑣𝑣� − 𝑐𝑐2𝑠𝑠

𝑑𝑑𝑣𝑣�
𝑑𝑑𝑑𝑑
�

− 𝑐𝑐4(𝛾𝛾 − 1)
𝑞𝑞
𝑣𝑣�
�2(𝑐𝑐2 − 1)𝜆̂𝜆 − 𝑐𝑐2𝑠𝑠

𝑑𝑑𝜆̂𝜆
𝑑𝑑𝑑𝑑
�

= 0, 
2(𝑐𝑐2 − 1) 𝑐𝑐3𝜆̂𝜆 − 𝑐𝑐2𝑐𝑐3𝑠𝑠

𝑑𝑑𝜆𝜆�

𝑑𝑑𝑑𝑑
= 𝑝̂𝑝𝛽𝛽/𝑘𝑘1  𝐹𝐹,        (17) 

where the similarity variable s is acting as the independent 
variable. 

The initial conditions are given at s = 1 by 
u�(1) = p�(1) = v�(1) = 1, λ�(1) = 0         (18) 

In summary, then, the mathematical problem of deter-
mining self-similar solutions has been reduced to solving the 
system (17) of ordinary differential equations subject to the 
initial conditions (18). 

Since the shock must be a similarity curve, and pass 
through t = 0, h = 0, it follows that at s = 1 shock starts, and 
hence the shock path is given by 

c4h + 1 = (c3t + 1)c2 ,                (19) 
and the shock velocity is 

D = dh
dt

= D0 (c3t + 1)c2−1,          (20) 
where 

D0 =
c2c3

c4
 

is the initial shock velocity. The invariance of the jump 
condition yields the form of the initial specific volume as 

v0(h) = k(bh + d)μ,             (21) 
where k is a constant and 

μ =
a + α11

b
. 

6. Conclusions 
We consider the hydrodynamic medium in which a 

chemical reaction occurs. The reaction is initiated by a plane 
shock wave which is introduced into the medium at time t = 0 
by a driving piston. The method of Lie group invariance is 
used to obtain a class of self-similar solutions for this prob-
lem. 

The equation (16) provides the forms of the self-similar 
solutions for u, p, v and 𝜆𝜆, respectively. By substituting these 
self-similar forms of the solutions u, p, v and 𝜆𝜆¸ into the 
system (2) of partial differential equations, we obtain the 
system (17) of ordinary differential equations in u�, p�, v� and 
λ�. This system together with the initial conditions (18) can be 
solved numerically. 

The equation (10) provides the form of the reaction rate Q, 
and the equation (21) yields the form of the initial specific 
volume v0(h) such that the problem is invariant and admits 
self-similar solutions. Consequently, it follows that the ini-
tial specific volume must satisfy the power law. 

Also, the shock path is found in the equation (19) and the 
shock velocity is obtained in the equation (20). For the case 
of uniform initial specific volume, all these results match 
well with the solutions obtained in [19]. 
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