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Abstract  Dynamic routing protocols such as BGP, OSPF, and IS-IS are foundational to modern IP networking. Yet, as 

networks expand, managing and maintaining these protocols manually becomes increasingly complex and error-prone. The 

application of automation to routing processes brings significant gains in terms of speed, reliability, and scalability. This 

paper presents a detailed exploration of routing automation, highlighting major challenges, the technical tools involved, 

security impacts, methods for scaling across environments, and use-case driven insights. The analysis is grounded in practical, 

technical detail to support both academic study and real-world network implementation.  
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1. Introduction 

Today’s networks are more dynamic, distributed, and business 

-critical than ever before. With the growing demands of 

global connectivity and cloud adoption, the traditional 

method of manually configuring routing protocols—line by 

line via the CLI—has become increasingly unsustainable. 

This manual approach not only slows down deployments but 

also opens the door to human error, which remains a leading 

cause of network outages. 

Network teams are now being asked to deliver faster 

rollouts, higher reliability, and stronger security—often with 

the same or fewer resources. To meet these expectations, 

many organizations are shifting toward automated, intent- 

driven routing solutions. The idea is simple: describe the 

desired state of the network, then use automated systems to 

implement, validate, and monitor it. 

This paper takes a practical look at how routing 

automation can be successfully deployed in real-world 

environments. We begin by breaking down the operational 

challenges that arise when scaling traditional network 

management. We then examine the core components of an 

effective automation stack, including tools like Batfish for 

simulation, OpenConfig for standardized telemetry, and 

GitOps workflows for safe, auditable deployments. Drawing 

on real examples and a case study, we illustrate how 

automation not only speeds up network changes but also 

improves consistency, reduces risk, and simplifies operations 

across multi-vendor infrastructures. 
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2. Core Challenges in Routing  
Protocol Automation 

2.1. Lack of Pre-Deployment Testing 

Manual configuration lacks safeguards, risking outages. 

Cloudflare’s 2019 BGP misconfiguration is a notable 

example. Tools like Batfish simulate configurations prior to 

deployment to ensure policy compliance. For instance, 

Batfish can detect unintended prefix leaks or reachability 

gaps through logical verification of control plane behavior. 

2.2. Policy Complexity 

BGP policies often involve route-maps and community 

filters. Misconfiguration can silently drop routes. Intent- based 

validation using assertions like "prefix A must be reachable 

from region B" ensures policy compliance. Tools like PyNMS or 

NetQ can verify these intent rules across configurations. 

2.3. Platform Divergence 

Cisco IOS, Juniper JunOS, and Arista EOS use varied 

syntax. NAPALM abstracts these differences into a unified 

Python in- terface, allowing automation tools to interact  

with diverse platforms via consistent function calls (e.g., 

get_bgp_neighbors()). 

2.4. Insufficient Telemetry 

Traditional SNMP-based telemetry lacks depth. OpenConfig 

with gNMI enables streaming telemetry such as prefix adver- 

tisement counts, session state, and BGP attribute visibility in 

near-real-time. 

2.5. Risk of Instability 

Automation must include rollbacks and validation to 
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prevent loops, blackholes, or flap storms. For example, 

GitLab CI/CD can trigger Batfish simulations and only 

proceed if simulations pass policy and reachability checks.   

If deployment introduces anomalies, automated rollback 

scripts based on anomaly thresholds (e.g., BGP session flap 

rate) are activated. 

3. Automation Toolchain and 
Architecture 

  NAPALM: A vendor-agnostic Python API that enables 

unified script control across multi-vendor devices using 

consis- tent abstractions. 

  Batfish: A network simulator that performs static and 

differential analysis to detect reachability and policy 

violations before deployment. 

  OpenConfig: A vendor-neutral data model that 

supports configuration standardization and real-time 

gNMI-based teleme- try streaming. 

  GitOps: A Git-based CI/CD approach that uses source 

control and pipelines to ensure all changes are reviewed, 

vali- dated, and traceable. 

4. Security in Routing Automation 

  Route Origin Validation (ROV): Ensures prefix legitimacy 

using RPKI. Routers discard invalid prefixes that don’t 

match ROAs. This reduces the risk of route hijacking. 

  BGP Monitoring Protocol (BMP): Tracks routing state 

changes in near-real-time. BMP collectors like Telegraf 

can detect anomalies such as route churn or unexpected 

origin AS paths. 

  Safety Nets: Threshold alarms monitor metrics like 

neighbor state changes per minute. If breached, automated 

rollback scripts reverse recent commits. Pre-deployment 

CI stages include syntax validation, simulation, and 

policy compliance tests. 

5. Scaling Automation in  
Multi-Vendor Networks 

Use of YANG models and OpenConfig facilitates  

uniform config across vendors by decoupling intent from 

implementation. Topology tools like NetBox and Nautobot 

maintain inventory and metadata needed for context-aware 

automation. Intent- driven YAML manifests are rendered   

via Jinja2 templates into platform-specific configs, then 

validated through containerized Batfish simulations that 

scale horizontally using Kubernetes clusters. 

6. Proposed Intent-Based Automation 
Framework (IBRAF) 

As modern networks scale across multi-vendor environments, 

traditional automation methods—script-based configurations, 

CLI templating, and ad hoc pipelines—struggle to ensure 

consistency, correctness, and intent fidelity. To address these 

limitations, we propose a modular framework called the 

Intent-Based Routing Automation Framework (IBRAF). This 

framework brings together intent declaration, configuration 

rendering, policy simulation, telemetry validation, and rollback 

controls into a unified automation pipeline. 

6.1. Framework Overview 

IBRAF is structured around five core components: 

Intent Encoding Layer: Network engineers define 

high-level intent using structured YAML files. For example, 

an intent might declare that all traffic from Region A must 

reach Region B via a preferred AS path, or that certain 

prefixes should never be advertised to external peers. 

Template Engine: These YAML definitions are rendered 

into platform-specific configurations (Cisco IOS-XR, JunOS, 

Arista EOS) using Jinja2 templates, enabling consistent policy 

enforcement across devices. The abstraction is modeled on 

OpenConfig/YANG schemas to support vendor-neutral 

configuration generation. 

Simulation Pipeline: Before deployment, every configuration 

is passed through Batfish, which performs logical verifi- 

cation of control plane behavior. This includes reachability 

checks, loop detection, and policy compliance validation. 

The pipeline runs within GitLab CI, ensuring every code 

commit undergoes rigorous testing before reaching production. 

Telemetry Feedback Loop: Post-deployment, the 

framework streams real-time telemetry via gNMI (gRPC 

Network Management Interface) to a monitoring system 

(e.g., Prometheus + Grafana). Metrics like BGP session 

uptime, prefix count changes, and flap rates are compared to 

pre-deployment baselines to validate runtime conformance 

with intent. 

Automated Rollback & Drift Detection: IBRAF includes 

a rollback controller triggered by telemetry anomalies. For 

example, if BGP neighbor states flap more than 3 times in 5 

minutes, the system automatically reverts to the last known 

good configuration stored in Git. Additionally, scheduled 

crawlers using NAPALM perform periodic audits of live 

configurations to detect and reconcile policy drift. 

6.2. Technical Flow 

  Commit - YAML intent pushed to Git 

  CI Pipeline - Runs syntax linting, Batfish simulation, 

policy assertions 

  Render - Jinja2 templates produce device-specific 

configs 

  Pre-Deploy Checks - Optional lab-mode test via 

containerized routers 

  Deploy - Configs pushed via Ansible/NAPALM APIs 

  Validate - Telemetry streamed to Prometheus; anomaly 

detection rules applied 

  Auto-Rollback - Triggered on telemetry-based thresholds 

  Audit - Weekly drift validation ensures config == declared 

intent 
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6.3. Key Benefits 

  Reduces human error and config inconsistencies across 

vendors. 

  Enables intent-to-implementation traceability. 

  Strengthens deployment confidence through pre-change 

simulations. 

  Provides autonomous recovery from operational drift or 

outage conditions. 

7. Case Studies: Multi-Industry 
Validation 

7.1. SaaS Provider – Global Data Center Deployment 

A global SaaS company deployed IBRAF across 60 data 

centers spanning 5 continents, primarily using Cisco NX-OS 

and Juniper vMX routers. The primary goal was to automate 

BGP policy enforcement and inter-region failovers. 

Challenge: Reduce configuration errors and improve 

rollout times during planned updates. 

Outcome: Routing policy deployment time decreased 

from 4 hours to 30 minutes. Post-deployment telemetry 

revealed a 95% reduction in BGP flaps. GitOps integration 

allowed per-branch testing and versioned rollbacks. 

7.2. Case Study 2: Telecom Provider – MPLS Backbone 

Automation 

A Tier-1 telecom operator in USA used IBRAF to 

automate MPLS L3VPN routing across more than 200 core 

routers. The environment included a mix of Juniper, Huawei, 

and Cisco equipment. 

Challenge: Enforce consistent policy across multi-vendor 

gear with disjoint CLI syntaxes. 

Outcome: IBRAF’s vendor-agnostic Jinja2 rendering based 

on OpenConfig models enabled unified policy deployment. 

Batfish simulations detected 8 critical route export issues 

during CI testing—issues that had historically caused outages. 

7.3. Case Study 3: ISP Backbone – Prefix Filtering and 

Drift Recovery 

A regional Internet Service Provider (ISP) adopted IBRAF to 

automate prefix filtering, route-leak detection, and rollback 

orchestration. The environment included Cisco IOS-XR and 

Mikrotik routers. 

Challenge: Prevent accidental advertisement of unauthorized 

prefixes to upstream peers. 

Outcome: IBRAF’s telemetry-integrated rollback was 

triggered twice during the 90-day evaluation window, reverting 

BGP config changes that introduced invalid announcements. 

The drift-detection module reconciled 22 inconsistencies 

during weekly audits. 

7.4. Case Study 4: Manufacturing Company – OT/IT 

Network Integration 

A Fortune 500 manufacturing firm deployed IBRAF to 

automate routing between its Operational Technology  

(OT) and IT networks across 25+ factories. The mixed 

environment of Cisco IOS and Siemens SCALANCE 

devices required strict segmentation to prevent route leaks 

during firmware updates and reboots. 

Challenge: Prevent route leaks between Operational 

Technology (OT) and IT networks during firmware upgrades 

and zone transitions across a multi-vendor industrial 

environment (Cisco IOS and Siemens SCALANCE). 

Outcome: IBRAF reduced config deployment time by 

60%, eliminated OT-to-IT route leaks during upgrades, and 

triggered one telemetry-based rollback. Weekly drift audits 

reinforced policy enforcement and operational consistency. 

 
Figure 1.  EVE-NG Lab Topology with Multi-Vendor Nodes and 

Automation Tool Integration 

 

Table 1.  Summary of IBRAF Automation Metrics Across Use Cases 

Metric SaaS Provider Telco MPLS ISP Backbone Manufacturing 

Routing Devices Managed 60+ 200+ 75+ 90+ 

Config Rollback Events 0 0 2 1 

Policy Violations Detected 3 8 4 2 

Deployment Time (avg) <30 mins ~1 hour ~20 mins ~40 mins 

Vendors Involved Cisco, Juniper Cisco, Juniper, Huawei Cisco, Mikrotik Cisco, Siemens SCALANCE 
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8. Code Examples for Routing Automation 

 

Code Snippet 1.  Ansible with NAPALM 

 

Code Snippet 2.  Batfish Validation 

 

Code Snippet 3.  GitOps CI/CD 

9. Recommendations 

9.1. Use Batfish for Pre-Deployment Simulation 

Integrate Batfish into the CI pipeline to simulate and 

verify network configurations against defined policies before 

rollout. This can catch potential issues like route leaks, 

unreachable prefixes, or asymmetric routing paths. 

9.2. Standardize on OpenConfig/YANG 

Adopt OpenConfig models to abstract vendor-specific 

CLI differences and facil- itate automation. Use YANG 

models with tools like pyangbind to validate schemas and 

programmatically generate device configs. 

9.3. Automate with GitOps and CI/CD 

Store all configurations in version-controlled Git repositories. 

Trigger CI jobs on every commit to validate, simulate, and 

deploy network changes using pipelines. This ensures 

traceability, approvals, and rollback in case of failure. 

9.4. Stream Telemetry for Live Validation 

Use gNMI or Telegraf to stream real-time metrics such  

as BGP session uptime, prefix count, and flap events into 

monitoring platforms like Prometheus or InfluxDB. Set 

thresholds and anomaly detection rules to trigger alerts or 

automated mitigation scripts. 

9.5. Enforce Rollback and Alerts on Anomaly Detection 

Define rollback conditions (e.g., BGP peer state transitions > 

3 within 5 minutes) and automate restoration using previous 

config snapshots stored in Git or via Ansible playbooks. 

Combine with automated incident creation in systems like 

PagerDuty or ServiceNow for faster recovery workflows. 

10. Future Directions 

IBRAF can be extended to support AI-driven routing 

recommendations, real-time anomaly resolution, and deeper 

integra- tion with SD-WAN and 5G transport layers. Future 

work includes energy-aware policy routing and predictive 

drift analysis using ML models. 

11. Conclusions 

This paper introduced IBRAF, a scalable, vendor-neutral 

routing automation framework that integrates simulation, 

validation, telemetry, and rollback controls. Through real-world 

case studies and lab-tested workflows, we demonstrated  

how IBRAF improves reliability and accelerates change 

management in complex networks. [1–7] 
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