
American Journal of Computer Architecture 2025, 12(1): 5-9

DOI: 10.5923/j.ajca.20251201.02

Advanced Automation of Routing Protocols in Modern

Networks: A Technical and Practical Framework

Chandra Sekhar Varma Sagiraju

Technical Account Manager III, BlueMantis Inc, Portsmouth, USA

Abstract Dynamic routing protocols such as BGP, OSPF, and IS-IS are foundational to modern IP networking. Yet, as

networks expand, managing and maintaining these protocols manually becomes increasingly complex and error-prone. The

application of automation to routing processes brings significant gains in terms of speed, reliability, and scalability. This

paper presents a detailed exploration of routing automation, highlighting major challenges, the technical tools involved,

security impacts, methods for scaling across environments, and use-case driven insights. The analysis is grounded in practical,

technical detail to support both academic study and real-world network implementation.

Keywords Routing Automation, BGP, Network Configuration, GitOps, Batfish, OpenConfig, Network Security, Multi

1. Introduction

Today’s networks are more dynamic, distributed, and business

-critical than ever before. With the growing demands of

global connectivity and cloud adoption, the traditional

method of manually configuring routing protocols—line by

line via the CLI—has become increasingly unsustainable.

This manual approach not only slows down deployments but

also opens the door to human error, which remains a leading

cause of network outages.

Network teams are now being asked to deliver faster

rollouts, higher reliability, and stronger security—often with

the same or fewer resources. To meet these expectations,

many organizations are shifting toward automated, intent-

driven routing solutions. The idea is simple: describe the

desired state of the network, then use automated systems to

implement, validate, and monitor it.

This paper takes a practical look at how routing

automation can be successfully deployed in real-world

environments. We begin by breaking down the operational

challenges that arise when scaling traditional network

management. We then examine the core components of an

effective automation stack, including tools like Batfish for

simulation, OpenConfig for standardized telemetry, and

GitOps workflows for safe, auditable deployments. Drawing

on real examples and a case study, we illustrate how

automation not only speeds up network changes but also

improves consistency, reduces risk, and simplifies operations

across multi-vendor infrastructures.

* Corresponding author:

chandra.sagiraju@bluemantis.com (Chandra Sekhar Varma Sagiraju)

Received: May 27, 2025; Accepted: Jun. 16, 2025; Published: Jul. 3, 2025

Published online at http://journal.sapub.org/ajca

2. Core Challenges in Routing
Protocol Automation

2.1. Lack of Pre-Deployment Testing

Manual configuration lacks safeguards, risking outages.

Cloudflare’s 2019 BGP misconfiguration is a notable

example. Tools like Batfish simulate configurations prior to

deployment to ensure policy compliance. For instance,

Batfish can detect unintended prefix leaks or reachability

gaps through logical verification of control plane behavior.

2.2. Policy Complexity

BGP policies often involve route-maps and community

filters. Misconfiguration can silently drop routes. Intent- based

validation using assertions like "prefix A must be reachable

from region B" ensures policy compliance. Tools like PyNMS or

NetQ can verify these intent rules across configurations.

2.3. Platform Divergence

Cisco IOS, Juniper JunOS, and Arista EOS use varied

syntax. NAPALM abstracts these differences into a unified

Python in- terface, allowing automation tools to interact

with diverse platforms via consistent function calls (e.g.,

get_bgp_neighbors()).

2.4. Insufficient Telemetry

Traditional SNMP-based telemetry lacks depth. OpenConfig

with gNMI enables streaming telemetry such as prefix adver-

tisement counts, session state, and BGP attribute visibility in

near-real-time.

2.5. Risk of Instability

Automation must include rollbacks and validation to

6 Chandra Sekhar Varma Sagiraju: Advanced Automation of Routing

Protocols in Modern Networks: A Technical and Practical Framework

prevent loops, blackholes, or flap storms. For example,

GitLab CI/CD can trigger Batfish simulations and only

proceed if simulations pass policy and reachability checks.

If deployment introduces anomalies, automated rollback

scripts based on anomaly thresholds (e.g., BGP session flap

rate) are activated.

3. Automation Toolchain and
Architecture

 NAPALM: A vendor-agnostic Python API that enables

unified script control across multi-vendor devices using

consis- tent abstractions.

 Batfish: A network simulator that performs static and

differential analysis to detect reachability and policy

violations before deployment.

 OpenConfig: A vendor-neutral data model that

supports configuration standardization and real-time

gNMI-based teleme- try streaming.

 GitOps: A Git-based CI/CD approach that uses source

control and pipelines to ensure all changes are reviewed,

vali- dated, and traceable.

4. Security in Routing Automation

 Route Origin Validation (ROV): Ensures prefix legitimacy

using RPKI. Routers discard invalid prefixes that don’t

match ROAs. This reduces the risk of route hijacking.

 BGP Monitoring Protocol (BMP): Tracks routing state

changes in near-real-time. BMP collectors like Telegraf

can detect anomalies such as route churn or unexpected

origin AS paths.

 Safety Nets: Threshold alarms monitor metrics like

neighbor state changes per minute. If breached, automated

rollback scripts reverse recent commits. Pre-deployment

CI stages include syntax validation, simulation, and

policy compliance tests.

5. Scaling Automation in
Multi-Vendor Networks

Use of YANG models and OpenConfig facilitates

uniform config across vendors by decoupling intent from

implementation. Topology tools like NetBox and Nautobot

maintain inventory and metadata needed for context-aware

automation. Intent- driven YAML manifests are rendered

via Jinja2 templates into platform-specific configs, then

validated through containerized Batfish simulations that

scale horizontally using Kubernetes clusters.

6. Proposed Intent-Based Automation
Framework (IBRAF)

As modern networks scale across multi-vendor environments,

traditional automation methods—script-based configurations,

CLI templating, and ad hoc pipelines—struggle to ensure

consistency, correctness, and intent fidelity. To address these

limitations, we propose a modular framework called the

Intent-Based Routing Automation Framework (IBRAF). This

framework brings together intent declaration, configuration

rendering, policy simulation, telemetry validation, and rollback

controls into a unified automation pipeline.

6.1. Framework Overview

IBRAF is structured around five core components:

Intent Encoding Layer: Network engineers define

high-level intent using structured YAML files. For example,

an intent might declare that all traffic from Region A must

reach Region B via a preferred AS path, or that certain

prefixes should never be advertised to external peers.

Template Engine: These YAML definitions are rendered

into platform-specific configurations (Cisco IOS-XR, JunOS,

Arista EOS) using Jinja2 templates, enabling consistent policy

enforcement across devices. The abstraction is modeled on

OpenConfig/YANG schemas to support vendor-neutral

configuration generation.

Simulation Pipeline: Before deployment, every configuration

is passed through Batfish, which performs logical verifi-

cation of control plane behavior. This includes reachability

checks, loop detection, and policy compliance validation.

The pipeline runs within GitLab CI, ensuring every code

commit undergoes rigorous testing before reaching production.

Telemetry Feedback Loop: Post-deployment, the

framework streams real-time telemetry via gNMI (gRPC

Network Management Interface) to a monitoring system

(e.g., Prometheus + Grafana). Metrics like BGP session

uptime, prefix count changes, and flap rates are compared to

pre-deployment baselines to validate runtime conformance

with intent.

Automated Rollback & Drift Detection: IBRAF includes

a rollback controller triggered by telemetry anomalies. For

example, if BGP neighbor states flap more than 3 times in 5

minutes, the system automatically reverts to the last known

good configuration stored in Git. Additionally, scheduled

crawlers using NAPALM perform periodic audits of live

configurations to detect and reconcile policy drift.

6.2. Technical Flow

 Commit - YAML intent pushed to Git

 CI Pipeline - Runs syntax linting, Batfish simulation,

policy assertions

 Render - Jinja2 templates produce device-specific

configs

 Pre-Deploy Checks - Optional lab-mode test via

containerized routers

 Deploy - Configs pushed via Ansible/NAPALM APIs

 Validate - Telemetry streamed to Prometheus; anomaly

detection rules applied

 Auto-Rollback - Triggered on telemetry-based thresholds

 Audit - Weekly drift validation ensures config == declared

intent

 American Journal of Computer Architecture 2025, 12(1): 5-9 7

6.3. Key Benefits

 Reduces human error and config inconsistencies across

vendors.

 Enables intent-to-implementation traceability.

 Strengthens deployment confidence through pre-change

simulations.

 Provides autonomous recovery from operational drift or

outage conditions.

7. Case Studies: Multi-Industry
Validation

7.1. SaaS Provider – Global Data Center Deployment

A global SaaS company deployed IBRAF across 60 data

centers spanning 5 continents, primarily using Cisco NX-OS

and Juniper vMX routers. The primary goal was to automate

BGP policy enforcement and inter-region failovers.

Challenge: Reduce configuration errors and improve

rollout times during planned updates.

Outcome: Routing policy deployment time decreased

from 4 hours to 30 minutes. Post-deployment telemetry

revealed a 95% reduction in BGP flaps. GitOps integration

allowed per-branch testing and versioned rollbacks.

7.2. Case Study 2: Telecom Provider – MPLS Backbone

Automation

A Tier-1 telecom operator in USA used IBRAF to

automate MPLS L3VPN routing across more than 200 core

routers. The environment included a mix of Juniper, Huawei,

and Cisco equipment.

Challenge: Enforce consistent policy across multi-vendor

gear with disjoint CLI syntaxes.

Outcome: IBRAF’s vendor-agnostic Jinja2 rendering based

on OpenConfig models enabled unified policy deployment.

Batfish simulations detected 8 critical route export issues

during CI testing—issues that had historically caused outages.

7.3. Case Study 3: ISP Backbone – Prefix Filtering and

Drift Recovery

A regional Internet Service Provider (ISP) adopted IBRAF to

automate prefix filtering, route-leak detection, and rollback

orchestration. The environment included Cisco IOS-XR and

Mikrotik routers.

Challenge: Prevent accidental advertisement of unauthorized

prefixes to upstream peers.

Outcome: IBRAF’s telemetry-integrated rollback was

triggered twice during the 90-day evaluation window, reverting

BGP config changes that introduced invalid announcements.

The drift-detection module reconciled 22 inconsistencies

during weekly audits.

7.4. Case Study 4: Manufacturing Company – OT/IT

Network Integration

A Fortune 500 manufacturing firm deployed IBRAF to

automate routing between its Operational Technology

(OT) and IT networks across 25+ factories. The mixed

environment of Cisco IOS and Siemens SCALANCE

devices required strict segmentation to prevent route leaks

during firmware updates and reboots.

Challenge: Prevent route leaks between Operational

Technology (OT) and IT networks during firmware upgrades

and zone transitions across a multi-vendor industrial

environment (Cisco IOS and Siemens SCALANCE).

Outcome: IBRAF reduced config deployment time by

60%, eliminated OT-to-IT route leaks during upgrades, and

triggered one telemetry-based rollback. Weekly drift audits

reinforced policy enforcement and operational consistency.

Figure 1. EVE-NG Lab Topology with Multi-Vendor Nodes and

Automation Tool Integration

Table 1. Summary of IBRAF Automation Metrics Across Use Cases

Metric SaaS Provider Telco MPLS ISP Backbone Manufacturing

Routing Devices Managed 60+ 200+ 75+ 90+

Config Rollback Events 0 0 2 1

Policy Violations Detected 3 8 4 2

Deployment Time (avg) <30 mins ~1 hour ~20 mins ~40 mins

Vendors Involved Cisco, Juniper Cisco, Juniper, Huawei Cisco, Mikrotik Cisco, Siemens SCALANCE

8 Chandra Sekhar Varma Sagiraju: Advanced Automation of Routing

Protocols in Modern Networks: A Technical and Practical Framework

8. Code Examples for Routing Automation

Code Snippet 1. Ansible with NAPALM

Code Snippet 2. Batfish Validation

Code Snippet 3. GitOps CI/CD

9. Recommendations

9.1. Use Batfish for Pre-Deployment Simulation

Integrate Batfish into the CI pipeline to simulate and

verify network configurations against defined policies before

rollout. This can catch potential issues like route leaks,

unreachable prefixes, or asymmetric routing paths.

9.2. Standardize on OpenConfig/YANG

Adopt OpenConfig models to abstract vendor-specific

CLI differences and facil- itate automation. Use YANG

models with tools like pyangbind to validate schemas and

programmatically generate device configs.

9.3. Automate with GitOps and CI/CD

Store all configurations in version-controlled Git repositories.

Trigger CI jobs on every commit to validate, simulate, and

deploy network changes using pipelines. This ensures

traceability, approvals, and rollback in case of failure.

9.4. Stream Telemetry for Live Validation

Use gNMI or Telegraf to stream real-time metrics such

as BGP session uptime, prefix count, and flap events into

monitoring platforms like Prometheus or InfluxDB. Set

thresholds and anomaly detection rules to trigger alerts or

automated mitigation scripts.

9.5. Enforce Rollback and Alerts on Anomaly Detection

Define rollback conditions (e.g., BGP peer state transitions >

3 within 5 minutes) and automate restoration using previous

config snapshots stored in Git or via Ansible playbooks.

Combine with automated incident creation in systems like

PagerDuty or ServiceNow for faster recovery workflows.

10. Future Directions

IBRAF can be extended to support AI-driven routing

recommendations, real-time anomaly resolution, and deeper

integra- tion with SD-WAN and 5G transport layers. Future

work includes energy-aware policy routing and predictive

drift analysis using ML models.

11. Conclusions

This paper introduced IBRAF, a scalable, vendor-neutral

routing automation framework that integrates simulation,

validation, telemetry, and rollback controls. Through real-world

case studies and lab-tested workflows, we demonstrated

how IBRAF improves reliability and accelerates change

management in complex networks. [1–7]

REFERENCES

[1] S. Jain, A. Kumar, et al., “B4: Experience with a globally-
deployed software defined WAN,” SIGCOMM, vol. 4, pp.
3–14, 2013.

[2] A. Karneliuk, “Network Analysis 2: Analysing Network
Configuration Consistency (Sanity check, BGP, Routes) with
Batfish for Cisco, Arista, and Cumulus,” 2024.

[3] M. Stampa, J. Arias, D. Sanchez-Charles, V. Muntés-Mulero,
and A. Cabellos-Aparicio, “A Deep Reinforcement Learning
Approach for Software-Defined Networking Routing
Optimization,” arXiv preprint arXiv:1709.07080, 2017.

[4] A. Azzouni, G. Pujolle, and Y. Ghamri-Doudane, “NeuRoute:
Predictive Dynamic Routing for Software-Defined Networks,”
arXiv preprint arXiv:1709.06002, 2017.

[5] R. Jhaveri, R. Patel, and N. Kapadia, “QoS-Aware Real-Time
Routing for Software-Defined Robotic Cyber-Physical
Systems,” arXiv preprint arXiv:2004.04466, 2020.

[6] Y. Huang, X. Song, and C. Jiang, “A Period-Aware Routing
Method for IEEE 802.1Qbv TSN Networks,” Electronics, vol.
10, no. 1, p. 58, 2021. DOI: https://doi.org/10.3390/electronics
10010058.

 American Journal of Computer Architecture 2025, 12(1): 5-9 9

[7] J. R. C. Nurse, S. Creese, and M. Goldsmith, “Security Risk
Assessment in Internet of Things Systems,” arXiv preprint
arXiv:1811.03290, 2018.

[8] A. Leivadeas and M. Falkner, “A Survey on Intent-Based
Networking,” IEEE Communications Surveys & Tutorials, pp.
1–34, 2022. DOI:10.1109/COMST.2022.3215919.

[9] Y. Song, C. Yang, J. Zhang, X. Mi, and D. Niyato, “Full-Life
Cycle Intent-Driven Network Verification: Challenges and
Approaches,” arXiv preprint arXiv:2212.09944, Dec. 2022.

[10] S. Prabhu, K.-Y. Chou, A. Kheradmand, P. B. Godfrey,
and M. Caesar, “Plankton: Scalable Network Configuration
Verification Through Model Checking,” arXiv preprint arXiv:
1911.02128, Nov. 2019.

[11] Y. Wei et al., “Leveraging LLM Agents for Translating Network

Configurations,” arXiv preprint arXiv:2501.08760, Jan. 2025.

[12] J. Ujcich, A. Bates, and W. H. Sanders, “Intent-Based Network,”
in 6th IEEE Conference on Network Softwarization (NetSoft),
June 2020.

[13] J.-P. Fonseca, G. Adhane, and C. Verikoukis, “Realizing
Intent-Driven Network Management with TM Forum Standards,”
IEEE NetSoft Workshops, Oct. 2024.

[14] K. Antonakoglou, I. Mavromatis, S. Ghosh, et al., “CAMINO:
Cloud-native Autonomous Management and Intent-based
Orchestrator,” arXiv preprint arXiv:2504.03586, Apr. 2025.

[15] Md. A. Habib, P. E. Iturria Rivera, Y. Ozcan, et al.,
“LLM-Based Intent Processing and Network Optimization
Using Attention-Based Hierarchical Reinforcement Learning,”
arXiv preprint arXiv:2406.06059, 2024.

Copyright © 2025 The Author(s). Published by Scientific & Academic Publishing

This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/

