
American Journal of Computer Architecture 2012, 1(1): 1-5
DOI: 10.5923/j.ajca.20120101.01

Effective Cache Configuration for High Performance
Embedded Systems

Srilatha C1,*, Guru Rao C V2, Prabhu G Benakop3

1Department of ECE, ASTRA, Hyderabad, 500008, India
2Department of CSE, SR Engineering College, Warangal, 506015, India

3Department of ECE & Principal, ATRI, Hyderabad, 500039, India

Abstract Any embedded system contains both on-chip and off-chip memory modules with different access times. Dur-
ing system integration, the decision to map critical data on to faster memories is crucial. In order to obtain good perform-
ance targeting less amounts of memory, the data buffers of the application need to be placed carefully in different types of
memory. There have been huge research efforts intending to improve the performance of the memory hierarchy. Recent
advancements in semiconductor technology have made power consumption also a limiting factor for embedded system
design. SRAM being faster than the DRAM, cache memory comprising of SRAM is configured between the CPU and the
main memory. The CPU can access the main memory (DRAM) only via the cache memory. Cache memories are employed
in all the computing applications along with the processors. The size of cache allowed for inclusion on a chip is limited by
the large physical size and large power consumption of the SRAM cells used in cache memory. Hence, its effective con-
figuration for small size and low power consumption is very crucial in embedded system design. We present an optimal
cache configuration technique for the effective reduction of size and high performance. The proposed methodology was
tested in real time hardware using FPGA. Matrix multiplication algorithm with various sizes of workloads is hence vali-
dated. For the validation of the proposed approach we have used Xilinx ISE 9.2i for simulation and synthesis purposes. The
prescribed design was implemented in VHDL.

Keywords Cache, Access Time, Miss Rate, Performance

1. Introduction
In today's embedded systems, memory represents a major

bottleneck in terms of cost, performance, and power. To
overcome this, effective customization of memory is man-
datory. Memory estimation and optimization are crucial in
identifying the effect of optimization methodology on the
performance and energy requirements of the system, in turn
obtaining a cost effective embedded system[1]. Figure 1
shows the basic processor architecture. It consists of a main
memory module (DRAM), whose performance is far behind
that of the connected processor.

Figure 1. Basic processor architecture

One of the solutions to reduce this bottleneck is to employ

* Corresponding author:
deepuaurora@yahoo.com (Srilatha C)
Published online at http://journal.sapub.org/ajca
Copyright © 2012 Scientific & Academic Publishing. All Rights Reserved

a cache memory (SRAM) in between the main memory and
the processor as shown in figure 2, as SRAM cells have
faster access time than DRAM. Also, it helps in improving
the overall system performance.

Figure 2. Basic processor architecture with SRAM

The SRAM cache memory allows faster memory access
time compared to DRAM memory access time, but comes at
the expense of larger energy consumption per access. The
CPU can access the main memory (DRAM) only via the
cache memory (SRAM). The cache memory is transparent to
the application being executed in the CPU. Cache memories
are used in almost every processor which exists today. Cache
memory is included in a system with the purpose of ex-
ploiting spatial and temporal locality exhibited by the ap-
plication’s memory access behavior. The size of cache al-
lowed for inclusion on a chip is limited by the large physical
size and large power consumption of the SRAM cells used in
cache memory. Figure 2 shows architecture with one level of

2 Srilatha C et al.: Effective Cache Configuration for High Performance Embedded Systems

cache memory. To facilitate the design space exploration
steps, a crude performance and energy model for the system
was created. The model of the embedded system architecture
consisted of a processor with an instruction cache, a data
cache, and embedded DRAM as main memory. The data
cache uses a write-through strategy. The system architecture
is illustrated in Figure 3. As the instruction cache is accessed
on every clock cycle, it consumes more energy than the data
cache.

Figure 3. System architecture

Thus the addition of high speed SRAM modules as cache
memory improves the processor performance. But this also
causes the system’s nature to become unpredictable as it
cannot be guaranteed whether a memory request will result
in a cache hit or a miss. Also, several studies have shown that
cache memories account for about 50% of the total energy
consumed in embedded systems[2]. Hence, customization of
cache memory is very important in meeting tough design
metrics like cost, performance and energy consumption.
Basically the performance strategy of any program on to-
day’s processors mainly rely on the caches. Hardware im-
provements especially the cache associativity is the main
source of greater efficiency. Program performance is
strongly dependent on instruction cache behavior[3], sug-
gesting an opportunity for general improvement. Thus the
memory performance can be only measured in terms of time
to service the request generated by the processor.

2. Previous Work
Various methodologies have been evolved for the cache

analysis for reducing energy by modifying the lookup pro-
cedure. Way predictive set-associative caches[4,5] access
one tag and one data array initially and only access the other
arrays if that initial array does not result in a match, again
resulting in less energy at the expense of longer average
access time. Existing methodologies for cache miss rate
estimation use heuristics to search through the cache pa-
rameter design space[6-8]. Speculative way selection can be
done either using locality information[9,10] or partial tag
comparison[11]. But when the way prediction is wrong, it
can result in performance penalty. But our proposed meth-
odology employs the utilization of the XOR functionality

implementation for prediction.

3. Cache Organization
The contents of a cache memory is stored as set of cache

lines. In other words, cache line size can be defined as the
cache location having fixed data width. The cache line size
specifies the minimum number of bits that is to be written
into the cache for each write request. These cache lines
store data of the lower memory level. An instruction cache
having a line size (l) of four, stores instructions in each of
this line. This four lines constitute a program line when they
are in main memory as they form a part and portion of some
other large program. In case of a direct mapping, each of
the program line is mapped into cache line. The following
figure 4 shows the direct mapped cache:

Figure 4. Direct Mapped Cache

Assuming L to be the number of lines in the cache and A
to be the starting address of the program line, the cache line
size l is given by:

l=A mod L
In the above direct mapping cache, cache line size can be

calculated as 13 mod 8 which equals to five.
In case of a fully associative cache, the program line can

be mapped to any of the cache line as shown in figure 5.

Figure 5. Fully associative cache

Mapping the program line into set of n different cache
lines is known as set-associative mapping. The following

 American Journal of Computer Architecture 2012, 1(1): 1-5 3

figure 6 shows the mapping technique. Assume S to be the
number of cache sets. Let a program line is placed be placed
at s set being determined as:

s = A Mod S
From fig. 3, s value can be calculated as s = 13 mod 4 = 1,

in other words it is cache line 2 or 3.

Figure 6. Set-associative mapping

With n way set associative cache memory, the cache re-
placement policy determines which cache location is to be
replaced each time a new data is to be written into the cache
memory. Typical cache replacement algorithms are round-
robin and Least Recently Used algorithms.

4. Performance Analysis
High performance being the key focus entity in designing

the memory hierarchy, vast study and research work is car-
ried out to explore the memory subsystem configuration. As
a part of this, we have performed cache studies targeting low
access time and high performance. The cache access time
can be mathematically depicted as:

Taccess = [Thit]+ [Tpenalty * M]
Where, Taccess = cache access time
Thit = cache hit time
Tpenalty = miss penalty
M = miss rate
Access Time
The access tome in a cache memory can be lowered by

employing a smaller, lower associative cache structure. But
they have comparatively higher miss rate. In contrast, set
associative caches have less conflict misses, as the cache line
can reside in multiple ways within a set.

Miss-Rate
Minimizing the cache miss rate also reduces the average

memory access time. The miss rate of the cache depends on
the following cache parameters:

1. Cache size
2. Set associativity
3. Cache line size
4. Cache replacement policy

Increasing the cache size reduces the capacity misses in
turn reducing the miss rate. Increasing the cache associativ-
ity also reduces the miss rate, as increasing it reduces the
conflict misses. However, in general, increasing the cache
size and associativity also increases the cache access time,
thus involve tradeoff with the cache access time.

Miss-Penalty
Minimizing the cache miss penalty is another key com-

ponent for reducing the memory access time. Hence with the
multiple cache level configuration access time is reduced.
The first level cache will match the clock speed, while the
other levels will exist so that the miss penalty is reduced.

5. Proposed Approach
Effective cache configuration is of key importance for

embedded systems. High speed SRAM can be configured as
either cache or scratchpad depending on the application
requirement. Generally in a cache based system, simulta-
neous access is required for both data and tags. For such a
system set associative caches are to be employed because of
their parallel nature of operation. The respective hit/miss is
to be immediately determined and the request has to be is-
sued. Many authors and researchers have proposed multiple
techniques[12,13] to improve the cache performance. They
mainly concentrated to control the hit latency caused by the
sequential access. Here, cache matching was predicted where
a hit was served with a single access. We have done the
cache studies keeping in view the miss penalty. Our pro-
posed cache prediction methodology considers look up ta-
bles for all the cache sets. This benefits in reducing the cache
occupancy as most of the time it results in one correct match
and also aids in power saving.

The following figure 7 shows the cache structures with
two possible mappings. It clearly shows the tag significance.

Figure 7. Cache mapping techniques

4 Srilatha C et al.: Effective Cache Configuration for High Performance Embedded Systems

In sequential access, a 4-way-associative cache accesses
one tag way after the other until someone hits or even the
fourth one misses. On the other hand, phased caches wait
until the tag array determines the matching way, and then
accesses only the matching way of the data array, dissipating
about 75% less energy than a parallel access cache. Sequen-
tial access, however, serializes the tag and data arrays, add-
ing as much as 60% to the cache access time . If a tag
memory block takes 1 cycle to be accessed, an eight way
associative cache will take 8 cycles to detect a miss. Here
arises the dilemma to decide between performance and
memory block utilization.

Existing methodologies employ the cache prediction by
analyzing the likely hits. But our proposed methodology
employ the utilization of the functions derived from the tag
addresses for prediction. These functions are derived by the
XOR operation of the address bytes (three MSBs). The fol-
lowing figure 8 shows the block diagram of the proposed
methodology.

Figure 8. Block diagram of the proposed methodology: XOR functional-
ity

The XOR function is implemented exclusively on the
three MSBs of the address field because the respective
functions can be stored in a SRAM module instead of
searching all tags in parallel or employing prediction tables.
The function here is assumed to be s simple checksum
function. The comparison of this function with the actual
address gives an indication for a specific way that is very
much possible to generate a hit. The checksum function is
selected in order to ensure that no false occurs while com-
parisons. This methodology is mainly developed to minimize
the L2 cache access time which increases because of the
sequential tag access. It employs the parallel access mecha-
nism with L1 cache in such a way that no other extra cycle is
consumed in L2 for the effective prediction. For its func-
tional implementation, four unique memory modules are
required one for each L2 cache way. Each entry consists of 1
byte, which is the size of each function. Each of the eight bit
function is obtained from the XOR function of the three most
significant bytes of the processor address. In order to predict
the possible hit L2 ways, the three most significant bytes of

the processor address are bitwise XORed and compared with
the four functions, of the index relevant to the processor
address. In case of a L2 miss the way prediction table has to
be updated with the new function something that is respon-
sible for the L2 cache controller.

6. Implementation
An FPGA prototype is implemented. For the validation of

the proposed approach we have used Xilinx ISE 9.2i for
simulation and synthesis purposes. Simulation results are
shown in appendix. The following table 1 shows the memory
module specifications:

Table 1. Memory module specifications

S.No Module Clock frequency Mapping Size
1 L1 Cache 50 MHz Direct 4 KB
2 L2 Cache 50 MHz 4 way Set

associative 64 KB
3 Main memory 100 MHz - 256 MB

Resource utilization derived from the synthesis report is
summarized as follows:

Table 2. Memory module Resource utilization

S.No Module No. of LUTs No. of FF
1 L1 cache 519 120
2 L2 cache 1296 391
3 Main memory 405 0
4 Prediction 58 33

Total 2278 544

A large part of the verification procedure was carried out
in the implementation phase of the system. Each of the
modules was intensively simulated to check as many cases as
possible. Also, functional blocks of the system level archi-
tecture were integrated and simulated to check their func-
tionality. The system level functionality was stretched out to
cover all the various cases that it is supposed to support.
Apart from conventional simulation test benches, the pro-
posed methodology was tested in real time hardware using
FPGA. Matrix multiplication algorithm with various sizes of
workloads is validated.

7. Results
The following is the results analysis with the proposed

XOR functionality:
Task considered: Matrix multiplication
Miss rate = 43.8%
Hit rate = 56.2%
No. of accesses = 1039717

Table 3. XOR functionality results

S.No Function size 4 bits 8 bits
1 Miss prediction 39.31% 43.7%
2 One hot mask 56.12% 56.12%
3 Two hot mask 1.32% 0.08%
4 Three hot mask 2% 0.07%
5 Four hot mask 0.82% 0.03%

Function employed: XOR

 American Journal of Computer Architecture 2012, 1(1): 1-5 5

Table 4. Checksum functionality results

S.No Function size 4 bits 8 bits
1 Miss prediction 0% 39.53%
2 One hot mask 28.68% 42.2%
3 Two hot mask 45.34% 17.2%
4 Three hot mask 0% 1%
5 Four hot mask 25.86% 0.32%

Function employed: Checksum

8. Conclusions
During the implementation a noteworthy issue is the de-

cision of the function that will predict the possible hit L2
ways. XOR based way prediction generation mask algo-
rithms compared with simple algorithms without functions
on the address bits. Different sizes of checksum functions
were compared each other to study their accuracy. The al-
gorithm is false negative free. Miss prediction means when
the prediction mask is all zeros, a miss is detected without tag
matching. One hot mask means that the possible way the data
located is only one. Two ones mask is with two possible hit
ways and so on for the other two cases. It can be clearly
observed that the 8 bits function is more accurate than the 4
bit function. It is noteworthy to observe the accuracy of the
miss prediction. In matrix multiplication the miss rate is 43.8%
of 1 million accesses and the predicted are 43.7% with XOR
function and 39.53% without function. It is also remarkable
to see that the accuracy of the 4bit XOR function is more
efficient than the 8bits simple checksum function. Another
observation concerns the hits. The 8bits XOR function pre-
dicts the only correct way (one hot mask) with great possi-
bility, converting the 4-way associative cache to direct map
in terms of power consumption without converting the cache
to phased even it is behaved so. All these reasons lead us to
choose the 8bit XOR-based function generation for the im-
plementation.

REFERENCES
[1] Srilatha C and Dr. Guru Rao CV, “A Novel Approach for

Estimation and Optimization of Memory In Low Power
Embedded Systems” International journal of computer theory
and engineering, Vol. 1, No.5, December 2009, pages 578 –
585

[2] CHUANJUN ZHANG and FRANK VAHID and WALID
NAJJAR, “A Highly Configurable Cache for Low Energy

Embedded Systems” , ACM Transactions on Embedded
Computing Systems, Vol. 4, No. 2, May 2005, Pages 363–387

[3] D. Gu, C. Verbrugge, and E. Gagnon. Relative factors in
performance analysis of Java virtual machines. In VEE ’06,
pages 111–121, New York, NY, USA, June 2006. ACM Press

[4] K. Inoue, T. Ishihara, and K. Murakami, “Way-predicting set
associative cache for high performance and low energy con-
sumption,” Int’l Symposium on Low Power Electronic De-
sign, 1999

[5] M.D. Powell, A. Agarwal, T.N. Vijaykumar, B. Falsafi, and K.
Roy, “Reducing set-associative cache energy via way- pre-
diction and selective direct-mapping,” 34th International
Symposium on Micro architecture, 2001

[6] S. Ghosh, M. Martonosi, and S. Malik, “Cache Miss Equa-
tions: A Compiler Framework for Analyzing and Tuning
Memory Behavior,” ACM Transactions on Programming
Languages and Systems (TOPLAS), vol. 21, no. 4, pp. 703 -
746, July 1999

[7] W. Fornaciari et al., “A Design Framework to Efficiently
Explore Energy-Delay Tradeoffs,” Proceedings of the ninth
international symposium on Hardware/software codesign, pp.
260 - 265, Copenhagen, Denmark, 2001

[8] J. J. Pieper et al., “High Level Cache Simulation for Hetero-
geneous Multiprocessors,” Proceedings of the 41st annual
conference on Design automation, pp. 287 - 292, San Diego,
CA, USA, June 2004

[9] J. H. CHANG, H. CHAO, AND K. SO. Cache design of a
sub-micron cmos system/ 370. In ISCA ’87: Proceedings of
the 14th annual international symposium on Computer ar-
chitecture, pages 208–213. ACM Press, 1987

[10] R.E. KESSLER, R. JOOSS, A. LEBECK, AND M.D. HILL.
Inexpensive implementations of set-associativity. In Proc.
16th Int. Symp. on Computer Architecture (ISCA ’89), pages
131–139. ACM Press, May/June 1989

[11] LISHING LIU. Cache designs with partial address matching.
In MICRO 27: Proceedings of the 27th annual international
symposium on Microarchitecture, pages 128–136. ACM
Press, 1994

[12] A. Milidonis, N. Alachiotis, V. Porpodas, H. Michail, A. P.
Kakarountas, and C. E. Goutis. Interactive presentation: A
decoupled architecture of processors with scratch-pad mem-
ory hierarchy. In DATE '07: Proceedings of the conference on
Design, automation and test in Europe, pages 612{617, San
Jose, CA, USA, 2007. EDA Consortium

[13] P. R. Panda, N. D. Dutt, and A. Nicolau. On-chip vs. off-chip
memory: the data partitioning problem in embedded proces-
sor-based systems. ACM Trans. Des. Autom. Electron. Syst.,
5(3):682{704, 2000

	1. Introduction
	2. Previous Work
	3. Cache Organization
	4. Performance Analysis
	5. Proposed Approach
	6. Implementation
	7. Results
	8. Conclusions

