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Abstract  Any embedded system contains both on-chip and off-chip memory modules with different access times. Dur-
ing system integration, the decision to map critical data on to faster memories is crucial. In order to obtain good perform-
ance targeting less amounts of memory, the data buffers of the application need to be placed carefully in different types of 
memory. There have been huge research efforts intending to improve the performance of the memory hierarchy. Recent 
advancements in semiconductor technology have made power consumption also a limiting factor for embedded system 
design. SRAM being faster than the DRAM, cache memory comprising of SRAM is configured between the CPU and the 
main memory. The CPU can access the main memory (DRAM) only via the cache memory. Cache memories are employed 
in all the computing applications along with the processors. The size of cache allowed for inclusion on a chip is limited by 
the large physical size and large power consumption of the SRAM cells used in cache memory. Hence, its effective con-
figuration for small size and low power consumption is very crucial in embedded system design. We present an optimal 
cache configuration technique for the effective reduction of size and high performance. The proposed methodology was 
tested in real time hardware using FPGA. Matrix multiplication algorithm with various sizes of workloads is hence vali-
dated. For the validation of the proposed approach we have used Xilinx ISE 9.2i for simulation and synthesis purposes. The 
prescribed design was implemented in VHDL. 
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1. Introduction 
In today's embedded systems, memory represents a major 

bottleneck in terms of cost, performance, and power. To 
overcome this, effective customization of memory is man-
datory. Memory estimation and optimization are crucial in 
identifying the effect of optimization methodology on the 
performance and energy requirements of the system, in turn 
obtaining a cost effective embedded system[1]. Figure 1 
shows the basic processor architecture. It consists of a main 
memory module (DRAM), whose performance is far behind 
that of the connected processor. 

 
Figure 1.  Basic processor architecture 

One of the solutions to reduce this bottleneck is to employ 
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a cache memory (SRAM) in between the main memory and 
the processor as shown in figure 2, as SRAM cells have 
faster access time than DRAM. Also, it helps in improving 
the overall system performance.  

 
Figure 2.  Basic processor architecture with SRAM 

The SRAM cache memory allows faster memory access 
time compared to DRAM memory access time, but comes at 
the expense of larger energy consumption per access. The 
CPU can access the main memory (DRAM) only via the 
cache memory (SRAM). The cache memory is transparent to 
the application being executed in the CPU. Cache memories 
are used in almost every processor which exists today. Cache 
memory is included in a system with the purpose of ex-
ploiting spatial and temporal locality exhibited by the ap-
plication’s memory access behavior. The size of cache al-
lowed for inclusion on a chip is limited by the large physical 
size and large power consumption of the SRAM cells used in 
cache memory. Figure 2 shows architecture with one level of 
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cache memory. To facilitate the design space exploration 
steps, a crude performance and energy model for the system 
was created. The model of the embedded system architecture 
consisted of a processor with an instruction cache, a data 
cache, and embedded DRAM as main memory. The data 
cache uses a write-through strategy. The system architecture 
is illustrated in Figure 3. As the instruction cache is accessed 
on every clock cycle, it consumes more energy than the data 
cache. 

 
Figure 3.  System architecture 

Thus the addition of high speed SRAM modules as cache 
memory improves the processor performance. But this also 
causes the system’s nature to become unpredictable as it 
cannot be guaranteed whether a memory request will result 
in a cache hit or a miss. Also, several studies have shown that 
cache memories account for about 50% of the total energy 
consumed in embedded systems[2]. Hence, customization of 
cache memory is very important in meeting tough design 
metrics like cost, performance and energy consumption. 
Basically the performance strategy of any program on to-
day’s processors mainly rely on the caches. Hardware im-
provements especially the cache associativity is the main 
source of greater efficiency. Program performance is 
strongly dependent on instruction cache behavior[3], sug-
gesting an opportunity for general improvement. Thus the 
memory performance can be only measured in terms of time 
to service the request generated by the processor. 

2. Previous Work 
Various methodologies have been evolved for the cache 

analysis for reducing energy by modifying the lookup pro-
cedure. Way predictive set-associative caches[4,5] access 
one tag and one data array initially and only access the other 
arrays if that initial array does not result in a match, again 
resulting in less energy at the expense of longer average 
access time. Existing methodologies for cache miss rate 
estimation use heuristics to search through the cache pa-
rameter design space[6-8]. Speculative way selection can be 
done either using locality information[9,10] or partial tag 
comparison[11]. But when the way prediction is wrong, it 
can result in performance penalty. But our proposed meth-
odology employs the utilization of the XOR functionality 

implementation for prediction. 

3. Cache Organization 
The contents of a cache memory is stored as set of cache 

lines. In other words, cache line size can be defined as the 
cache location having fixed data width. The cache line size 
specifies the minimum number of bits that is to be written 
into the cache for each write request. These cache lines 
store data of the lower memory level. An instruction cache 
having a line size (l) of four, stores instructions in each of 
this line. This four lines constitute a program line when they 
are in main memory as they form a part and portion of some 
other large program. In case of a direct mapping, each of 
the program line is mapped into cache line. The following 
figure 4 shows the direct mapped cache: 

 
Figure 4.  Direct Mapped Cache 

Assuming L to be the number of lines in the cache and A 
to be the starting address of the program line, the cache line 
size l is given by: 

l=A mod L 
In the above direct mapping cache, cache line size can be 

calculated as 13 mod 8 which equals to five. 
In case of a fully associative cache, the program line can 

be mapped to any of the cache line as shown in figure 5. 

 
Figure 5.  Fully associative cache 

Mapping the program line into set of n different cache 
lines is known as set-associative mapping. The following 
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figure 6 shows the mapping technique. Assume S to be the 
number of cache sets. Let a program line is placed be placed 
at s set being determined as: 

s = A Mod S 
From fig. 3, s value can be calculated as s = 13 mod 4 = 1, 

in other words it is cache line 2 or 3. 

 
Figure 6.  Set-associative mapping 

With n way set associative cache memory, the cache re-
placement policy determines which cache location is to be 
replaced each time a new data is to be written into the cache 
memory. Typical cache replacement algorithms are round- 
robin and Least Recently Used algorithms. 

4. Performance Analysis 
High performance being the key focus entity in designing 

the memory hierarchy, vast study and research work is car-
ried out to explore the memory subsystem configuration. As 
a part of this, we have performed cache studies targeting low 
access time and high performance. The cache access time 
can be mathematically depicted as: 

Taccess = [Thit]+ [Tpenalty * M] 
Where, Taccess = cache access time 
Thit = cache hit time 
Tpenalty = miss penalty 
M = miss rate 
Access Time 
The access tome in a cache memory can be lowered by 

employing a smaller, lower associative cache structure. But 
they have comparatively higher miss rate. In contrast, set 
associative caches have less conflict misses, as the cache line 
can reside in multiple ways within a set.  

Miss-Rate  
Minimizing the cache miss rate also reduces the average 

memory access time. The miss rate of the cache depends on 
the following cache parameters: 

1. Cache size 
2. Set associativity 
3. Cache line size 
4. Cache replacement policy 

Increasing the cache size reduces the capacity misses in 
turn reducing the miss rate. Increasing the cache associativ-
ity also reduces the miss rate, as increasing it reduces the 
conflict misses. However, in general, increasing the cache 
size and associativity also increases the cache access time, 
thus involve tradeoff with the cache access time.  

Miss-Penalty 
Minimizing the cache miss penalty is another key com-

ponent for reducing the memory access time. Hence with the 
multiple cache level configuration access time is reduced. 
The first level cache will match the clock speed, while the 
other levels will exist so that the miss penalty is reduced. 

5. Proposed Approach 
Effective cache configuration is of key importance for 

embedded systems. High speed SRAM can be configured as 
either cache or scratchpad depending on the application 
requirement. Generally in a cache based system, simulta-
neous access is required for both data and tags. For such a 
system set associative caches are to be employed because of 
their parallel nature of operation. The respective hit/miss is 
to be immediately determined and the request has to be is-
sued. Many authors and researchers have proposed multiple 
techniques[12,13] to improve the cache performance. They 
mainly concentrated to control the hit latency caused by the 
sequential access. Here, cache matching was predicted where 
a hit was served with a single access. We have done the 
cache studies keeping in view the miss penalty. Our pro-
posed cache prediction methodology considers look up ta-
bles for all the cache sets. This benefits in reducing the cache 
occupancy as most of the time it results in one correct match 
and also aids in power saving.  

The following figure 7 shows the cache structures with 
two possible mappings. It clearly shows the tag significance.  

 
Figure 7.  Cache mapping techniques 
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In sequential access, a 4-way-associative cache accesses 
one tag way after the other until someone hits or even the 
fourth one misses. On the other hand, phased caches wait 
until the tag array determines the matching way, and then 
accesses only the matching way of the data array, dissipating 
about 75% less energy than a parallel access cache. Sequen-
tial access, however, serializes the tag and data arrays, add-
ing as much as 60% to the cache access time . If a tag 
memory block takes 1 cycle to be accessed, an eight way 
associative cache will take 8 cycles to detect a miss. Here 
arises the dilemma to decide between performance and 
memory block utilization. 

Existing methodologies employ the cache prediction by 
analyzing the likely hits. But our proposed methodology 
employ the utilization of the functions derived from the tag 
addresses for prediction. These functions are derived by the 
XOR operation of the address bytes (three MSBs). The fol-
lowing figure 8 shows the block diagram of the proposed 
methodology. 

 
Figure 8.  Block diagram of the proposed methodology: XOR functional-
ity 

The XOR function is implemented exclusively on the 
three MSBs of the address field because the respective 
functions can be stored in a SRAM module instead of 
searching all tags in parallel or employing prediction tables. 
The function here is assumed to be s simple checksum 
function. The comparison of this function with the actual 
address gives an indication for a specific way that is very 
much possible to generate a hit. The checksum function is 
selected in order to ensure that no false occurs while com-
parisons. This methodology is mainly developed to minimize 
the L2 cache access time which increases because of the 
sequential tag access. It employs the parallel access mecha-
nism with L1 cache in such a way that no other extra cycle is 
consumed in L2 for the effective prediction. For its func-
tional implementation, four unique memory modules are 
required one for each L2 cache way. Each entry consists of 1 
byte, which is the size of each function. Each of the eight bit 
function is obtained from the XOR function of the three most 
significant bytes of the processor address. In order to predict 
the possible hit L2 ways, the three most significant bytes of 

the processor address are bitwise XORed and compared with 
the four functions, of the index relevant to the processor 
address. In case of a L2 miss the way prediction table has to 
be updated with the new function something that is respon-
sible for the L2 cache controller. 

6. Implementation 
An FPGA prototype is implemented. For the validation of 

the proposed approach we have used Xilinx ISE 9.2i for 
simulation and synthesis purposes. Simulation results are 
shown in appendix. The following table 1 shows the memory 
module specifications: 

Table 1.  Memory module specifications 

S.No Module Clock frequency Mapping Size 
1 L1 Cache 50 MHz Direct 4 KB 
2 L2 Cache 50 MHz 4 way Set 

associative 64 KB 
3 Main memory 100 MHz - 256 MB 

Resource utilization derived from the synthesis report is 
summarized as follows: 

Table 2.  Memory module Resource utilization 

S.No Module No. of LUTs No. of FF 
1 L1 cache 519 120 
2 L2 cache 1296 391 
3 Main memory 405 0 
4 Prediction 58 33 

Total 2278 544 

A large part of the verification procedure was carried out 
in the implementation phase of the system. Each of the 
modules was intensively simulated to check as many cases as 
possible. Also, functional blocks of the system level archi-
tecture were integrated and simulated to check their func-
tionality. The system level functionality was stretched out to 
cover all the various cases that it is supposed to support. 
Apart from conventional simulation test benches, the pro-
posed methodology was tested in real time hardware using 
FPGA. Matrix multiplication algorithm with various sizes of 
workloads is validated.  

7. Results 
The following is the results analysis with the proposed 

XOR functionality: 
Task considered: Matrix multiplication 
Miss rate = 43.8% 
Hit rate = 56.2% 
No. of accesses = 1039717 

Table 3.  XOR functionality results 

S.No Function size 4 bits 8 bits 
1 Miss prediction 39.31% 43.7% 
2 One hot mask 56.12% 56.12% 
3 Two hot mask 1.32% 0.08% 
4 Three hot mask 2% 0.07% 
5 Four hot mask 0.82% 0.03% 

Function employed: XOR 
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Table 4.  Checksum functionality results 

S.No Function size 4 bits 8 bits 
1 Miss prediction 0% 39.53% 
2 One hot mask 28.68% 42.2% 
3 Two hot mask 45.34% 17.2% 
4 Three hot mask 0% 1% 
5 Four hot mask 25.86% 0.32% 

Function employed: Checksum 

8. Conclusions 
During the implementation a noteworthy issue is the de-

cision of the function that will predict the possible hit L2 
ways. XOR based way prediction generation mask algo-
rithms compared with simple algorithms without functions 
on the address bits. Different sizes of checksum functions 
were compared each other to study their accuracy. The al-
gorithm is false negative free. Miss prediction means when 
the prediction mask is all zeros, a miss is detected without tag 
matching. One hot mask means that the possible way the data 
located is only one. Two ones mask is with two possible hit 
ways and so on for the other two cases. It can be clearly 
observed that the 8 bits function is more accurate than the 4 
bit function. It is noteworthy to observe the accuracy of the 
miss prediction. In matrix multiplication the miss rate is 43.8% 
of 1 million accesses and the predicted are 43.7% with XOR 
function and 39.53% without function. It is also remarkable 
to see that the accuracy of the 4bit XOR function is more 
efficient than the 8bits simple checksum function. Another 
observation concerns the hits. The 8bits XOR function pre-
dicts the only correct way (one hot mask) with great possi-
bility, converting the 4-way associative cache to direct map 
in terms of power consumption without converting the cache 
to phased even it is behaved so. All these reasons lead us to 
choose the 8bit XOR-based function generation for the im-
plementation.  
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