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Abstract  In the process of generating image based subject specific musculoskeletal models and the simulation of rescaled 
generic musculoskeletal models, the accurate segmentation of the anatomical structures of interest from medical images 
determines the efficiency of the musculoskeletal system models. Efficiency is highly influenced by the image segmentation 
technique used. This paper presents a semi-automatic segmentation algorithm based on the Dijkstra's shortest path algorithm 
for obtaining the origin and insertion points, and muscle paths from a magnetic resonance image. This algorithm significantly 
reduces the processing time while retaining high levels of sensitivity and specificity for the structures to be segmented. 
Anthropometric parameters calculated from the results obtained with the proposed algorithm are comparable to the results 
published by other groups of researchers. These results could be used to create an anthropometric parameters database from 
healthy population and with gait abnormalities that can be used in the development and simulation of rescaled generic models. 
In addition, the shortest path algorithm proposed in this paper could be used by the medical experts as a training algorithm of 
model based segmentation algorithm that may reduce processing time even more. 
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1. Introduction 
Musculoskeletal models are useful tools to understand 

the gait of people who suffer a disease that affects their 
locomotion [1]. Generally, there are two types of 
musculoskeletal models; Rescaled Generic Models (RGM) 
and Subject Specific Models (SSM). In today’s clinical 
practice, the computational tools used for decision making 
in the treatment of gait problems are based on RGM [2]. 
Even though RGM have generated important clinical 
insights, it has been shown that its applicability in the 
treatment of specific patients is limited due to lack of 
subject’s specific anatomical knowledge, especially with 
populations whose anatomy differs from the healthy 
population. The RGM are generated from the anatomy of 
healthy subjects with averaged size and weight and then are 
applied to the patient being studied. On the other hand, the 
SSM are generated from medical images that represents the 
own anatomy of the patient being studied; this is why these 
models have shown better performance in the estimation of 
biomechanical parameters. For this reason researchers have 
begun to propose that these models should be the standard   
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method for biomechanical gait analysis in the clinical 
setting [3]. 

The muscle paths and its points of origin and insertion 
are important anthropometric parameters used to calculate 
muscle moment arm and therefore to understand the 
mechanical action of muscles around joints. Locations of 
origin and insertion points are usually derived from 
anatomic tables [4]. If a model that uses these points is 
applied to a subject that has some type of anatomical 
deformation, the biomechanical parameters obtained from 
the simulation of this model may differ from real values. 
Scheys et al. [5] has demonstrated that there is a difference 
between the values of moment arm calculated from RGM 
and those calculated from SSM for different muscles in 
people who suffer femoral head deformation due to cerebral 
palsy. 

Muscle paths are generally simplified as a straight line 
between muscle's origin and insertion points; or a curved 
line which follows the centroids calculated for the muscles. 
It has been shown that models that use curved paths 
estimate moment arm values that are closer to the values 
measured experimentally [6]. During motion simulation, a 
modeled muscle can cross into another muscle or bone. To 
prevent this crossing some clamping surfaces are defined in 
anatomical structures. These surfaces can be fixed [3], [7], 
or mobile [6]. 

Blemker et al. [8] propose a method for creating 3D finite 
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element models of muscle representation, which serve as an 
alternative to the representation of muscles as straight lines. 
This representation method tries to solve two limitations 
presented by the linear models; first the inability of linear 
models to represent paths of muscles with complex 
geometry adequately, and second the assumption that 
moment arms are equivalent for all muscle fibers when 
actually have different lengths. Although this method 
increases accuracy of musculoskeletal models, its 
computational cost remains to be very high, this is the 
reason why its use in clinical settings remains limited. 

A key factor to make possible that parameters such as the 
origin and insertion points and the muscle paths obtained 
from SSMs may be used in clinical settings, is to make as 
efficient as possible the generating process of  these 
models regarding two variables; the time used and the 
precision with which the structures are rebuilt. These 
variables depend on the selected image segmentation 
technique. 

In this context, the accurate segmentation of the 
anatomical structures of interest from medical images 
determines the efficiency of the SSM. Image segmentation 
has been traditionally done in 2 ways: one way is to outline 
manually each structure of interest in each image in the 
study. These models represent accurately the patient’s 
anatomy but have poor efficiency due to the large amount 
of time required to segmenting muscles and bones from the 
medical images. The other method is to use computer 
algorithms that perform this process in an automatic or 
semi-automatic way, reducing processing times and 
therefore increasing the efficiency of the models. 
Furthermore these methods allow reproducibility, feature 
that cannot be achieved with manual methods. Therefore, 
the goal is to make these computational methods reach 
anatomical representations comparable to those obtained 
manually. It is important to note that with exception of the 
manual segmentation, there is not yet known a universal 
semi-automatic or automatic segmentation technique that 
can be used at any application, so up to today it is necessary 
to adapt the available segmentation techniques to each 
specific application. 

In the field of medical image segmentation, muscles 
segmentation is a problem that has not yet been fully 
resolved. The reason is that a basic assumption of image 
segmentation which asserts that should exist discrimination 
between the different structures to be identified is infringed. 
The tissue composition of two different muscles is the same, 
so if they are closely located it becomes extremely difficult 
to distinguish one from another [9]. 

Whitey & Koles [10] identify three generations of 
medical image segmentation algorithms. The first 
generation is composed by basic image analysis algorithms 
such as region growing, edge detection and thresholding. 
The second generation is composed by algorithms which 
apply uncertainty models and optimization methods such as 
statistical algorithms for pattern recognition, deformable 
models and neural networks. The third generation includes 

those algorithms that incorporate priori knowledge of the 
images being processed. Shape models, and atlas based are 
examples of third generation algorithms. 

In recent years, model-based segmentation approaches 
have been established as one of the most successful 
methods for image analysis. This techniques match up a 
model which contains information about the expected shape 
and appearance of the structure of interest to new images 
[11]. Nevertheless, these methods uses manual 
segmentation for creating the models that are going to be 
deformed to match up the structures in the new images [12], 
[13].  

The goal of this work is to evaluate the performance of a 
semi-automatic algorithm for segmenting medical images, 
specifically the interface between muscles. This algorithm 
allows obtaining from an MRI study, the set of centroids 
which represent the path of a given muscle from its origin to 
its insertion point, reducing the processing time while 
retaining high levels of sensitivity and specificity.  

2. Methodology 
This paper presents a semi-automatic segmentation 

algorithm based on Dijkstra's shortest path algorithm. In this 
section the algorithm developed using Matlab®, and the tests 
executed are presented. 

2.1. The Shortest Path Algorithm 

In 1959 Edsger Dijkstra proposed an algorithm to solve 
two fundamental problems in graph theory: the problem of 
minimum weighted spanning tree and the shortest path [14]. 
From this publication onwards Dijkstra’s algorithm for 
obtaining the shortest path between two points has become 
one of the most outstanding algorithms in computer science. 
It is mainly used in vehicle routing planning devices to find 
the best route between two locations [15, 16].  

A digital image can be seen as a graph where its vertices 

are each of the image pixels and the paths restrictions 21vvW
 

can be understood as the difference between the grey level of 
a pixel v1 and the level of another pixel v2 in the image. It 
can also be assumed that the pixels that make up an object 
within an image have homogeneity between grey level 
values, and that are different from the surrounding 
background. In this framework it is possible to design a 
segmentation algorithm that properly differentiates bones 
and muscles and even the boundary between closely located 
muscles. 

For the graph shown in Figure 1, the shortest path between 
vertex i and vertex f is calculated taking into account the 

existing restrictions 21vvW
 
to passage from a vertex v1 to 

another one v2. The steps to calculate the Dijkstra’s shortest 
path between these vertices are described by [17]: 

1. Choose the source vertex. 
2. Define a set S of vertices, and initialize it to empty set. 

As the algorithm progresses, the set S will store those 
vertices to which a shortest path has been found. 
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3. Label the source vertex with 0, and insert it into S. 
4. Consider each vertex not included in S connected by an 

edge from a previous vertex to a newly inserted vertex. 
Label the vertex not in S with the label of the newly 
inserted vertex, for which the cumulative weight is 
calculated from the initial pixel up to the previous 
vertex with which it is connected plus the weight of the 
edge of the previous vertex and the new vertex. (But if 
the vertex not in S was already labelled, its new label 
will be the minimum weight of the paths between the 
initial vertex and the newly inserted vertex). 

 

Figure 1.  Standard graph for shortest path calculation 

5. Pick a vertex not included in S whose sum of weights 
from the initial vertex was the one with the minimum 
value, as a result this new vertex is inserted in S. 

6. Repeat from step 4, until the destination vertex f is 
included in S. In this way the problem of the shortest 
path is solved or until there are no more vertices that 
could be labeled. In this case the minimum path was not 
found. If the destination vertex is labeled, its label is the 
distance from its position and the source i. If it is not 
labeled, there is no path from the source vertex i and the 
destination f. This last situation is not expected to 
happen in the image segmentation algorithm proposed 
in this work, because there is always a connecting path 
between any two pixels in an image. 

The developed shortest path algorithm has as output the 
closed region obtained by applying the Dijkstra’s algorithm 
above described, between a set of pixels selected as 
belonging to the edge of the structure wanted to be 
segmented. These points are selected by a medical expert and 
are known as seed points.  

As initial step the algorithm takes the first selected seed 
pixel, and from this pixel, sorts the rest seed pixels on 
clockwise direction. Initial vertex is defined as the first pixel 
in the sorted list and final vertex as the second pixel in the 
same list. Dijkstra’s algorithm is applied between these two 
pixels, thereby obtaining the first portion of the segmented 
region. Then, the new initial vertex is defined as the final 
vertex at the previous step and the new final vertex as the 
next pixel located in the sorted pixels list. This procedure is 
repeated until the algorithm detects that the Dijkstra’s 
algorithm was applied between the penultimate and the last 
pixel in the sorted pixel list; then it defines as initial vertex 

the last pixel in the sorted list and as final vertex the first 
pixel in the sorted list and applied one last time the Dijkstra’s 
algorithm between these two vertices. When the whole 
closed region is extracted, the algorithm computes the 
geometric centroid by the areas method and stores that value 
together with the region information obtained. 

Dijkstra algorithm has a computational complexity of 
)( 2nO . In the worst case scenario n((n-1))⁄2 sums and n(n-1) 

comparisons are performed. In the analysis of big graphs, 
this complexity involves the use of large amount of memory 
this is the reason why computational performance of the 
algorithm is considerably low. This is why several 
improvements to the original algorithm has been 
continuously proposed [17, 18]. This problem affects the 
proposed algorithm as the images on which it works have a 
size of 512x512 pixels, this was checked in the early versions 
of the algorithm where the average segmentation time to 
each muscle or bone in one slice was around 35 minutes. For 
this reason for each pair of initial and final vertices defined 
during the segmentation process described above, the last 
version of the algorithm performed an automatic 
sub-sampling of the image applying Dijkstra’s algorithm on 
this sub-image and not on the complete image. This 
sub-image is defined as a rectangular region whose corners 
were located at a distance of 10 pixels to the outside of each 
pair of pixels defined as initial and final vertices. With this 
distance, the algorithm is able to improve its performance 
considerably without losing quality in the segmentation 
results due to a loss of information related to sub sampling 
the image. 

2.2. Executed Tests 

The main image acquisition techniques used in the 
development process of musculoskeletal models are: 
Magnetic Resonance Imaging (MRI) and Computed 
Tomography (CT). Numerous studies have been conducted 
using both techniques [3, 19-21]. MRI allows acquiring 
images of muscles, bones and cartilage simultaneously with 
high spatial resolution; it also has the capacity of multiplanar 
acquisition and does not produce ionizing radiations, as CT 
does. For this reason in this paper MRI is used as the imaging 
acquisition technique. A set of 136 MR images from a 
healthy subject were obtained using a 
T1-weighted-spin-echo sequence (TR=400ms, TE=17ms, 
Matrix=512x512, FOV=25cm, Gap=4mm) on a 1.5 T device 
Siemens Magnetom Vision. The tested subject signed an 
informed consent. Prior to images acquisition a set of small 
soy spheres which served as external markers of anatomical 
structures was placed on the subject's skin using 
hypoallergenic tape. The marked anatomical structures were 
Antero Superior Iliac Spine (ASIS), the Spinous Process of 
the fifth Lumbar Vertebra (LV), and the lateral femoral 
condyle (LFC). These markers are used because they are an 
anatomical point of easy external location and therefore can 
be used to make comparisons between different subjects and 
develop SSMs. With these markers a coordinate system 
whose origin is located at the centroid of the marker in the 
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ASIS was defined. 
The femur bone (Fem), and the muscles; Sartorius (Sar), 

Rectus Femoris (RecF), Gracilis (Gra), Biceps Femoris Long 
Head (BFLH), Biceps Femoris Short Head (BFSH) 
Semitendinosus (SemT), Semimembranosus (SemM) and 
Gluteus Maximus (GM) were segmented. The segmentation 
was performed in two ways. Firstly it was manually 
performed by a medical expert, and secondly using the 
shortest paths algorithm. For the application of the latter 
algorithm the expert was asked to place no more than 15 seed 
pixels per muscle or bone segments. The regions obtained by 
manual segmentation are considered the gold standard.  

After performing segmentation of the complete set of 
images, each subgroup of origin and insertion regions of 
each muscle was taken, and then an average coordinate 
which serves as an "effective" point of contact between 
muscle and bone was calculated. However the real contact 
area can also be defined, and then proceeds to calculate 
standardization system coordinates mentioned above and 
described below. To each external marker his centroid was 
calculated and a coordinate axes system was defined. With 
this system for the different segmented muscles, the location 
of each "effective" origins and insertions points were 
referenced. This location was normalized in respect to the 
magnitude of the vector connecting the centroids of the 
different external markers. These distances correspond to the 
normalized magnitude of the projection on the X axis of the 
vector joining the centroids of the markers in the IPM and in 
the AE for the X component, the magnitude of the projection 
on the Y axis of the vector joining centroids of the markers in 
the IPM and in the AE for the Y component, and the 
magnitude of the vector joining the markers in the IPM and 
the CLF for the component Z. This means that the location of 
the patient on the stretcher was in rest horizontal position. 

With origin and insertion points, muscle-tendon length 
was calculated for each muscle, this was done by calculating 
the Euclidean distance between the point of origin and the 
insertion. 

As indicators of the segmentation quality obtained by the 
algorithm the values of Sensitivity (Sen) and Specificity (Spe) 
were calculated. The calculated value of Sen measures the 
ability of the algorithm to identify pixels that actually belong 
to the segmented structure. And the calculated value of Spe 
measures the ability of the algorithm to identify pixels that 
do not really belong to the segmented structure, according to: 

)( TPFN
TPSen
+

=                 (1) 

( )TNFP
TNSpe
+

=                  (2) 

Where TP is the True Positive pixels value, i.e. the number 
of pixels that both the manual segmentation and the 
semi-automatic algorithm defined as belonging to the 
segmented region; TN is the True Negatives pixels value, i.e. 
the number of pixels that both the manual segmentation and 

the semi-automatic algorithm defined as non-belonging to 
the segmented region; FP is False Positive pixels value, i.e. 
the number of pixels that manual segmentation defined as 
non-belonging to the segmented region but the 
semi-automatic algorithm defined as belonging; and FN is 
the False Negatives pixels value , i.e. the number of pixels 
that manual segmentation defined as belonging to the 
segmented region but the semi-automatic algorithm defined 
as not belonging. 

Another indicator of the segmentation quality of the 
algorithm proposed is the confusion matrix. This matrix is 
obtained taking the pixels of the segmented region by the 
proposed algorithm for each structure comparing if these 
pixels were classified by the gold standard as belonging to 
those structures or to different ones. The confusion matrix 
has as evaluation method the advantage that is not affected 
by the major or minor proportion that has the structures to be 
segmented compared respect to the size of the image. This 
factor is important if the size of the muscles of the images 
taken in this work from the muscles and bones are inferior 
compared to the total size of the images. In addition, it allows 
the identification of the capacity of the algorithm to 
differentiate structures that are closely located. 

3. Results and Discussions 
Manual segmentation by medical expert and segmentation 

with the shortest path algorithm were performed, for each of 
the eight muscles and bone, in the 136 images acquired in the 
MRI study. As an example a section of each of the 
segmented structures is shown in Figure 2.  

Table 1 contains the values of Sen and Spe obtained for 
each muscle and the femur. As can be seen, the values of Sen 
in all cases are above 90%, these values are indicative of the 
ability of the algorithm to correctly identify the structure 
being segmented. The Spe values close to 1 obtained for all 
structures are due to the difference in size between different 
segmented structures and the total image size. These high 
values of Spe were expected because the algorithm performs 
the segmentation using the seed points selected by the 
medical expert. 

Table 2 shows the confusion matrix calculated for the 
segmentation of the entire group of structures. The results 
contained in this table account for the ability of the 
developed algorithm to clearly differentiate between two 
closely located structures. For example it can be seen that the 
algorithm correctly classified 89.54% of the pixels belonging 
to SemT muscle, and 90.72% of the pixels belonging to 
SemM muscle. These two muscles are difficult to identify 
because they are closely located. However, it can be seen that 
the algorithm fails to classify only 3% of pixels as belonging 
to the SemT muscle when actually belong to the SemM 
muscle, and also fails to classify only 2.53% of pixels as 
belonging to the SemM muscle when really belonged to the 
SemT muscle. 
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Figure 2.  Segmented regions obtained from the group of images by means 
of the semi-automatic algorithm for each muscle and femur bone 

Table 1.  Sensitivity and Specificity Values for each Segmented Muscle 

Structure TP[%] TN[%] FP[%] FN[%] Sen Esp 

BFLH 0.490 99.442 0.031 0.038 0.928 0.9997 

BFSH 0.375 99.534 0.049 0.043 0.897 0.9995 

Fem 0.694 98.060 0.138 0.108 0.865 0.9996 

GM 3.892 95.455 0.094 0.560 0.874 0.9990 

Gra 0.299 99.665 0.025 0.011 0.965 0.9997 

RecF 0.650 99.251 0.063 0.036 0.948 0.9994 

Sar 0.377 99.544 0.051 0.028 0.931 0.9995 

SemM 0.830 99.077 0.056 0.036 0.958 0.9994 

SemT 0.404 99.540 0.035 0.021 0.951 0.9996 

The position of actual points of origin and insertion for 
each of the 8 segmented muscles was calculated with the data 
obtained from the segmentation of the entire group of 
images. 

 

Figure 3.  Effective origin point calculation of the BFSH. The + symbols refers to the Fem borders. The * symbol refers to the BFSH borders. The o 
symbols refers to the contact area between Fem and BFSH. The symbol • refers to the calculated BFSH ''effective'' origin point, calculated as an average of 
the contact area for each of the slices of the previous regions 
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Table 2.  Segmentation Confusion Matrix 

 MUSCLE 
PERCENTAGE OF PIXELS CLASSIFIED BY THE SHORTEST PATH ALGORITHM AS: [%] 

BFLH BFSH Fem GM Gra RecF Sar SemM SemT 

SH
O

U
LD

 B
E 

C
LA

SS
IF

IE
D

 A
S:

 

BFLH 92.50 2.78 0.00 0.05 0. 00 0.00 0.00 0.00 1.64 

BFSH 1.29 91.03 0.06 0.04 0.00 0.00 0.00 0.00 0.00 

Fem 0.00 0.22 93.92 0.07 0.00 0.00 0.02 0.01 0.00 

GM 0.13 0.44 0.23 85.67 0.00 0.00 0.00 0.02 0.00 

Gra 0.00 0.00 0.00 0.00 89.11 0.00 0.00 0.10 0.00 

RecF 0.00 0.00 0.01 0.00 0.00 89.47 0.42 0.00 0.00 

Sar 0.00 0.00 0.00 0.00 0.00 0.20 87.44 0.00 0.01 

SemM 0.00 0.00 0.00 0.00 2.11 0.00 0.00 90.72 2.53 

SemT 1.57 0.00 0.00 0.00 0.00 0.00 0.00 3.00 89.54 

Table 3.  Muscle's effective Attachments Sites 

Muscle Structure 
Coordinates of Origin and Insertion Points 

X(Pixels) Y(Pixels) Z(Slice) X-Nomalized(%) Y-Normalized(%) Z-Normalized(%) 

BFLH 
Origin 327 289 33 73.7654 33.5968 16.8224 

Insertion 319 270 126 71.2963 26.0870 103.7383 

BFSH 
Origin 286 276 79 61.1111 28.4585 59.8131 

Insertion 324 274 125 72.8395 27.6680 102.8037 

GM 
Origin 302 356 2 66.0494 60.0791 -11.7117 

Insertion 275 218 65 57.7160 5.5336 45.0450 

Gra 
Origin 217 409 40 39.8148 81.0277 23.3645 

Insertion 285 393 126 60.8025 74.7036 103.7383 

RecF 
Origin 144 258 20 17.2840 21.3439 4.6729 

Insertion 24 321 131 47.2222 46.2451 108.4112 

Sar 
Origin 100 222 11 3.7037 7.1146 -3.7383 

Insertion 270 382 131 56.1728 70.3557 108.4112 

SemM 
Origin 308 288 33 67.9012 33.2016 16.8224 

Insertion 302 390 125 66.0494 73.5178 102.8037 

SemT 
Origin 319 292 33 71.2963 34.7826 16.8224 

Insertion 268 379 134 55.5556 69.1700 111.2150 

 

 

Figure 4.  Calculated muscle-tendon lengths (mm) for each muscle: in this work from the calculated "effective" origin and insertion points, and the 
muscle-tendon lengths reported by Scheys et al [3], and by Ward et al [22] 
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Figure 3 shows as an example how the ''effective'' origin 
point of the BFSH muscle was calculated, in the same 
manner the ''effective'' origin and insertion points of the 
remaining muscles were extracted. The "effective" areas of 
origin and insertion were calculated as the average of the 
contours in the contact between muscle and bone in each 
image. 

Table 3 shows coordinates (X, Y) in pixels and the image 
number (representing the Z coordinate) where each 
"effective" origin and insertion points are located for each 
segmented muscle. Also, in this table the locations of these 
points are shown relative to the standardized coordinate 
system (see Methodology). The use of the alternative 
coordinate system and the standardization with respect to the 
magnitudes of the vectors connecting the external markers 
used here allows on future works to make comparisons 
between the results obtained for different subjects and 
generate anthropometric dimensionless tables of a healthy 
population or a population with a defined anatomical 
deformation. This is because the ASIS, the AE and the CLF 
are external anatomical markers usually used in clinical 
biomechanics laboratory and can be easily located. 

The muscle-tendon lengths for each muscle were 
calculated with the data contained in Table 3, these results 
can be seen in Figure 4. Furthermore, the muscle-tendon 
lengths presented by Scheys et al. [3] and those reported by 
Ward et al. [22] for the same muscles are shown in this figure. 
The difference observed between lengths is because the data 
are not normalized to the heights of the tested subjects. These 
heights are 153 cm in this work, 185 cm in the work of 
Scheys et al. [3], and 168 cm in the work of Ward et al. [22]. 

However, from the lengths shown in Figure 4 can be seen 
that the ratio between the lengths of the muscles on each 
subject are very similar. 

Specifically, the data is not normalized in this figure 
because they give a better idea of proportionality between 
the different estimation methods. The matching estimates 
between this article and the other works can be seen in the 
data reported in Table 4. In this table the ratio between length 
of each muscle and height of the subject were calculated. 

Figure 5 shows the centroid path calculated for all 
segmented muscles. This figure also shows some bone 
structures that allows a better visualization of the muscle's 
path. With the 3D locations of the centroids could be 
possible to generate a mathematical function that fits these 
muscular paths. This mathematical description could be used 
to calculate more accurately the torque applied by each 
muscle on the joints where it crosses. 

Table 4.  Muscle-Tendon Lengths / Height Ratios 

Muscles Proportion Proportion 
Scheys et al. 

Proportion  
Ward et al. 

BFLH 0.243 0.259 0.206 

BFSH 0.121 --------- 0.133 

GM 0.165 --------- 0.160 

Gra 0.225 0.227 0.170 

RF 0.290 0.265 0.216 

Sar 0.314 0.319 0.266 

SemM 0.241 0.265 0.174 

SemT 0.264 0.281 0.176 

 

Figure 5.  Centroid paths obtained with manual segmentation (+) and with the shortest path algorithm (*) for each muscle 
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4. Conclusions 
This paper presents a second generation semi-automatic 

segmentation algorithm based on the Dijkstra’s shortest path 
algorithm to obtain origin and insertion points, and muscle 
paths from medical images. This algorithm significantly 
reduces the processing time while retaining high levels of 
sensitivity and specificity on the segmented structures. These 
characteristics make it a good choice for both the formation 
of SSMs, and the formation of anthropometric parameters 
databases sufficiently precise that can be used in simulating 
RGM. 

In the continuation of this work, it is expected that the 
shortest path algorithm proposed in this paper can be used as 
training algorithm of a pattern recognition system that 
reduces the time required for the segmentation of an MRI 
study. In this sense it could be achieved the generation of the 
initial statistical patterns that can be deformed to a final 
segmented region and after this process the generation of 
SSM and more efficient and accurate RGM that can better 
represent the results obtained experimentally in a laboratory 
of biomechanics. 
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