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Abstract  A practical preoperative simulation of femoral acetabular impingement (FAI) requires a faster method than is 
currently available to simulate the articular cartilage within the hip joint. Articular cartilage has been extensively studied 
with finite element methods (FEM), and several models have previously been developed to simulate its complex material 
behaviour. In the present study, the fibril-reinforced poroviscoelastic model was extended to function in a smoothed 
particle hydrodynamics (SPH) simulation. Four indentation tests and one unconfined compression test were designed and 
validated with previously published experimental reaction force results. 3D models were visualized to identify areas of 
peak stress and component stresses during simulations. Strong correlation in reaction forces (r=0.98~0.99) was found 
between simulations and published results. 3D models displayed stress distributions indicating correct component 
behaviour. The fibril-reinforced poroviscoelastic models were found to perform with greater accuracy than the hookean 
models while requiring a mean frame rate drop of only 29% (standard deviation 0.62%). Simulations functioned at rates 
exceeding 100 frames / second.  
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1. Introduction 
Femoral acetabular impingement (FAI) is a medical 

condition in which abnormal bony protrusions on the 
femoral head or the rim of the acetabulum produce stress 
concentrations in the hip joint during motion. Damage 
incurred in the articular cartilage due to the increased stress 
in impinged areas is thought to be a precursor to cartilage 
degeneration and osteoarthritis [1, 40]. A preoperative 
simulation of real patient hip morphology that could be 
manipulated during the planning of procedures would be of 
great benefit to surgeons and could also conceivably reduce 
the necessity for total hip arthroplasties if the FAI is 
indentified early. 

Articular cartilage is an essential component to any such 
simulation despite a thickness not greater than 4 mm [1, 29]. 
It is a biphasic soft-solid tissue comprised of an interstitial 
fluid phase and a solid matrix that interact to distribute and 
dampen the load carried by a joint. Significant progress has 
been made towards the accurate simulation of articular 
cartilage with computational methods, beginning with the 
biphasic theory of Mow et al. [29]. Mak et al. [25] extended 
this to the biphasic poroviscoelastic (BPVE) model with   

 
* Corresponding author: 
PhilipBoyer@cmail.carleton.ca (Philip Boyer) 
Published online at http://journal.sapub.org/ajbe 
Copyright © 2014 Scientific & Academic Publishing. All Rights Reserved 

fluid flow-dependent and independent parameters to 
simulate viscous effects. Both the transverse isotropic model 
[1, 9] and the conewise elasticity model [38] provide means 
of including directionality in loading response. Soulhat et al. 
[39] proposed the more rigorous approach to the simulation 
of cartilage fibrils, which was subsequently extended by Li et 
al. [21, 23] to the biphasic fibril-reinforced poroelastic 
model. It is beyond the scope of this paper to provide a 
thorough review of the field of cartilage simulation, but other 
significant works include those by DiSilvestro [9], Korhonen 
[18], Wilson [42], Garcia [13], and Seifzadeh [33], to name 
only a few. 

The finite element method (FEM) is the traditional means 
of modeling articular cartilage. While FEM is considered to 
be the gold standard for accuracy in computational methods, 
it is an unrealistic expectation that with the current 
technology included in a reasonable desktop PC that FEM 
could be made to perform interactively in a preoperative 
simulation considering the many nonlinear properties of 
articular cartilage. Other methods have been proposed for the 
simulation of soft tissue, perhaps the predominant of which 
is known as mass-spring [36, 1, 28]. However, mass-spring 
is impractical for the intended FAI simulations, since it is a 
non-volumetric method where spring elements connecting 
point masses must be tuned for each desired scenario [1, 44].   

Smoothed particle hydrodynamics (SPH) is a Lagrangian 
particle technique that employs a nearest neighbour search to 
reduce the computational complexity of a simulation. While 
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SPH was originally developed for the simulation of 
exploding celestial objects [14], considerable work has since 
been performed with fluid dynamics simulations of the 
Navier-Stokes equations [30, 6]. SPH has more sparingly 
been applied to solids, beginning with the work of Desbrun 
and Cani [11], and extended to bending, fracturing, and high 
impact tests [15, 7, 5]. Solenthaler et al. [37], provided an 
approach to derive the deformation field of an elastic solid, 
which was improved upon by Becker et al. [4] by a 
corotation method to prevent unrealistic forces in rotations. 
Porosity in an elastic solid material using SPH was proposed 
by Lenaerts et al. [20]. The recent work by Akinci et al. 
provided means to combine the simulation of solid and fluid 
SPH [1]. The extension of SPH to soft tissue is relatively 
sparse, with a few examples of fluid SPH confined by 
mass-spring meshes [31, 32], and a simulation of a virtual 
liver by Hieber et al. [17] that was limited to small 
deformations in two dimensions. 

The research presented here uses SPH to simulate articular 
cartilage as a biphasic fibril-reinforced poroviscoelastic 
material employing a combination of components drawn 
from previously published research and newly introduced 
methods. The objectives were to implement such a model 
and validate it using indentation and unconfined 
compression tests while considering the necessity of 
computational efficiency as applicable to a future real-time 
hip simulation. 

2. Materials and Methods 
The fundamental SPH integral interpolant is given by 

Gingold and Monagahan [14] in its generalized form as: 

( ) ( ) ( )' ' 'A r A r W r r ,h dr= −∫       (1) 

where ( )A r  is the function of the spatial coordinates r , 

W is the smoothing kernel, and 'dr  is a differential 
volume element. The integral is advanced in time for each 
particle using an integration technique, which in the current 
work is the commonly used leapfrog method. The continuum 
of a material can be represented by Lagrangian SPH particles 
with physical equations based upon the above interpolant. 

In the current procedure, the behaviour of articular 
cartilage in response to compression scenarios is considered 
to be due to the interactions of the stresses in each of the 
components: 

T nf f flσ σ σ σ= + −             (2) 

where Tσ  is the total stress from all components, while 

nfσ , fσ  and flσ  are respectively the stress 
contributions from the non-fibrillar solid matrix, the collagen 
fibril network, and interstitial fluid support. 

2.1. Non-fibrillar Matrix 

The model used to represent the non-fibrillar matrix 
component of cartilage is based upon the works by 
Solenthaler [37] and Becker [4]. This model was extended to 
perform all computations in parallel using Nvidia’s CUDA 
framework and was tested to verify that it exhibited correct 
rotational behaviour. Since the underlying method remains 
the same as proposed in the aforementioned papers, for 
brevity it will not be repeated here except where specifically 
relevant to new components (in particular please refer to 
these papers for force evaluation in the solid matrix). One 
particular such case is that of the hookean constitutive 
material model, which has been replaced in the current 
research by the non-linear elastic neo-hookean model 
suggested by Wilson et al. [43]: 

( )2 3T /
nf

ln( J ) GK I F F J I
J J

σ = + ⋅ −     (3) 

where J  is the determinant of the deformation tensor F . 
The deformation tensor follows directly from the 
calculations to obtain the strain in the elastic solid equations 
of Solenthaler et al. [37], with the addition of the identity 
tensor, yielding the relation: 

F u I= ∇ +                 (4) 

The bulk and shear modulus are given by: 

( )3 1 2
K ε

ν
=

−
              (5) 

( )2 1
G ε

ν
=

+
               (6) 

where ε  is the Young’s modulus and ν  the Poisson’s 
ratio. 

2.2. Collagen Fibril Network 

Collagen fibre placement within the material is simplified 
with the assumption that a fibre is created between every 
particle and each of its neighbours, which in the case of the 
current tests are arranged in a regular lattice. There is a 
precedent for establishing fibre location according to 
element spacing [16]. This allows for the stress response of 
fibres to be modelled by the deformations and displacements 
affecting particle neighbourhoods rather than explicitly 
creating particles for their representation. The number of 
fibres differs depending on the particle position in the object 
volume. 

The strain fE  in each fibre is determined by:  

( )
( )0 0

1j i
f

j i

x x
E

x x

−
= −

−
             (7) 

where ix  and jx  represent the positions of particle i and 
its neighbour j, while the superscripts of 0 indicate the initial 
underformed positions. It is assumed that fibres only 
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strengthen the material in tension so only positive strains are 
considered. Fibres are modelled as linear springs with 
stiffness 0E  in parallel with a nonlinear spring with 

stiffness 1 fE Eεε=  as in the work by Li et al. [21], where 

Eε  and fε  are the modulus and strain of the fibre, 
respectively. Even without viscoelastic properties this is 
assumed sufficient to capture the behaviour of the fibril 
network for the current research. Viscoelastic effects in 
fibres could not be implemented at this time due to numerical 
precision constraints. 

In real cartilage tissue, fibre orientation is depth dependent, 
which as is typically assumed in FEM simulations to be 0° to 
the articular surface in the superficial zone (0% - 10% of 
depth), 45° in the middle zone (10% - 70% of depth), and 90° 
in the deep zone (70% - 100%). This is the depth dependency 
assumed for the current simulations. Individual fibre 
contribution to the stress profile can be found via a 
relationship between the particle orientations and the 
assumed fibre angle. Because the particle neighbourhoods 
and their associated fibres may have changed orientation, the 
new assumed fibre angle for the current particle’s zone is 
found by: 

( )0
0 ij ijγ γ θ θ= + −             (8) 

where γ  is the current assumed fibre angle, 0γ  is the 

original undeformed assumed fibre angle, while ijθ  and 
0
ijθ  are the current and undeformed angles between the 

particle and its neighbour. This leads to a multiplication 
factor M defined by: 

( )ijM cos γ θ= +              (9) 

The resulting equation for the stress contribution of each 
fibre is: 

( )0
j i

f f f f
j i

x x
M E E

x x εσ ε ε
−

= − +
−

    (10) 

which includes the unit vector defining the direction between 
particles to assign directionality to the three-dimensional 
stress-strain relation. It should be noted that the contribution 
of the above equation is negative because it is defined based 
on the neighbour-to-current particle direction. 

2.3. Interstitial Fluid 

The behaviour of interstitial fluid through the porous 
structure of the non-fibrillar matrix is based upon the work 
by Lenaerts et al. [20] but has been significantly adapted to 
conform with the needs of the current research. Each SPH 
particle begins the simulation with an associated fluid mass 
that can then be exchanged between neighbouring particles 
and the external environment. The expression for the 

saturation of the material is given by Lenaerts et al. as: 

pi
i fluid

i i

m
S

Vρ ϕ
=              (11) 

where pim  is the absorbed mass of the fluid in particle i , 
fluidρ  is the fluid density, iϕ  is the particle porosity, and 

iV  the particle’s current volume, which is calculated as by 
Solenthaler et al. [37]. In the work by Lenaerts et al., the 
porosity was calculated based on the changing fluid density, 
but it is suggested here that it is beneficial to base the 
porosity on the changing fluid volume: 

0
0

0
i i

i i
i

V Vˆ ˆ
V

ϕ ϕ −
= − , for all: 

0

0
i i

i

V V
V
−

< 0
iϕ̂     (12) 

where 0
iϕ̂  is the initial porosity of the current particle, iϕ̂  

is the current porosity, and 0
iV  is the initial particle volume. 

Now if the ratio of the current volume to the initial volume is 
reduced to equal the initial porosity of the material (0.5 for 
example), the porosity will also become equal to zero, 
simulating all the fluid mass exiting from that porous particle. 
This is essential for the simulation of cartilage since when all 
the fluid is exuded from the material the load should be 
entirely borne by the non-fibrillar matrix and collagen fibrils. 

Depth dependency of porosity is incorporated into the 
current procedure by: 

1 1i i e
zˆ
h

ϕ ϕ α  = − −  
  

          (13) 

where iϕ  is the depth dependent porosity, eα  is a 

material constant, h  is the height of the sample and z  is 
the current particle depth. 

The absorbed fluid mass is dependent on the fluid density 
by the relation: 

ii
fluid

pi Vm φρ=               (14) 

The density 0ρ  of the bulk material must be updated to 
reflect the additional fluid component to the solid component 

0
Sρ  for use in the equations defining the non-fibrillar 

matrix: 

0 0
S fluid

i iSρ ρ ϕ ρ= +           (15) 

Figure 1 provides an illustration of possible fluid forces 
acting on the fluid mass contained within an SPH particle 
during the simulation. The capillary potential c

iP  acts to 
draw fluid into a porous material via surface tension, while 
the pore pressure p

iP  can cause fluid to flow into or out of 
the material depending on the saturation. 
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Figure 1.  Example fluid mass exchange between SPH particles. Black 
arrows represent pore (blue) pressure, white arrows represent capillary 
pressure, grey arrows represent resultant fluid flow between effective solid 
particle volumes (brown) 

Each SPH particle should begin the simulation fully 
saturated, which leads to the next revision to the work by 
Lenaerts et al., in that fluid mass should be capable of being 
exchanged between fully saturated SPH particles. Expanding 
and contracting particle neighbourhoods to maintain a 100% 
saturation maximum was found to destabilize the simulation. 
Instead, the saturation of the material is allowed to exceed 
100%, which provides for the necessary fluid behaviour. The 
capillary potential is then restricted by a boundary condition 
to prevent undefined behaviour when the saturation exceeds 
100%: 

1c c
i iP k ( S )α= −     1iS <       (15) 

0c
iP =               1iS ≥  

The pore pressure is given by the state equation as in 
Lenaerts et al.: 

0
1

S
p p i

i i SP k S
γ

ρ
ρ

   = −     
        (16) 

where pk  is again a user-controlled constant, S
iρ and 

0
Sρ  are the current and original densities, and γ  is a 

user-controlled constant to enforce incompressibility. 
The pore velocity piv , the rate at which the fluid mass is 

diffusing, is changed from the work of Lenaerts et al. so that 
it is more intuitively based on the difference in capilllary and 
pore pressure between a particle and its neighbours. This 
allows for the relationship to be reduced to a single equation: 

( ) ( )( )j p c p c
pi j j i i j i

ij

KV
v P P P P W( x x ,h )

ϕ µ
= − − − − ∇ −∑ (17) 

where K is the permeability of the material, µ  is the 
viscosity of the fluid, and W  is the SPH kernel employed 
in the work by Solenthaler [37]. The permeability can be 
made strain dependent by the relation [43]: 

0 0
1
1

M
i

i
K k ϕ

ϕ

 +
=   + 

           (18) 

where 0k is the initial permeability, M is a positive 

constant, and 0
iϕ  and iϕ  are the initial and current 

porosity. 
Fluid SPH particles are never explicitly created in the 

simulation, so fluid mass is exchanged in the material in a 
Eulerian manner defined by the differential: 

( )2pi
ij j pj j i j

j

m
d V m W x x ,h

t
∂

= ∇ −
∂ ∑    (19) 

The coefficient ijd
 

is a scalar that is the result of a scalar 
product between the pore velocity and the unit vector of the 
neighbour-to-current particle direction, ensuring appropriate 
contributions to the mass exchange by each neighbouring 
particle: 

j i
ij pj j

j i

x x
d v S

x x
β−

= ⋅
−

         (20) 

Here β  is a user-defined constant to control diffusion, 
noting that in the current procedure this will have an 
additional effect to that originally intended by Lenaerts et al. 
in that it will increase diffusion with saturations greater than 
1. An explicit Euler integration is performed during the 
update section of each time step to diffuse the fluid mass: 

pi
pi pi

m
m m t

t
∆

∂
← +

∂
         (21) 

Now that the fluid mass can diffuse between particles, the 
stress contribution during deformation is calculated based on 
the pore pressure of the current particle: 

p
fl iPσ η Ι=              (22) 

This calculation differs from the work by Lenaerts et al. in 
that it uses the pore pressure of Equation 16 instead of a 
constant value. This adjustment has been made to more 
accurately simulate increasing pore stress with increasing 
deformation of the cartilage material, an effect which can be 
seen in many FEM cartilage simulations. η  is a 
user-defined constant, as in Lenaerts et al. 

Since the concern in the current research is only with the 
cartilage behaviour, it is not necessary to explicitly create 
SPH particles representing exterior fluid mass. This was 
accomplished through the creation of so-called void particles, 
which are essentially containers of infinite size with which 
the mass from the cartilage particles can be exchanged. They 
are instantiated in space according to the original particle 
positions as shown in Figure 2. 

Void particles are only considered in two neighbour loops 
within the simulation. The first is during the calculation of 
equation 17, which for void particle neighbours becomes: 

( )( )p ci
pi i i j i

ij

KVv P P W( x x ,h )
ϕ µ

= − − − ∇ −∑ (23) 
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Figure 2.  Void particle instantiation: The current particle position (blue) 
and the positions of its neighbouring particles (green) are checked to 
determine where void particles should be placed (white) 

This is the same as equation 17 with the exception that the 
pore and capillary pressure of a void particle are assumed to 
be zero, and the volume of the void particle is assumed to be 
the same as the current particle (while recalling that void 
particles allow for infinite fluid flow, and so can be 
considered infinite for that purpose). The fluid mass 
differential equation is similarly updated with the fluid mass 
and volume of the current particle used instead: 

( )2pi
ij i pi j i j

j

m
d V m W x x ,h

t
∂

= ∇ −
∂ ∑    (24) 

Void particles are updated in the integration stage of the 
simulation to maintain their positions relative to their 
associated SPH particles. 

2.4. Rigid Body Boundary Enforcement 

Cartilage compression simulations require the creation of 
rigid materials to represent indenters and plates that can be 
used to cause deformation in the material, or for bone in the 
case of a whole hip joint simulation. This is accomplished 
here by the virtual particle method [24], which employs 
boundary particles along the surface of any rigid object with 
two layers of virtual particles for neighbourhood support. 
Pressure forces exerted by boundary particles on any 
cartilage particles that enter their sphere of influence are 
calculated according to the SPH fluid pressure force 
calculations [27] using Desbrun’s spiky kernel [10]:  

2 2
6

15
spkyiW ( r,h ) ( h r )

hπ
= −    0 r h≤ ≤   (25) 

which is equal to 0 for all other values of r, and where h is the 
smoothing length of the particle. Pressure is calculated with 
an incompressible equation of state [27]. The result is 
insignificant penetration by any cartilage particle into the 
spherical influence radius of a boundary particle. 

2.5. Simulation Parameters 

Simulations were performed on an Intel Core i5-3450 
CPU with 8GB of RAM and an NVIDIA GeForce 660Ti 
with 2GB of memory. The C++ program created to perform 

the simulations was divided into an initialization section with 
a combination of host and CUDA code, and a main loop that 
was run each time step with all associated calculations 
performed in parallel using CUDA. Visualizations were 
created in the Maya 2013 API through direct correlations to 
the output of particle positions from the C++ program. Four 
indentation tests and one compression test were performed to 
confirm validity. A minimum of two simulations were run 
for each test, corresponding to a perfectly elastic material 
model and the proposed biphasic fibril-reinforced 
poroviscoelastic material model. Indenter tests were 
prepared to match the complete femoral knee compartment 
experiments of the female subjects of Vidal-Lesso et al. [41] 
as closely as possible (for more complete subject details refer 
to that paper). The compression test was similarly based 
upon the highly regarded FEM work by Li et al. [22]. These 
experiments and simulations were chosen due to restrictions 
on stability within the simulation. Because the stability is 
based upon the deformation of the non-fibrillar matrix, the 
fluid mass is currently not able to support in excess of 20% 
of the load. However, by increasing the permeability of the 
material (3 x 10-14 m4/Ns versus 1.522 x 10-15 m4/Ns of 
Wilson et al. [43]), short time relaxation to match the 
published results can be achieved via faster diffusion (i.e. the 
solid matrix component is stiffer but fluid diffuses more 
quickly, thereby decreasing the stiffness of the bulk material 
at a rate approximating the literature at short time spans). A 
Poisson’s ratio of 0.45 was selected to simulate 
near-incompressibility. 

Indentation tests 1 and 2 were created to match specimen 1 
of the work by Vidal-Lesso et al. [41], with a cartilage depth 
of 2 mm corresponding to a 5 particle thickness. Indentation 
tests 3 and 4 were created to match specimen 5 of the work 
by Vidal-Lesso et al. [41], with a cartilage depth of 3 mm 
corresponding to a 7 particle thickness. The cartilage 
thickness is constrained to the 1/2 mm initial particle spacing. 
Tests 1 and 3 were created as circular plugs 8 mm in diameter, 
while tests 2 and 4 were squares with 12 mm to each side. 
Creating both circular plugs and larger squares for similarly 
constrained simulations - with the larger squares having a 
greater similarity in surface area to the cartilage experiments 
of Vidal-Lesso et al. - allows for analysis of the effect of 
surface area on the simulations. In all indentation tests a 
circular indenter of 3 mm diameter applied a constant strain 
rate of 0.21 mm/s (as given in the above work; 0.07%/s strain 
rate equivalent) to achieve 0.5 mm displacement, followed 
by a relaxation period of 1.5s, and then an unloading period 
at the same rate. The compression test was similarly created 
to match the FEM work of Li et al. [22], where unconfined 
compression creates a 15% strain over a 15s period on a 3 
mm diameter plug followed by 15s of relaxation. In this case, 
the simulations were not intended to be capable of 
mimicking the relaxation phenomena of the longer time span 
of that simulation. Rather, the concern was instead that the 
reaction force match their results at peak strain, thereby 
validating the simulation procedure for a second type of 
scenario in addition to the indenter tests. 
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Table 1.  Material Parameters and Values Used in the Simulations 

Parameter Value Parameter Value Parameter Value 

0
Sρ  1096 kg/m3 ck [20] 150000 β [20] 7 

fluidρ  1000 kg/m3 pk [20] 50000 α [20] 0.1 

ε * 3.0 MPa η * 20 m  1.5 x 10-7 kg 

elasticε  [41] 4.81 MPa 0k * 3 x 10-14 m4/Ns t∆  1x10-5 s 

0E [43] 2.7 MPa 0
iϕ̂ * 0.7 h  1 mm 

Eε [43] 340.5 MPa γ  [20] 7   

ν  0.45 µ [20] 0.01   

*Tuned Parameter 

In a real case, a surgeon is not able to determine cartilage 
properties from a patient until that cartilage has been 
extracted during surgery. Therefore, for a preoperative case a 
set of predefined material parameters should be determined 
and used for all simulations. With this in mind, the material 
parameters were tuned by trial and error to indentation test 1 
so that the biphasic simulation matched the published 
experimental results of Vidal-Lesso et al, while still 
remaining reliably stable for all testing scenarios. These 
same parameters can be and were used for subsequent 
simulations. This avoids the necessity of tuning for each one 
(as would be necessary for a mass-spring simulation). 

Again, in the ideal case where the fluid mass is able to 
support a greater proportion of the load, the material 
parameters, and Young’s Modulus in particular, which in the 
biphasic simulations is an order of magnitude greater than 
the literature, could be made to reflect those values 
determined from experimentation. However, the material 
parameters used in these simulations need only be 
determined once for all subsequent simulations and they 
produce biomechanical cartilage behaviour that falls within 
the expected range in all cases (as will be seen in the 
following section), making them very useful for cases of 
preoperative evaluation where real tissue testing is not an 
option. Table 1 summarizes the material parameters used in 
the simulations. Gravity is ignored. 

3. Results and Discussion 
Figure 3 provides a visualization of Indenter test 4, which 

is the largest of the simulations with 6696 particles, and as 
such provides the most clarity for evaluation. Stress is 
represented as the average of the magnitudes of the principal 
stresses with increased brightness representing increased 
stress. At maximum strain (Figure 3b) the stress is 
concentrated around the area of the indenter, which over the 

following 1.5s spreads outward from that region due to the 
diffusion of fluid mass (Figure 3c). When the indenter is 
removed from the cartilage (Figure 3d), the material exhibits 
an area of low stress where the indenter had been because of 
lower fluid content, yielding a corresponding negative pore 
pressure. 

The snapshots shown in Figure 3 were taken during the 
simulation procedure as outlined in section 2. The only time 
when the material is in equilibrium is in Figure 3a. At the 
investigated rates of deformation there were no visible 
oscillations or vibrations exhibited by the particles in 
response to indentation. Upon numerical examination of 
individual particle fluid mass content, it becomes apparent 
that the stability of the system is highly dependent on the rate 
of deformation. At low rates there is very little fluctuation in 
the fluid mass. This fluctuation increases dramatically with 
increasing strain rate, eventually becoming unstable as the 
fluid mass attempts to balance between adjacent particles. 
This is the primary reason for the stability limit in these 
simulations, as it was found that a higher proportion of load 
could be borne by the fluid if rates of deformation were 
decreased. Lower deformation rates also allowed for a 
lowering of the solid matrix Young’s modulus closer to 
values presented in the literature, since more of the stress 
could be transferred to the fluid mass. It should be noted that 
the deformation rates in the presented simulations were 
reproduced from the work of Vidal-Lesso et al., where it was 
stated that the experimental parameters closely describe the 
rates experienced during walking. 

Figure 4 illustrates the component stresses in the material 
at peak stain. Figure 4a shows that the fibril stress is largely 
constrained to the top layer, and to a lesser extent the layer 
beneath, with additional stress occurring at the bottom 
corners of the sample. This agrees with what would be 
expected, as the indenter only causes tensile strain in the 
horizontal direction so that only fibres aligned to the 
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cartilage surface (superficial layer) and those oriented at 45 
degrees (middle layer) would contribute. The stresses in the 
bottom corners are the result of the indenter causing 
deformations of the bulk material, yielding stress 
concentrations. In contrast, the pore stress visualization in 
Figure 4b is more evenly distributed throughout the layers, 
since the porosity decreases from a maximum of 0.7 at the 
cartilage surface to 0.55 in the deep layer. 0.7 is the 
maximum advisable porosity for the material due to the 
aforementioned stability constraints.  

The one-sided nature of the collagen fibre stress 
distribution in Figure 4a is due to the inability of the custom 
scripts created for Maya 2013 to create a perfectly circular 
indenter, which is due to the small scale of the simulations. It 
is thought that the behaviour of fibres is correct considering 
the uneven indenter geometry and the lack of friction in the 

simulation. This appears to indicate that the method of 
establishing fibres between particles in a neighbourhood, 
while heavily simplified, is sufficient for simulating cartilage 
to the desired level of accuracy (that accuracy being within 
the normal range of cartilage behaviour reported in the 
literature).The reaction force results of the four indenter tests 
are presented in Figure 5. Reaction forces are calculated by 
the summation of the unequal forces experienced by 
indented particles according to Newton’s 2nd law. The 
elastic simulation of Figure 5a attains strong correlation to 
the experimental results of Vidal-Lesso et al., but is not as 
strongly correlated as the biphasic simulation, which also 
matches the relaxation response. Similar trends can be seen 
through all four indenter tests. The differences between 
Figure 5c and Figure 5d emphasize the necessity of matching 
the surface area of the simulations to the experiments. 

 
Figure 3.  Visualization of stresses in the particle system representing the cartilage in indenter test 4: a) t = 0s, b) t = 2.38 s, c) t = 3.88 s, d) t = 6.26 s 

 
Figure 4.  Visualization of component stresses at peak strain in indenter test 4: a) fibril stress, b) pore stress 
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Figure 5.  Indenter reaction force for biphasic and elastic simulations versus experimental [41]: a) Indentation test 1, b) Indentation test 2, c) Indentation 
test 3, d) Indentation test 4 

 
Figure 6.  Unconfined compression simulation results: a) Reaction force of elastic and biphasic (with and without void particles) simulations versus 
FEM results of Li et al. (“experimental”) [22], b) Component stress contributions and the total material stress 

Table 2.  Computational Results of Simulations 

EXPERIMENT SIMULATION PARTICLE # BOUNDARY # FRAMES/S CORRELATION -r 
Indentation 1 Elastic 1624 246 98.871 0.976742 
Indentation 1 Biphasic 1624 246 69.2433 0.98481 
Indentation 2 Elastic 4774 286 46.1606 0.993154 
Indentation 2 Biphasic 4774 286 32.8984 0.994124 
Indentation 3 Elastic 3206 246 62.7095 0.98623 
Indentation 3 Biphasic 3206 246 44.7148 0.992574 
Indentation 4 Elastic 6696 286 32.6161 0.98132 
Indentation 4 Biphasic 6696 286 23.2458 0.995798 
Compression Elastic 98 352 172.403  
Compression Biphasic 98 352 138.116   
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Two important points can be noted based on Figure 5. The 
first is that the larger surface areas of Figure 5b and Figure 5d 
provide stronger correlation to the experimental. The 
original experiments by Vidal-Lesso et al. were performed 
on complete compartments of specimens rather than on 
cartilage plugs, and so the larger surface area more 
accurately represents those experiments. The second point is 
that the elastic simulations of indenter tests 3 and 4, where 
there is a higher cartilage depth, significantly undershoot the 
anticipated force responses. The biphasic simulations are 
more strongly correlated, particularly in the case of indenter 
test 4 where the biphasic simulation is capable of 
reproducing the experimental results with a higher degree of 
accuracy.  

The reaction force results of the unconfined compression 
test are shown in Figure 6a. The longer time frame of this 
simulation allows the fluid mass more time to diffuse from 
the area of the indenter before the peak strain is reached so 
that less relaxation phenomena occurs in the biphasic 
simulations. The biphasic simulation that does not employ 
void particles to allow fluid mass to escape from the cartilage 
plug indicates a higher peak reaction force. This is expected 
since more fluid remains in the material to support the load. 
The biphasic simulation with void particles is approaching 
the elastic simulation force as the simulation continues, 
which is again to be expected since the solid components 
should support the entirety of the load in equilibrium.  

The stress contributions of individual component stresses 
are provided in Figure 6b. The total material stress (axial) is 
calculated by averaging the reaction force over the surface 
area. The component stresses are numerical results 
experienced by a sample compressed particle, and their 
summation is shown to approximately equal the calculated 
total material stress. The results are what should be attained 
given the restrictions of stability on the load bearing capacity 
of the fluid, with the pore stress an order of magnitude lower 
than the matrix stress. It should be noted that the contribution 
of the fibril stress is nearly absent (~2 kPa maximum). 
Unlike in the indenter tests, the strain is evenly distributed 
across the surface of cartilage, and expansion in the material 
in the horizontal direction appears to only occur in the deeper 
layers that are not restrained by horizontal fibres. However, 
this behaviour may be the result of the small simulation 
scale. 

Computational results are summarized in Table 2. 
Pearson’s correlation coefficient was calculated using the 
statistical package of Microsoft Excel 2007. Correlation was 
not calculated for the compression tests since the relaxation 
of the peak force does not match the results of Li et al. There 
is a mean drop in frame rate from elastic to biphasic 
simulations of 29.03% with standard deviation of 0.62. 
Correlation was calculated to be stronger for biphasic 
simulations except in the case of indentation test 3.  

Pearson’s correlation coefficient is provided as a rough 
conceptualization of the relationship between experimental 
(and in the case of Li et al., FEM) and simulated results at all 
levels of strain. However, this statistic is scale-invariant and 

so is inappropriate for determination of the viability of 
simulation results without an accompanying visual 
examination. From an examination of Figure 5c, the biphasic 
simulation does in fact produce superior results for this test, 
despite having a lower calculated correlation. 

It is worth mentioning again that the unconfined 
compression simulation (and indeed, all the rest) used 
parameters that were tuned to Indentation test 1, and so were 
not tuned specifically to this compression test. The high 
degree of accuracy of the results of this simulation in 
attempting to reproduce Li et al’s. FEM results is a testament 
to the applicability of this method to a great range of 
cartilage simulations. It should be noted that solid material 
simulation in SPH requires a greater volume of calculations 
in comparison to fluid SPH simulations (see for example [6, 
35]) and so computational speeds are not directly 
comparable. 

4. Conclusions 
A new method has been presented to simulate articular 

cartilage in indenter and unconfined compression scenarios 
using SPH. Biphasic fibril-reinforced poroviscoelastic 
simulations produced superior results to Hookean material 
models in all cases. The decrease in frame rate of 29.03% 
(with standard deviation of 0.62%) is considered to be 
acceptable for the attained increase in accuracy. This may 
also be the first solid SPH simulation that is capable of 
producing accurate reaction force results to deformations. 

The stability requirements of the simulations placed 
restrictions on the available research that could be used for 
comparison, since the vast majority of published results are 
focused on long-time compression rather than the short-time 
scenarios presented here. However, short time compression 
is likely more relevant to FAI since peak stresses occur 
during motion where articular cartilage does not demonstrate 
long term relaxation phenomena.  

While the tuned parameters from indentation test 1 
produced strongly correlated results in all subsequent tests, 
in the ideal case the stiffness and permeability parameters 
should be based on results determined through investigation 
of real cartilage samples. Increasing the stability of the 
simulations, in particular the fluid mass exchange, is 
therefore a primary concern with this procedure, but this 
cannot be accomplished by limiting particular variables since 
the fluid load support needs to be as high as possible to 
achieve closest approximations to experimental results. To 
alleviate this problem, an alternative to the simple leapfrog 
approach to integrating the particles of the solid portion of 
the material is suggested to be the next avenue of research, 
although it would have to be determined how to propagate 
the fluid flow in the material in this case, since it is currently 
performed in a Eulerian manner. 

Unlike in the case of the indentation tests, it was unclear 
how to represent localized stresses in the unconfined 
compression test other than with the method of division over 
the surface area of the material that was used by Li et al. This 
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is largely due to the current lack of a means to reduce all of 
the extremely complex interactions of the components to a 
single stress value that is relevant throughout the bulk 
material. 

The lack of friction in the simulation is a concern that 
needs to be addressed. Specifically, it was necessary to 
restrain the bottom layer of the plugs from lateral movement 
otherwise the entire pieces would slide out from beneath the 
indenter without causing deformation. However, it should be 
noted that due to boundary lubrication and other mechanical 
effects, the real interaction between cartilage surfaces in a 
joint is nearly frictionless. 

The simulations were validated against knee compartment 
indentation experiments and FEM compression simulations 
found in the literature. In the future, “short time” 
experiments (as opposed to the 100 ~ 1000 second 
experiments that comprise the majority of published work) 
on articular cartilage extracted from the hip joint to 
determine material parameters and behaviour would provide 
a more suitable basis for validation. However, it is thought 
that the studies used for comparison in this work provide 
sufficient accuracy. 

The four tuned parameters as indicated in Table 1 above 
were found to be essential to the stability of the simulations. 
They were determined by a rigorous trial and error 
methodology that arrived at the values given that allow for 
the full range of material behaviour presented in the works of 
Vidal-Lesso et al. experiments and Li et al. simulations to be 
reproduced. Therefore it is highly recommended to use these 
same values in the reproduction of this work until the 
stability issues can be resolved. Nevertheless, although these 
parameters are not analogous to their real material 
equivalents, the material behaviour, suggested here to be a 
far more relevant consideration to a preoperative simulation 
of impingements, matches that expected of cartilage. 

CUDA was found to have a 1.5X to 2.4X increase in 
computational speed over host code in these simulations. 
However, although the frame rates presented in Table 2 
could be argued to be interactive, they do not represent a 
real-time simulation. It was found to be necessary due to the 
high material stiffness to decrease the time step 
corresponding to each frame to an extremely small size. It is 
thought that an improved integration method could also 
allow for a significant increase in time step size.  

There is currently a 60,000 particle limit in the simulation, 
which was sufficient for the current simulations. However, a 
simulation of a complete hip joint for preoperative purposes 
may require significantly more particles than this. Since this 
limit was found to be directly relatable to the amount of 
onboard memory of the GPU (an investigation not shown in 
this paper), this limit could be increased by the use of a more 
powerful video card than the 2GB card used for the current 
simulations. Alternatively, it may be possible to devise a 
method of sending the particle data in batches to the video 
card to be operated upon rather than in bulk. 

An important adjustment to the visualization of the 
simulations that needs to be made in the future is to provide a 

stress magnitude correlation to the displayed colour. 
Currently, the colourization is only provided for analysis of 
general trends, and actual stress values are determined from 
internal investigation of the resulting numerical values of 
individual particles. Such an adjustment would make the 
simulations much more pleasant to analyze. Nevertheless, 
the visualization in its current state does not detract from the 
accuracy of the reaction force results. 

It is suggested here that the current research has reached a 
level of maturity to warrant the creation of an MRI-based 
simulation of a hip joint for further testing.  
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