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Abstract  In ultrasound contrast imaging, the bubble size is essentially time varying, which makes the power of bubble 
echoes decrease in time. The echo strength of bubble is dominated by resonance, which is bubble size and driving frequency 
dependent. To optimize SNR and CTR, the imaging frequency must be changed adaptively. An analytical technique, named 
SCS (scattering cross section) method, for optimal transmission frequency (TxF) selection is proposed. The optimal TxF is 
selected to be the frequency that the total SCS of a given bubble mixture is maximized. Based on scattering theory of 
microbubble, the SCS of microbubble can be computed analytically. For quantifying the performance of the SCS method, a 
power improvement factor of the optimal TxF is defined. The optimal TxF and improvement factor predicted by the SCS 
method for test cases with different bubble size distributions are presented to show the properties of the SCS method. To 
show the correctness of the SCS method, improvement factors of the test cases are validated using simulation signals, which 
are generated by BubbleSim using the optimal TxF predicted by the SCS method. Properties of optimal TxF are exploited 
using the SCS method. It is found that the optimal TxF is closely related to the resonant frequency of bubbles and the use of 
optimal TxF is more important for large bubble than for small bubble. 
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1. Introduction 
For contrast imaging of blood flow, the quantity of 

microbubbles changes in the perfusion region of interest 
and generally the microbubbles have a time varying size 
distribution. From size distribution measurements, it can be 
seen that there is a substantial decrease in mean bubble size 
and in volume fraction of agent with increasing flotation 
times [1,2]. Soetanto and Chan measured the size 
distributions of microbubbles and observed that the 
distributions were nearly normal distributions and shifted 
gradually to small sizes over time [3]. Hoff also obtained 
the similar results, where size distributions were measured 
by the Coulter Multisizer [4] after varying flotation times.  

The time varying size property of microbubble will make 
harmonic images time varying and frequency sensitive. 
Krishna and Newhouse measured the characteristics of 
harmonics of different contrast agents and found that the 
first harmonic decayed more rapidly with time than the 
second harmonic [5]. Shi and Forsberg showed the 
amplitudes of the harmonics are time-dependent and  
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quite different for 2-MHz insonification compared to 
4-MHz insonification [6]. 

Since bubble echo depends greatly on resonance, which 
is size and frequency dependent; therefore optimal 
transmission frequency (TxF) selection is essential to 
maximize the backscatter power of microbubbles for 
contrasting imaging to increase SNR. Toilliez et al. [7] and 
Wyczalkowski [8] et al. proposed optimal techniques to 
enhance bubble scattering and maximized bubble 
translation. Reddy and Szeri focused on optimizing the 
driving pulse to exploit the transient response for 
pulse-inversion imaging [9]. Menigot et al. suggests 
Gradient ascent method to find the optimal frequency 
adapted to microbubble [10]. Kaya et al. assessed the 
acoustic response of lipid-encapsulated monodisperse 
microbubbles in response to different excitation frequencies. 
They investigated means to achieve optimal acoustic 
response based on the relationship between resonant 
frequency of microbubbles and center frequency used for 
transmission [11]. Moon et al. measured microbubble echo 
signals at various frequencies. They found driving a specific 
frequency in harmonic mode is capable of maximally 
resonating micrbubbles with a narrow size distribution 
could enhanced ultrasound imaging [12].  

Optimal TxF can be found using simulating echo 
responses based on bubble oscillation model, whose results 
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were shown to be in a good agreement with experimentally 
measured echoes [11]. For this method, each TxF must be 
considered as input of the simulation model and it costs 
much time to solve the Raleigh-Plesset equation. 

In this paper, we propose a theoretical method to search 
the optimal TxF, which yields maximal power for harmonic 
chirp imaging [13] and does not need to solve the 
Raleigh-Plesset equation. This method is based on the 
scattering cross-section of microbubble given by Church 
[14] to model the bubble harmonic backscatter power for 
chirp excitation. In this way, the second harmonic 
backscatter power can be derived as a function of the 
second harmonic scattering cross-section, bubble size 
distribution and square of the transmission signal, which is 
a function of the TxF. Then the optimal TxF can be taken to 
be the frequency that can yield maximal power among all 
possible frequencies. For convenience, this method is 
named SCS (Scattering Cross-Section) method. 

In the follows, the theories for required computations are 
given in section II. Definitions of the SCS method is given 
fist. For comparison, a method for optimal TxF selection 
using simulation signals is presented next. In order to verify 
the SCS method, the improvement factor predicted by the 
SCS method is compared with that predicted by simulation 
signals generated by BubbleSim [15] in section III. Some 
properties of the optimal TxF found by SCS method are 
presented in section IV. For convenience, the equations of 
[14] used in this study are digested and put in the appendix. 

2. Theories 
2.1. Optimal TxF Selection Based on SCS 

Based on Church’s formulation [14], for a microbubble 
coated with an elastic solid shell, its second-harmonic SCS 
can found to be a function of driving frequency, f, as

2 ( ; )S f rσ , where r is the radius of microbubble. For 
convenience, the equations of [14] used in this study are 
digested and put in the appendix. They include the resonant 
frequency (A.1) and scattering cross-sections of first and 
second harmonics (A.2 and A.3). 

For a mixture of bubbles with size density ( ; )w r r , its 
second-harmonic SCS can be expressed as sum of the 
individual second-harmonic SCS's of bubbles with different 
sizes as: 

2 2( ; ) ( ; ) ( ; )S
r

f r w r r f rσ σΣ =∑          (1) 

where r  is the mean bubble size, and 2 ( ; )f rσΣ  is 
named TSCS (Total Scattering Cross-Section). Since 

2 ( ; )S f rσ  is an analytic solution of the RPNNP bubble 
equation, its value can be computed easily. 

In this study, the bubble size density, ( ; )w r r , is 
assumed to have a Gaussian distribution with r  being the 

mean bubble size and the standard deviation being rσ     
[1, 4]. Since the Gaussian function is an unimodal function, 
the TSCS is an unimodal function of driving frequency also. 
This ensure that, for a given bubble size distribution, there is 
an unique optimal driving frequency cof , which can be 
found as 

{ }2arg max ( ; )co
f

f f rσΣ=           (2) 

This is the SCS method for finding the optimal driving 
frequency for a mixture of bubbles. 

2.2. Optimal TxF Selection Based on BubbleSim Signals 
BubbleSim is a simulation program developed by Hoff for 

solving the nonlinear bubble equation to get the bubble echo 
signal ( )y t  for a given driving signal ( )x t  [15]. Unlike 
the SCS of bubble, the result of BubbleSim can provide 
much detail information about the bubble echo. This 
includes the effects of amplitude, frequency, waveform of 
the driving signal and other bubble characteristic parameters. 
For the convenience in specifying the harmonics of the 
bubble signal with different bubble size, the driving and 
bubble signals will be denoted as ( ; , )cx t f r  and 

( ; , )cy t f r  when necessary, where cf  is the center 
frequency of the driving signal and r is the bubble radius.  

As in the SCS method, the total power of the second 
harmonic of bubble echo can be found as  

2 2( ; ) ( ; ) ( ; )c c
r

P f r w r r P f rΣ =∑       (3) 

where 2 ( ; )cP f r  is the second-harmonic power (SHP) of a 
bubble with radius r. One way to find the SHP is to use the 
pulse inversion technique [15, 17], which needs to transmit 
two phase-inverted driving signals to find the second 
harmonic, 2 ( ; , )cy t f r , of ( ; , )cy t f r . By Fourier transform, 
the power spectrum of the second harmonic can be found to 
be 

2
2( | , ) [ ( | , )]c cU f r f FT y t r f=     (4) 

Then the SHP can be found to be 

2

2
2 ( | ) ( | , )

f B
c cf B

P f r U f r f df
+

−
= ∫      (5) 

where 𝑓𝑓2(= 2𝑓𝑓𝑐𝑐)  is the twice of TxF  and B  is 
bandwidth of driving signal.  

As in the SCS method, the optimal driving frequency, 

cof , can be found as 

{ }2arg max ( ; )
c

co c
f

f P f rΣ=        (6) 

This is the BubbleSim method to find the optimal driving 
frequency for a mixture of bubbles. It is noted that, to find 
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the total second harmonic power, 2 ( ; )cP f rΣ , the bubble 
equation must be solved for different bubble sizes, which is 
very time consuming. Even more serious is that the total 
second harmonic power must be computed for different 
driving frequencies to find the optimal driving frequency, 

cof . This will be prohibitive for practical usage. 

3. Simulation Studies 

3.1. The Use of SCS Method 
For demonstrating the SCS method, the TSCS's of three 

different mixtures of bubbles are computed for optimal TxF 
selection. The mean bubble sizes used are 2, 1.5 and 1 μm 
and the standard deviation of bubble size is set by 

0.3r rσ =  . For each bubble, the SCS of second harmonic 
are computed using Eq. A.3 with the following settings:  

 

 

 
Figure 1.  The TSCS of second harmonic for three types of bubble mixtures 
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Shell thickness = 4 nm, Shell shear modulus = 50 MPa, 
Shell viscosity = 0.8 Pas, Ambient pressure = 100 KPa, 
Polytropic exponent = 1, Viscosity of the liquid = 0.001 Pas, 
Density of the surrounding liquid = 1000 kg/m3 and Density 
of the shell material = 1100. 

Three TSCS's are shown in Fig. 1. In each figure, the 
values of TSCS at two TxF's are given and marked with 
dashed arrows. One is the optimal TxF and the other is 2.25 
MHz for comparison. The TSCS of a TxF is represented as 
P(TxF); for example, in Fig. 1-a, "P(1.70 MHz) = - 96.4 dB" 
means that the TSCS at 1.70cof = MHz  is - 96.4 dB. The 
TxF, 2.25MHz, is chosen to be a reference case for showing 
the performance of the optimal TxF and it represents a 
non-adaptive situation that use a fixed TxF, 

0 2.25f = MHz , despite of the change of bubble size. In dB 

scale, the difference, 0( ) ( )coP f P f− , is the improvement 
factor (IF) of the optimal TxF relative to the reference TxF, 

0f . For the three types of bubble mixture, the improvement 
factors of using the optimal TxF are 2.5, 0.3 and 7.4 dB.  

3.2. Verification of the SCS Method by BubbleSim 

Although the proposed SCS method can find an optimal 
TxF for a given bubble mixture without solving the bubble 
equation, its result has nothing to do with the driving signal. 
In imaging applications, the driving signal is pulsed and 
bandlimitted, which may have complicated effects on bubble 
echo due to the nonlinearity of bubble. However this is not a 
problem for the BubbleSim method, since BubbleSim solves 
the bubble response for a given driving signal. To verify the 
usefulness of the optimal TxF predicted by the SCS method, 
the IF's of the optimal TxF's shown in last section are 
examined using BubbleSim method. 

The power of bubble responses to a chirp signal driving at 
the optimal TxF are found by BubbleSim for comparison 
with that of the non-adaptive case. The chirp signal is set to 
have bandwidth = 1 MHz and transmission acoustic pressure 
= 50 KPa, and is shaped by a Hanning window to have pulse 
length = 10 μs. In BubbleSim, the bubbles are simulated 
using the modified Raleigh-Plesset equation with parameters 
set as in [15]: Shell thickness = 4 nm, Shear modulus = 50 
MPa and Shear viscosity = 0.8 2/Ns m .  

The simulation results are presented using the PSD (Power 
Spectral Density) of bubble echoes. The PSD of the echoes 
of a bubble mixture is defined as: 

( ; , ) ( ; ) ( ; , )c c
r

S f f r w r r U f f r=∑      (7) 

where ( ; , )cU f f r  is the power spectrum of the second 
harmonic of bubble echo as defined in (4). The second 
harmonic of bubble echo is extracted by the pulse inversion 
technique and ( ; )w r r  is the bubble density.  

 

 

 
Figure 2.  The PSD of second harmonic for three types of bubble mixtures 
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driven by the reference frequency. Since they are PSD's of 
simulation signals, they are affected by non-suppressed 
harmonics. For the black one, its main response is located at 
3.4 MHz, which is the second harmonic of TxF = 1.7 MHz, 
and the other response at 6.8 MHz is the fourth harmonic. 
Similar results can be found for the reference case. Based on 
the PSD's, the IF can be found to be 1.3 dB for the 2 μm 
bubble mixture. For the other two type of bubble mixtures, 
the improvement factors are 0.2 and 4.3 dB. 

Comparing the above results to the SCS method given in 
Sec. III-A, the following observations can be found. For the 
three types of bubble mixture, the IF's predicted by the SCS 
method are 2.5, 0.3 and 7.4 dB and the IF's predicted by the 
BubbleSim method are 1.3, 0.2 and 4.3 dB, which are all 
smaller than those predicted by the SCS method. Although 
the IF's predicted by SCS method may be too promising, the 
optimal TxF's predicted by SCS method do yield power 
improvements as verified by BubbleSim.  

There are two major reasons that make the simulation 
results different from the predictions by SCS method. (1) By 
definition, SCS is the intensity gain of a bubble excited by 
infinite long sinusoidals, which is different from the pulsed 
signal used in BubbleSim. (2) The SCS given in [14] was 
derived based on the analytical solution of the RPNNP 
bubble equation, which is an approximate solution under 
weakly nonlinear assumption. This assumption is not 
required in BubbleSim. Therefore the results of BubbleSim 
are not so restricted as those of SCS method. 

For further verification, the IF's of SCS method are 
examined for 8 different bubble densities with mean bubble 
size being decreased from 3μm to 0.4μm as: 3μm, 2.5μm, 
2.0μm, 1.5μm, 1.0μm, 0.8μm, 0.6μm and 0.4μm. The 
corresponding optimal TxF's predicted by the SCS method 
are 1.02MHz, 1.28 MHz, 1.7MHz, 2.45 MHz, 4.01 MHz, 
5.19 MHz, 7.19 MHz and 11.57 MHz. As above, the 
reference one uses 0 2.25f = MHz  for all 8 cases to predict 

the IF's of the optimal TxF's. Then the IF's of the optimal 
TxF's are evaluated by BubbleSim using the same setting as 
before. The IF's are shown in Fig. 3. 
Comparing the optimal TxF's with the reference frequency, it 
can be found that: 

1) The 1.5μm bubble mixture (optimal TxF = 2.45MHz) 
is the one that closest to the reference case (Txf = 
2.25MHz). 

2) The optimal TxF's increase as mean bubble sizes 
decrease. 

3) The change of optimal TxF's increase as the mean 
bubble sizes decrease, especially when it crosses the 
reference case; this means that the sensitivity of TxF's to 
bubble size is higher for small bubbles than for large 
bubbles. 

Comparing the IF’s for different cases, it can be found that: 
1) The sensitivity of IF to TxF is higher for large 

bubbles (on the LHS of Fig. 3) than for small bubbles (on 
the RHS of Fig. 3). This property is a consequence of the 
scattering property of bubble, which can be confirmed by 
comparing the TSCS’s given in Fig. 1. The shape of the 
TSCS around cof , given in Fig. 1-a, is sharper than 
those given in Fig. 1-b and 1-c; this means that the TSCS 
of large bubble is more sensitive to TxF than that of small 
bubble.  

2) A general property of the IF’s is that IF increases 
monotonically as the distance between the optimal and 
reference frequencies, i.e., 0cof f− , increases. 

3) The IF’s predicted by the SCS method is in general 
larger than those predicted by BubbleSim. However, since 
these two predicted IF’s are proportional to each other, 
this is enough to confirm that the SCS method is a proper 
technique for optimal frequency selection for varying 
bubble size distribution. 

 
Figure 3.  Improvement factor verification for different mean bubble sizes: 3.0μm ~ 0.4μm 
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4. Properties of the Optimal TxF 
The reason that bubble echo intensity can be optimized by 

TxF is due to the resonant property of bubbles. For a bubble 
mixture of different sizes, which is known as poly-dispersive 
bubbles, the bubbles are excited to different degree of 
resonances; its optimal TxF depends on the mean size as well 
as the size spread of the mixture. To see the effect of 
bubble-size spread on the optimal TxF, the optimal TxFs for 
three types of bubble mixtures are found, using the same 
parameter setting as in section III.A, and plotted in Fig. 4. 
The mean bubble size ( r ) is varied from 0.5 to 5μm and the 
standard deviation of bubble-size is set by r crσ = , with 
c =  0, 0.1 and 0.3 .  

When 0rσ = , it is the case of mono-dispersive bubble, 
i.e., single-sized bubble. The optimal TxF for a bubble with 
radius r  is defined by its SCS at its resonant frequency, i.e., 

2 0( ; )S f rσ , where 0f  is the resonant frequency. This is the 
simplest case that the optimal TxF is just the resonant 
frequency, which is the red curve in Fig.4 computed using Eq. 
A.1. In general, the resonance frequency of bubble is 
inversely proportional to bubble size. This property can not 
be observed easily based on the resonant frequency given by 
Eq. A.1, since it is not a simple function of bubble size. 
However, based on other formulations, such as the resonant 
frequencies given in [4] and [18], the resonant frequency of 
microbubbles can be approximated as a function of 1r− . 
When bubble particle is described by its bulk modulus pK , 

its resonance frequency can be expressed in a simple form as 
given by Minnaert 

31
2

p
MR

L

K
f

rπ ρ
=                  (8) 

where Lρ  is the density of surrounding liquid. 

Apparently, the optimal TxFs of poly-dispersive bubble 
cloud (green and blue) follow the trend of the resonance 
frequency of single-sized bubbles. This shows that the 
resonance frequency and SCS of mono-dispersive bubbles is 
useful for inferring the optimal TxF of poly-dispersive 
bubble cloud. In general, The resonant frequency increase as 
mean bubble sizes decrease, so is the optimal TxF. As the 
property of resonant frequency, it can be said that the optimal 

TxF is roughly proportional to 1r − , if the size spread is 
small. In addition, Fig. 4 shows that the optimal TxF of a 
poly-dispersive bubble cloud with size distribution 
parameters ( , )rr σ  is lower than the resonance frequency 

of single-sized bubble with r r= . The larger the rσ  is, 
the lower the optimal TxF is. This is due to that bubble power 
can be maximized by reducing TxF to excite larger bubbles 
( r r> ) to resonant when rσ  is large. 

As done in the comparison study of last section, by 
observing the three TSCSs given in Fig.1, it can be found 
that a general property of the TSCS of second harmonic is 
that the TSCS of large bubble has small spread (or width) 
and vise versa. The width of TSCS can be defined as the 
resonant-bandwidth (RBW) of TSCS. In principle, smaller 
RBW means that the IF of bubble echo power is more 
sensitive to TxF. To further exploit this property, the RBW 
of the SCS of mono-dispersive bubbles are computed and 
plotted in Fig.5 (red) along with the resonant frequency 
(blue). It is found that the RBW of the SCS follows the trend 
of resonant frequency. Large bubble has small resonant 
frequency as well as small RBW; this confirms that the IF of 
large bubble is more sensitive to the use of optimal TxF than 
that of small bubble. In other words, the power sensitivity of 
large bubble is higher than that of small bubble. This 
property sets a conclusion that the use of optimal TxF is 
more important for large bubble than for small bubble. 

 
Figure 4.  Optimal TxF for different size spread 
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Figure 5.  Resonant frequency and bandwidth (RBW) for bubbles with 
different size 

5. Conclusions 
For optimizing the SNR in contrast imaging, an analytical 

technique, named SCS method, for optimal transmission 
frequency selection is proposed. The correctness of the SCS 
method is validated using simulation signals generated by 
BubbleSim.  

Based on results of the test cases, it is found that the 
sensitivity of TxF's to bubble size is higher for small bubbles 
than for large bubbles; however, the sensitivity of IF to TxF 
is higher for large bubbles than for the small bubbles. Based 
on the RBW of SCS, it is concluded that the use of optimal 
TxF is more important for large bubble than for small 
bubble. 

Since the SCS method is an analytical technique, it is 
computationally efficient and can be the basis for developing 
an adaptive TxF selection technique. However, it needs the 
knowledge about bubble size distribution. To be an adaptive 
technique, bubble size distribution must be estimated in time. 
This calls for a technique to estimate the time-varying bubble 
size distribution based on bubble echoes. 
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Appendix 
The resonant frequency and scattering cross-section of 

microbubble digested from [14] are given below. The linear 
resonant frequency 0 0 2f ω π=  can be predicted by: 

( )
312 2 2 011

0 01 0 4
01 02

3
01

3 3
02 02

223

34 1 1

S

S S

RR P
R R

V G RZ
R R

σσω ρ α κ
− = − −


   + + +       
                   

 (A.1) 

with  

( )
3

1021 2

01 02

2 2 4 S
S

RZ G
R R V
σ σ −  

= +   
    

 

and 
3 3
02 01SV R R= − . 

The scattering cross-section for the first and second 
harmonics of a bubble coated with an elastic solid and driven 
by of an incident frequency of ω  are predicted to be 

2 4 2 2
01 1

1 2 2
4( ) L

S
S

Rπ χ ρσ
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Ω
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   (A.3) 

where 
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1/22
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