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Abstract  Non-invasive electroencephalography (EEG) based brain-computer interface (BCI) is able to provide an 
alternative means of communicat ion with and control over external assistive devices. In general, EEG is insufficient to obtain 
detailed information about many degrees of freedom (DOF) for arm movements. The main objectives are to design a 
non-invasive BCI and create a signal decoding strategy that allows people with limited motor control to have more command 
over potential prosthetic devices. Eight healthy subjects were recruited to perform visual cues directed reaching tasks. Eye 
and motion  artifacts were identified and removed to  ensure that the subjects’ visual fixation to the target  locations would  have 
litt le or no impact on the final result. We applied a Fisher Linear Discriminate (FLD) classifier to perform single-trial 
classification of the EEG to decode the intended arm movement in the left , right, and forward directions (before the onsets of 
actual movements). The mean EEG signal amplitude near the PPC region 271-310ms after visual stimulation was found to be 
the dominant feature for best classification results. A signal scaling factor developed was found to improve the classification 
accuracy from 60.11% to 93.91% in the binary class (left versus right) scenario. This result demonstrated great promises for 
BCI neuroprosthetics applications, as motor intention decoding can be served as a prelude to the classification of imagined 
motor movement to assist in motor disable rehabilitation, such as prosthetic limb  or wheelchair control. 

Keywords  Brain  Computer Interface (BCI), Classification, Electroencephalogram (EEG), Movement Intention, 
Posterior Parietal Cortex (PPC) 

 

1. Introduction 
Brain Computer Interface (BCI) is a frontier research 

area in neural engineering that has gathered a great deal of 
attention from scientists and the general public. BCI 
technology allows communicat ion to occur between the 
brain and an  external machine[1], and its application can 
range from entertainment to assistive devices[2]. In a 
typical BCI system, the brain activit ies are recorded and 
processed by a computer system, which in turn, deciphers 
the mental or physical activ ities and creates commands to 
control external devices[3, 4].  

One of the goals in BCI and neural engineering research 
is creating assistive devices for those with limited motor 
control. A successful BCI system is valuable in  motor 
disable rehabilitation by allowing the subjects to perform 
physical practices[5]. Th is type of technology would 
drastically improve the quality of life fo r the patients by 
allowing these indiv iduals to have better communication 
and more independent control[6, 7].  

 
* Corresponding author: 
dr.alan.chiu@gmail.com (Alan W. L. Chiu) 
Published online at http://journal.sapub.org/ajbe 
Copyright © 2012 Scientific & Academic Publishing. All Rights Reserved 

The operation of tradit ional electromyogram(EMG) 
based controlled prosthetics is based on the decoding of 
myoelectric signals of residual muscles[8, 9]. While these 
devices provide more basic control over the prostheses, 
certain limitations restrict their acceptability. Users with 
severely limited motor ability would require much effort to 
learn how to contract specific muscle groups in order to 
control the device. Therefore, the need to create a more 
intuitive control strategy based on the user’s naturally 
occurring brain signals is apparent. 

The BCI technology today encompasses invasiveelectroc
orticography (ECoG), implanted electrodes, or non-invasive 
electroencephalography (EEG)[10]. Current literature 
suggests that EEG is adequate to extract detailed 
informat ion about precise movements of the upper limb[11]. 
For our study, non-invasive techniques based on EEG 
surface potentials appear to be a more sensible method for 
collecting and processing data[12-14] for neuroprosthetics 
applications with relatively  few DoF. Real-t ime signal 
classification based on the activation and feature extraction 
from part icular brain  regions can allow for the control of the 
assistive devices.  

When examin ing the neuronal activities for BCI 
applications, the signal intensity or signal power features 
has been commonly used for decoding user movement 
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intents. The posterior parietal cortex (PPC) reg ion is 
responsible for converting visual stimuli into motor 
movements[15] and is a vital location for decoding intended 
motor movement[12]. While most other research focused on 
discriminating EEG signals between left hand, right hand, 
toe, and tongue imagined movement[16, 17], our study 
endeavors to decode and classify EEG signals for the 
intended movement direction of the same limb, leading to a 
more realistic control o f a single upper limb prosthetic 
arm[18]. Single-trial signal classification strategy was 
developed to evaluate the temporal, spatial, and spectral 
EEG features during the planning stages of motor 
movements in the left, right, and forward direct ions similar 
to[19-21]. Ultimately, such classification algorithm will be 
a part of a  two-stage neuroprosthetics control strategy. In 
the first stage, the intended motor movement directions can 
be decoded using EEG signal features. The second stage is 
envisioned to be a motor imaginary classifier. In this paper, 
we shall focus our discussion on the classification of motor 
intention only.  

Since the presentation of the visual cues does not 
influence the performance[22], we used “realistic” instead 
of “abstract” visual-cue in order to avoid a tedious 
calibrat ion procedure. Furthermore, realistic visual image 
environment may enhance learning progress[23]. Ensemble 
Empirical Mode Decomposition (EEMD), where the signals 
are decomposed into intrinsic mode functions (IMF)[24], 
was utilized to isolate the frequency information in the 
training set.  

We developed and validated the use of scalp EEG data 
and current density localization for intended movement 
direction analysis. Subsequently, we evaluate the feature 
classification strategy suitable for distinguishing the brain 
activity associated with the intended hand movement. 
Potential variat ions in electrode impedance at different 
recording locations and at different recording t imes may 
drastically impact the amplitude and signal-to-noise ratio 
(SNR) o f the EEG s ignals. Finally, we proposed and 
evaluated a scaling factor based on the “signature” EEG 
signal after the presentation of the visual-cues. We 
hypothesize that such scaling factor is able to compensate 
the potential problems of electrode impedance differences 
between trials and across different locations. Our 
preliminary result indicated that the inclusion of such a 
scaling process would significantly improve the overall 
single-trial classification accuracy. In a two-class decoding 
scheme, the accuracy improved from approximately  60% to 
over 90% with the scaling factor. The implicat ion of this 
work would have direct impact on the acceptability of the 
BCI neuroprosthetics application as the new device will 
function based on user’s intent, which can provide a more 
intuitive control parad igm, for simple device control with 
few DoF. 

2. Methods 

The experimental procedure for investigating the motor 
intention using targeted BCI is shown in Figure 1. It involves 
the design of a v isual stimulat ion system, an  EEG data 
acquisition system, a signal p re-processing unit, an art ifact 
removal algorithm, a feature extraction method, and a signal 
classifier. The detail for each step is provided in the 
subsequent sections. The method for computing the 
visual-cue based scaling factor is proposed and described in 
the feature extraction section. 

 
Figure 1.  A flow chart describing overall experimental procedure for 
decoding the reaching tasks during the planning stage. The visual 
stimulation was provided to subjects for recording intended movement 
direction EEG signal. The suitable scaling factors which applied to the 
signal amplitude features in the test set were obtained after artifact removal. 
A 5x5-fold cross validation procedure was performed to determine the 
overall accuracy 

2.1. Visual Stimulation and EEG Data Acquisition 

2.1.1. Part icipants 

Eight able-body participants with normal or corrected to 
normal eye sight (6 males and 2 females, age 19-29, all right 
handed users) were recruited in this study. All of the subjects 
had no prior experience with BCIs and no history of 
neurology disorders. The protocol has been approved by the 
Institutional Review Board for Human Use (IRB) at the 
Louisiana Tech University. All part icipants had read and 
signed an informed consent. 

2.1.2. Task and St imuli 

 

Figure 2.  The experimental setup is illustrated. Touch pads (circles) are 
placed at the base (resting) position and at the targets of the reaching tasks 
(left, right, and forward) to track whether the subject has performed the tasks 
correctly 

The experimental setup is shown in Figure 2 where the 
subjects were seated in front of a computer screen and given 
visual cues from the computer monitor. Touch pad sensors 
were placed at the middle and to the sides of the monitor to 
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track the subject responses. In order to obtain useful signals 
for the fast interpretation, the BCI task should be relatively 
easy to perform and require little effort from the users to 
prevent physical or mental fatigue[10]. In order to do so, a 
targeted delayed saccade/reach task was used in this study. A 
minimum of 450 trials were performed by each subject. The 
recording sessions were broken into blocks (90 trials / block), 
separated by 5 min b reaks in between.  

The sequence of each trial is shown in Figure 3. At the 
beginning of each trial, each subject was asked to relax the 
forearm and place the palm on the touch pad at the base 
position 40 cm away from the screen. Visual cues were 
provided using the E-Prime 2.0 system (Science Plus Group, 
Netherland) to info rm the subjects of the proper movement 
to perform in a dark room. Two types of visual cues were 
provided. First, the “Effector cue” was d isplayed 500 ms 
after the beginning of each trial. It instructed which 
movement type the users should perform (imaginary 
movement with  eyes closed, reach without eye movement, or 
saccade to target). The second visual cue, called the 
“Direction cue” was shown at the center of the screen 1000 
ms after the “Effector cue”. It informed the user of the 
appropriate reaching directions (left, right, or forward). The 
subjects were asked to fixate on the center of the screen until 
the “Go cue” appears 700 ms after the “Direction cue”. They 
were then asked to perform the indicated actions as quickly 
as possible after the appearance of the “Go cue”. The nine 
different “Effector – Direct ion” combinations were evenly 

distributed and randomly provided over the whole 
experiment. 

 
Figure 3.  T ime course of one trial is illustrated. The 700ms delay period 
between the presentation of the “Direction cue” and the “Go cue” is 
considered the period of directional movement planning. The EEG data 
within this t ime window is used for the analysis 

2.1.3. Apparatus 

The EEG evoked response potential (ERP) signals were 
recorded using a 128-channel HydroCel Geodesic Sensor 
Net (Electrical Geodesics Inc., Eugene, OR) with the 
Net-Station 5.3 software. Figure 4 shows the electrode 
placement as viewed from the top of the head and regions of 
interest around the PPC. A ll signals were anti-aliasing 
low-pass filtered at  100Hz, and digit ized at a  sample rate of 
256Hz. 

 
Figure 4.  The channel map for 128 electrodes is shown with electrode number labeled. The illustration is observed from the top of the subject’s head with 
the front of the head pointing upward. The regions of interest near the PPC are circled 
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2.2. Signal Pre-processing and Artifact Removal  

The EEG data was digitally  filtered between 0.1~30 Hz. 
Since this project focused only on the analysis motor 
intention prior to any actual movements, all three different 
effectors were included and combined in  the analysis. The 
data was separated into three groups (left, right, or forward) 
based on the “Direction cues”. Bad channels, as the results of 
poor skin contact, eye blink, eye movement, or muscle 
movement were detected based on their particular signal 
characteristics and abnormal amplitude informat ion, were 
replaced by the averaged signals from neighboring channels 
using NetStation built-in functions. Only those artifact-free 
epochs (with amplitude <50μV) were used for further 
analysis. The data was also re-referenced to the average 
signal across all 128 electrodes. The 100ms before onset of 
each trial was used for baseline correction adjustments.  

2.3. Offline Source Localization Validation 

Source localization was performed offline as a way to 
validate that the activated brain regions of our recorded data 
is consistent with the literature. The process described in this 
subsection would not be needed in the real-time 
implementation of the motor intention decoder. Independent 
component analysis (ICA)[25] was first performed using the 
extended Infomax-ICA algorithm in the EEGLAB tools[26] 
to find the maximally temporally  independent signals 
available[27]. Figure 5 illustrates the averaged signals across 
all the recording trials before and after the removal of eye 
motion  artifact. The DIPFIT 2.0 algorithm was then used to 
estimate the dipole sources of the remaining independent 
component (IC) after spatial filtering[26]. The dipoles were 
projected onto the boundary element mode in EEGLAB then 
plotted on the average MNI (Montreal Neurological Institute) 
brain images[28]. The source locations were then specified 
using the Talairach coordinate system. Dipole locations from 
the source localizat ion algorithm would  not be used in the 
single-trial classification of arm movement direction since it 
is a time consuming process. 

 
Figure 5.  EEG signals before and after spatial filtering is shown. The 
signal for each channel is averaged across all trials prior to ICA spatial 
filtering. An example of eye artifact is seen in the EEG spatial map around 
305ms. The averaged signal for each channel after ICA spatial filtering is 
shown at the bottom subplot 

2.4. Ensemble Empirical Mode Decomposition 

Ensemble empirical mode decomposition (EEMD) is a 
data-driven analysis method that separates the signal into a 
collection of intrinsic mode functions (IMFs). It is a 
powerful approach for analyzing nonlinear, non-stationary 
EEG s ignal since the method is only based on local 
characteristic time scale[29-31]. Unlike trad itional bandpass 
filters, EEMD breaks down the signals in an empirical 
manner, which is strictly based on the signal characteristics 
without specifying any frequency bands[32]. Mode mixing 
problem that existed in the Empirical mode decomposition 
(EMD) method can be resolved by EEMD utilizing the 
uniformly distributed reference frame by the addition of 
white no ise[33]. The procedure for EEMD has been 
described in great detailed in[29], and would not be repeated 
here.  

2.5. Feature Extraction and Signal Classification 

Signal classifiers were created using the Statistical Pattern 
Recognition Toolbox in Matlab[34] to decode the EEG 
signal features. A two-class analysis (left versus right) was 
performed using Fisher Linear Discrimination (FLD) b inary 
classifier in  a 5x5-fold  cross validation procedure. Eighty 
percent (80%) of the data fo r each direction was randomly 
chosen to be the training set. The remaining 20% of the data 
was assigned to be the testing set. The “signature” signal was 
acquired in each region of interest (ROI) near the PPC region 
(see Figure 4) using the training set for each cross-validation 
study. In this study, the averaged ERP signal within 235ms 
after the presentation of the “Direction cue” would  be 
considered the “signature” at each ROI. It has been observed 
that regardless of the intended reaching direction or the type 
of effectors requested of the subject, the averaged EEG 
signal within the first 235ms after the presentation of the 
“Direction cue” retains similar signal profile. Each 
“signature”, consisted of a dominant h igh delta (0 –  4Hz) and 
a low theta (4 – 8Hz) component, has been observed to have 
similar shapes, regardless of the intended movement 
direction. The local maximum and local minimum of the 
“signature” signal at each ROI were found and their 
difference was used as a scaling factor. The signal amplitude 
at each recording site  was scaled accordingly  with the 
following equation: 
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Where vi(t) and vi,scaled(t) denote the ERPs in the test set, at 
location i, before and after scaling. The values vi,max and vi,min 
are the maximum and minimum of the “signature” at the 
same location, found in the averaged train ing data set. Since 
this scaling process only involves multip lying the EEG 
recording by a d ifferent factor at each location, it is suitable 
for real-time applications. Figure 6 is the graphical 
illustration for scaling the EEG signals.  

The impact of scaling was evaluated by investigating the 
features at different time delays after the “Direct ion cue”[35]. 
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Once it has been established that using this cue-based 
“signature” can enhance the binary classification accuracy of 
the planned motor movement in two d irect ions, we 
performed the second analysis. It involved the evaluation of 
the EEMD-based operation on the decoding accuracy. The 
high frequency noise in the EEG data was reduced through 
the elimination of IMF1 and IMF2[36], since the ERP 
difference of intended movement direct ion have been 
reported to be <12 Hz[37].  

 
Figure 6.  Graphical illustration of the scaling factor is shown. The scaling 
factor computed from the ROI channels in the training set is applied to the 
test set. The light color lines indicate the EEG signals from individual trials 
in the training set from one electrode; the dark bolded line indicates the 
average signal. The scaling factor is set to be the difference between the 
maximum and minimum values in the first  235ms of the averaged signal  

3. Results 
Using Talairach  coordinate system, the dominant 

equivalent dipole source for each intended arm movement 
direction was observed near the PPC areas for all subjects. 
Figure 7 illustrates the result of the EEGLAB plug-in 
DIPFIT2.0 output for a particular subject where the 
coordinates for the left component[-20, -40, 24], the forward 
component[0, -33, 40], and the right component[28, -40, 23] 
are found. This is consistent with the results reported in the 
literature[12]. The effects of the parietal ICs were then 
back-projected onto the scalp for each subject after art ifact 
removal (Figure 8).  

 
Figure 7.  Source reconstruction for three equivalent dipoles is illustrated. 
As a validation, estimated source dipole locations were found to be near the 
PPC regions, consistent with reported literature[2] with the residual variance 
for each dipole estimate found to be <6% 

The evaluation of the EEMD-based operation on the 
decoding accuracy was performed by comparing the FLD 
decoder performance on IMF-removed data set. Since the 
average EEG signal amplitude in a 40ms window was signal 
the feature, removing IMF1 and IMF2 components did not 
significantly improve the decoder performance from 
93.91±6.09% to 95.44±3.28% (p>0.4). 

 
Figure 8.  The independent component clusters of each subject are shown. 
The three independent component clusters that extracted from ten subjects’ 
ICA decomposition demonstrate activities at posterior parietal cortex region. 
The larger heads show the average projection across ten subjects. The 
smaller scalp maps are from individual subjects 
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As a preliminary evaluation of the proposed cue-based 
scaling strategy, a two-direction (left versus right) classifier 
was created. The averaged ERP data from the training set at 
each recording site was found, the scaling term was 
calculated to be the difference between the maximum and 
minimum values within 235ms after the presentation of the 
visual cue. Once the scaling factors were found, they were 
applied to the test set. Amplitude features at different time 
delays were evaluated and the improvement of classification 
accuracy after the scaling operation is shown in Figure 9. 
The highest classification accuracy (on the scaled data) was 
found to take place 271 – 310ms after the visual cues. 
Statistically  significant improvement (p<0.01) in 
classification performance was found with scaling (accuracy 
93.91±6.09%), than without (accuracy 60.11±9.02%). Tab le 
1 summarizes the subject-by-subject result for the single-trial 
FLD using 5x5-fold cross validation.  

 
Figure 9.  EEG amplitude features obtained in the PPC regions can be 
used to classify the intended direction of reaching motion. Classification 
accuracy is at the highest using amplitude features 271 – 310ms after the 
presentation of the visual cues 

Table 1.  Single-trial binary classification of left  versus right intended 
movement was performed using FLD. Statistically significant improvement 
in accuracy was found after cue-based “signature” scaling (p<0.01) 

Subject 
Without Scaling With Scaling 

Mean ± Stdev Mean ± Stdev 
A 66.40 ± 8.11% 99.33 ± 0.83% 
B 59.20 ± 4.05% 96.13 ± 3.87% 
C 72.80 ± 5.68% 91.60 ± 4.89% 
D 55.23 ± 5.48% 96.80 ± 2.25% 
E 68.54 ± 4.91% 95.33 ± 2.50% 
F 57.67 ± 5.49% 78.71 ± 7.03% 
G 54.75 ± 5.37% 94.79 ± 2.31% 
H 46.29 ± 5.54% 98.58 ± 1.43% 

Mean ± Stdev 60.11 ± 9.02% 93.91 ± 6.09% 

4. Discussion 
BCI technology enables people to interact with external 

devices in new and intuitive ways. As a prosthetic 
application, it helps people with limited muscle control (such 
as those suffering from spinal inju ry, stroke or cerebral palsy) 
regain some of the lost motor functions. Even though there is 
still debate over the best classification method for BCI, we 
developed and validated the use of surface EEG to 
distinguish the brain activity during planning of intended 
arm movements. EEG data was recorded from untrained 

subjects excluding feedback, where each individual subject 
was analyzed independently in this study. Subjects only 
instructed to perform the indicated reaching tasks (see Figure 
3). In the framework of upper limb neuroprosthesis, this 
paradigm could be directly implemented as a part of the 
control strategy of the prosthetic arm for activ ity of daily 
liv ing (ADL).  

The spatial, temporal, and spectral features were extracted 
based on reported literature. We used the spatial information 
near the PPC regions as previously reported[15]. The 
temporal feature pertaining to the mean EEG signal 
amplitude 271 – 310ms after the presentation of the 
“Direction cue” visual-cue was found to have the most 
significant difference between the intended arm reaching 
directions, and the highest classification accuracy. A scaling 
strategy based on the EEG response to cue-based stimulus 
was proposed. The maxima and minima “signature” signal 
from 0 – 235ms after the presentation of the “Direction cue” 
was used as a scaling factor for subsequent single-trial 
analysis. The early  synchronization in the delta (0 –  4Hz) and 
low theta (4 – 8Hz) bands is related to the “Direction cue”, 
which supports the idea of early component reflects the 
processing of the visual intention, where the alpha band (9 – 
12Hz) is associated with the v isual attention[38]. The 
“signature” signal around this frequency range can be found 
at different recording electrodes near the ROIs and the visual 
cortex during the delayed “Direction cue” period.  

Our current study did not attempt to distinguish the three 
effectors. Recently, there have been many reported studies 
on the classification of saccade motor imagery versus motor 
execution tasks[21, 39-40]. The combination of motor 
planning and motor imagery for amputee subjects may be a 
more viab le technique for controlling neuroprosthetics 
devices. The utility of the proposed cue-based “signature” 
scaling factor gave some promising results by improving the 
classification accuracy of intended motor direct ions. To test 
this scaling strategy in more realistic situations, it may be 
extended to non-visual cue based (voluntary movement) 
setup in the future. In these experiments, the subjects will 
decide the desired reaching destinations without the 
target-specific stimulat ion. The “signatures” in these 
situations would have been internally  triggered, possibly 
dominated by a slightly different frequency component. 

A non-invasive mobile prosthetic platform using wireless 
dry electrodes and wearable EEG systems would benefit in 
real world operational environments[41-42]. Before the 
implementation of a real-t ime BCI system, some hardware 
platforms and specific software need to be developed. Three 
main advantages of EEG record ing system with a real-time 
signal processing platform are low-cost, easily customized 
and intuitive operation. Future development of specific 
software communicat ion systems between EEG recording 
devices and signal processing platform must be designed and 
operated close to real-t ime. Other specification includes 
simple training  protocol for rehabilitation purposes. More 
work is needed to understand how changes in attention and 
intention may impact EEG signals. Future study related to 
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the angular direction decoding, instead of the current discrete 
direct ions, may be necessary. Part icipants withmotor-d isabi
lit ies will be recruited to provide more conclusive results on 
the advantage of the proposed “signature” scaling and 
classification algorithms.  

5. Conclusions 
Although surface EEG signals have limit informat ion 

about complex arm movements, we demonstrated EEG 
signal can be used to decode the direction of reaching tasks 
during the planning stage. Experiments were designed to 
provide visual-cues to guide the user imagery/arm 
movements. ICA and EEMD are efficient to remove artifact. 
A cue-based scaling strategy was developed to adjust the 
EEG s ignal amplitude near the PPC regions. Temporal 
informat ion (271 – 310ms) after the presentation of the 
visual cues was found to hold the most discriminatory 
features. This work would have direct application based on 
the electroencephalographicalsignals of the user intent. In 
addition, motor intention combined with motor imagery 
paradigms also would provide more commends on the 
control of BCI. The overall single-trial classification 
accuracy of 93.91 ± 6.09% holds this paradigm promising 
for non-invasive BCI design in neuromotor prosthesis or 
wheelchair applications. 
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