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Abstract  Nano-sized particles and crystals play an important role in the formation of calcified tissues of various ani-
mals. For example, nano-sized and nanocrystalline calcium orthophosphates in the form of apatites of biological origin 
represent the basic inorganic building blocks of bones and teeth of mammals. Namely, according the recent developments 
in biomineralization, tens to hundreds nanodimensional crystals of a biological apatite are self-assembled into these com-
plex structures. This process occurs under a strict control by bioorganic matrixes. Furthermore, both a greater viability and 
a better proliferation of various types of cells have been detected on smaller crystals of calcium orthophosphates. Thus, the 
nano-sized and nanocrystalline forms of calcium orthophosphates have a great potential to revolutionize the hard tis-
sue-engineering field, starting from bone repair and augmentation to controlled drug delivery systems. This review reports 
on current state of the art and recent developments on the subject, starting from synthesis and characterization to biomedi-
cal and clinical applications. Furthermore, the review also discusses possible directions for future research and develop-
ment. 
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1. Introduction 
Living organisms can create the amazing ways to pro-

duce various high-performance materials and over 60 dif-
ferent inorganic minerals of biological origin have already 
been revealed[1]. Among them, calcium orthophosphates 
are of a special importance since they are the most impor-
tant inorganic constituents of hard tissues in vertebrates[2, 
3]. In the form of a poor crystalline, non-stoichiometric, 
ion-substituted CDHA (commonly referred to as “biological 
apatite”), calcium orthophosphates are present in bones, 
teeth, deer antlers and tendons of mammals to give these 
organs stability, hardness and function[2, 4, 5]. Through we 
still do not exactly know why the highly intelligent animals 
use conformable calcium orthophosphates as their crucial 
biomineral for survival[6], current biomedical questions of 
persistent pathological and physiological mineralization in 
the body force people to focus on the processes, including 
the occurrence, formation and degradation of calcium or-
thophosphates in living organisms[7, 8, 9]. 

Biological mineralization (or biomineralization) is a 
process of in vivo formation of inorganic minerals[1, 2]. In 
the biomineralization processes, organized assemblies 
oforganic macromolecules regulate nucleation, growth,  
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morphology and assembly of inorganic crystals. Biologi-
cally formed calcium orthophosphates (biological apatite) 
are always nanodimensional and nanocrystalline, which 
have been formed in vivo under mild conditions. According 
to many reports, dimensions of biological apatite in the cal-
cified tissues always possess a range of a few to hundreds 
of nanometers with the smallest building blocks on the 
nanometer size scale[2, 4, 5, 10, 11]. For example, tens to 
hundreds of nanometer-sized apatite crystals in a collagen 
matrix are combined into self-assembled structures during 
bone and teeth formation[2, 4, 5]. Recent advances suggest 
that this is a natural selection, since the nanostructured ma-
terials provide a better capability for the specific interac-
tions with proteins[12]. 

Due to the aforementioned, nanodimensional and 
nanocrystalline forms of calcium orthophosphates are able 
to mimic both the composition and dimensions of constitu-
ent components of the calcified tissues. Thus, they can be 
utilized in biomineralization and as biomaterials due to the 
excellent biocompatibility[13, 14]. Further development of 
calcium orthophosphate-based biomaterials obviously will 
stand to benefit mostly from nanotechnology[15], which 
offers unique approaches to overcome shortcomings of 
many conventional materials. For example, nano-sized ce-
ramics can exhibit significant ductility before failure con-
tributed by the grain-boundary phase. Namely, already in 
1987, Karch et al., reported that, with nanodimensional 
grains, a brittle ceramic could permit a large plastic strain 
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up to 100%[16]. In addition, nanostructured ceramics can 
be sintered at lower temperatures; thereby major problems 
associated with a high temperature sintering are also de-
creased. Thus, nanodimensional and nanocrystalline forms 
of bioceramics clearly represent a promising class of ortho-
pedic and dental implant formulations with improved bio-
logical and biomechanical properties[17]. 

Many other advances have been made in biomaterial field 
due to a rapid growth of nanotechnology[18]. For example, 
a recent theory of “aggregation-based crystal growth”[19] 
and a new concept of “mesocrystals”[20, 21] highlighted 
the roles of nano-sized particles in biological crystal engi-
neering. In this aspect, the study of calcium orthophos-
phates is a specific area in nanotechnology, because they 
might be applied readily to repair hard skeletal tissues of 
mammals[22-24]. 

Herein, an overview of nanodimensional and nanocrys-
talline apatites and other calcium orthophosphates in studies 
on biomineralization and biomaterials is given. The avail-
able calcium orthophosphates are listed in Table 1. To nar-
row the subject of this review, with a few important excep-
tions, undoped and un-substituted calcium orthophosphates 
are considered and discussed only. The readers interested in 

various nanodimensional and nanocrystalline 
ion-substituted calcium orthophosphates[25-63] are referred 
to the original publications. Furthermore, details on calcium 
orthophosphate-based nanodimensional biocompo-
sites[64-85] or nanodimensional calcium orthophos-
phate-based biocomposites[86-104] are available in 
Refs.[105, 106]. 

This review is organized into several sections. After a 
brief introduction (current section), general information on 
“nano” is provided in the second section. The third section 
briefly compares the micron-sized and nanodimensional 
calcium orthophosphates. The forth section briefly dis-
cusses the presence of nano-sized and nanocrystalline cal-
cium orthophosphates in normal calcified tissues of mam-
mals. The structure of nano-sized and nanocrystalline apa-
tites is described in the fifth section. Synthesis of nanodi-
mensional and nanocrystalline calcium orthophosphates of 
various dimensions and shapes is reviewed in the sixth sec-
tion, while the biomedical applications are examined in the 
seventh section. Finally, the summary and reasonable future 
perspectives in this active research area are given in the last 
section. 

Table 1.  Existing calcium orthophosphates and their major properties[204, 205]. 

Ca/P molar 
ratio Compound Formula Solubility at 

25 ºC, -log(Ks) 
Solubility at 
25 ºC, g/L 

pH stability range in aque-
ous solutions at 25°C 

0.5 Monocalcium phosphate 
monohydrate (MCPM) Ca(H2PO4)2·H2O 1.14 ~ 18 0.0 – 2.0 

0.5 Monocalcium phosphate an-
hydrous (MCPA or MCP) Ca(H2PO4)2 1.14 ~ 17 [c] 

1.0 Dicalcium phosphate dihydrate 
(DCPD), mineral brushite CaHPO4·2H2O 6.59 ~ 0.088 2.0 – 6.0 

1.0 
Dicalcium phosphate anhy-
drous (DCPA or DCP), min-

eral monetite 
CaHPO4 6.90 ~ 0.048 [c] 

1.33 Octacalcium phosphate (OCP) Ca8(HPO4)2(PO4)4·5H2O 96.6 ~ 0.0081 5.5 – 7.0 

1.5 α-Tricalcium phosphate 
(α-TCP) α-Ca3(PO4)2 25.5 ~ 0.0025 [a] 

1.5 β-Tricalcium phosphate 
(β-TCP) β-Ca3(PO4)2 28.9 ~ 0.0005 [a] 

1.2 – 2.2 Amorphous calcium phos-
phates (ACP) 

CaxHy(PO4)z·nH2O, n = 3 – 
4.5; 15 – 20% H2O 

[b] [b] ~ 5 – 12[d] 

1.5 – 1.67 Calcium-deficient hydroxya-
patite (CDHA or Ca-def HA)[e] 

Ca10-x(HPO4)x(PO4)6-x(OH)2-x 
(0<x<1) ~ 85 ~ 0.0094 6.5 – 9.5 

1.67 Hydroxyapatite (HA, HAp or 
OHAp) Ca10(PO4)6(OH)2 116.8 ~ 0.0003 9.5 – 12 

1.67 Fluorapatite (FA or FAp) Ca10(PO4)6F2 120.0 ~ 0.0002 7 – 12 

1.67 Oxyapatite (OA, OAp or 
OXA)[f] Ca10(PO4)6O ~ 69 ~ 0.087 [a] 

2.0 
Tetracalcium phosphate 

(TTCP or TetCP), mineral 
hilgenstockite 

Ca4(PO4)2O 38 – 44 ~ 0.0007 [a] 

[a] These compounds cannot be precipitated from aqueous solutions. 
[b] Cannot be measured precisely. However, the following values were found: 25.7±0.1 (pH = 7.40), 29.9±0.1 (pH = 6.00), 32.7±0.1 (pH = 5.28)[269]. 
The comparative extent of dissolution in acidic buffer is: ACP >> α-TCP >> β-TCP > CDHA >> HA > FA[126]. 
[c] Stable at temperatures above 100°C. 
[d] Always metastable. 
[e] Occasionally, it is called “precipitated HA (PHA)”. 
[f] Existence of OA remains questionable. 
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2. General Information on “Nano” 
The prefix “nano” specifically means a measure of 10-9 

units. Although it is widely accepted that the prefix “nano” 
specifically refers to 10-9 units, in the context of nano-sized 
and nanocrystalline materials, the units should only be those 
of dimensions, rather than of any other unit of the scientific 
measurements. Besides, for practical purposes, it appears to 
be unrealistic to consider the prefix “nano” to solely and 
precisely refer to 10-9 m, just as it is not considered that 
“micro” specifically and solely concerns something with a 
dimension of precisely 10-6 m[107]. Currently, there is a 
general agreement that the subject of nanoscience and 
nanotechnology started after the famous talk: “There’s 
plenty of room at the bottom” given by the Nobel Prize 
winner in physics Prof. Richard P. Feynman on December 
26, 1959 at the annual meeting of the American Physical 
Society held at California Institute of Technology. This 
well-known talk has been widely published in various me-
dia (e.g.,[108]). 

In a recent extensive discussion about a framework for 
definitions presented to the European Commission, the 
nano-scale has been defined as being of the order of 100 nm 
or less. Similarly, a nanomaterial has been defined as “any 
form of a material that is composed of discrete functional 
parts, many of which have one or more dimensions of the 
order of 100 nm or less”[109]. Other definitions logically 
follow this approach such as: a nanocrystalline material is 
“a material that is comprised of many crystals, the majority 
of which have one or more dimensions of the order of 100 
nm or less” (normally, with presence of neither the mi-
cron-sized crystals nor an intergranular amorphous phase) 
and a nanocomposite is a “multi-phase material in which 
the majority of the dispersed phase components have one or 
more dimensions of the order of 100 nm or less”[107]. 
Similarly, nanostructured materials are defined as the mate-
rials containing structural elements (e.g., clusters, crystal-
lites or molecules) with dimensions in the 1 to 100 nm 
range[110], nanocoatings represent individual layers or 
multilayer surface coatings of 1 – 100 nm thick, nanopow-
ders are extremely fine powders with an average particle 
size in the range of 1 – 100 nm and nanofibers are the fibers 
with a diameter within 1 – 100 nm[111, 112]. It also has 
been proposed to extend the lower size limit to 0.1 nm[113], 
which would include all existing organic molecules, allow-
ing chemists to rightly claim they have been working on 
nanotechnology for very many years[114]. 

Strictly speaking, there are serious doubts that the term 
“nanomaterial” has a reasonable meaning. For example, let 
me cite Prof. David F. Williams, the Editor-in-Chief of 
Biomaterials: “… some words which have no rational basis 
whatsoever become part of everyday language so rapidly, 
even if so illogically, that it is impossible to reverse the 
process and their common use has to be accepted, or per-
haps, accommodated. Nanomaterial is one such word, 
where I have argued that it should not exist, but accept that 

it does through common usage and have to recognise its 
existence[107]. The discussion about nanomaterial provides 
a hint of the analysis of a biomaterial that follows, since a 
prefix, which is an indicator of scale, cannot specify the 
integer that follows (in this case a material) unless that in-
teger can be qualified by that scale. In other words, it is 
very clear what a nanometre is because nano – means 10-9 
and a metre is a measure of length. In the case of nanomate-
rial, what is it about the material that is 10-9. Is it the dimen-
sion of a crystal within the material, or of a grain boundary, 
a domain, or a molecule, or is it a parameter of a surface 
feature of the sample, or perhaps of the resistivity or ther-
mal conductivity of the material. Clearly this is nonsense, 
but one has to accept that nanomaterials are here to stay, 
with even some journal titles containing the word.”[115, p. 
5898, left column]. Following this logic, such terms as 
“nanocomposite”, “nanocoatings”, “nanopowders”, “nano-
fibers” and “nanocrystals” are senseless either and should 
be replaced, for example, by “composites with nano-sized 
(or nanodimensional) dispersed phase(s)”, “coatings of 
nano-sized (or nanodimensional) thickness”, “nano-sized 
(or nanodimensional) powders”, “fibers of nano-sized (or 
nanodimensional) thickness” and “nano-sized (or nanodi-
mensional) crystals”, respectively. At least, this has been 
done in this review. 

According to their geometry, all nanodimensional mate-
rials can be divided into three major categories: equiaxed, 
one dimensional (or fibrous) and two dimensional (or la-
mellar) forms. Selected examples and typical applications 
of each category of nanodimensional materials and their use 
in biomedical applications are available in literature[116]. It 
is important to note, that in literature on calcium ortho-
phosphates there are cases, when the prefix “nano” has been 
applied for the structures, with the minimum dimensions 
exceeding 100 nm[44, 83, 117-133]. 

As a rule, nanodimensional materials can be manufac-
tured from nearly any substance. Of crucial importance, 
there are two major characteristics conferring the special 
properties of any nanodimensional material. These are the 
quantum effects associated with the very small dimensions 
(currently, this is not applicable to the biomaterials field) 
and a large surface-to-volume ratio that is encountered at 
these dimensions. For instance, specific surface areas for 
submicron-sized particles are typically 60 – 80 m2/g, while 
decreasing particle diameter to tens of nanometers increases 
the specific surface area up to 5 times more – an amazing 
amount of surface area per mass! Furthermore, all nano-
phase materials have the unique surface properties, such as 
an increased number of grain boundaries and defects on the 
surface, huge surface area and altered electronic structure, if 
compared to the micron-sized materials[107, 134]. While 
less than ~ 1 % of a micron-sized particle’s atoms occupy 
the surface positions, over a tenth of the atoms in a 10-nm 
diameter particle reside on its surface and ~ 60 % in a 2-nm 
particle[135]. This very high surface-to-volume ratio of 
nanodimensional materials provides a tremendous driving 



 American Journal of Biomedical Engineering 2012,2(3): 48-97 51 
 

 

force for diffusion, especially at elevated temperatures, as 
well as causes a self-aggregation into larger particles. Be-
sides, solubility of many substances increases with particle 
size decreasing[136, 137]. What’s more, nanophase materi-
als could have surface features (e.g., a higher amount of 
nano-scale pores) to influence the type and amount of ad-
sorption of selective proteins that could enhance specific 
osteoblast adhesion[138]. Finally and yet importantly, the 
nanodimensional and nanocrystalline materials have differ-
ent mechanical, electrical, magnetic and optical properties if 
compared to the larger grained materials of the same 
chemical composition[139-142]. 

The nanostructured materials can take the form of pow-
ders, dispersions, coatings or bulk materials. In general, 
nanostructured materials contain a large volume fraction 
(greater than 50 %) of defects such as grain boundaries, 
interphase boundaries and dislocations, which strongly in-
fluences their chemical and physical properties. The great 
advantages of nanostructuring were first understood in elec-
tronic industry with the advent of thin film deposition proc-
esses. Other application areas have followed. For example, 
nanostructured bioceramics was found to improve friction 
and wear problems associated with joint replacement com-
ponents because it was tougher and stronger than 
coarser-grained bioceramics[143]. Furthermore, nanostruc-
turing has allowed chemical homogeneity and structural 
uniformity to an extent, which was once thought to impos-
sible to achieve[110]. In calcium orthophosphate bioceram-
ics, the major target of nanostructuring is to mimic the ar-
chitecture of bones and teeth[144, 145]. 

3. Micron- and Submicron-Sized   
Calcium Orthophosphates versus The 
Nanodimensional Ones 

The micron-sized calcium orthophosphate-based bioce-
ramic powders suffer from poor sinterability, mainly due to 
a low surface area (typically 2 – 5 m2/g), while the specific 
surface area of nanodimensional calcium orthophosphates 
exceeds 100 m2/g[146]. In addition, the resorption process 
of synthetic micron-sized calcium orthophosphates was 
found to be quite different from that of bone mineral[147].  

Although the nanodimensional and nanocrystalline fea-
tures of natural calcium orthophosphates of bones and teeth 
had been known earlier[2, 148-153], the history of the sys-
tematic investigations of this field has started only in 1994. 
Namely, a careful search in scientific databases using vari-
ous combinations of keywords “nano” + “calcium phos-
phate”, “nano” + “apatite”, “nano” + “hydroxyapatite”, etc. 
in the article title revealed 5 papers published in 
1994[154-158]. No papers published before 1994 with the 
aforementioned keywords in the title have been found. 

Nanodimensional (size ~ 67 nm) HA was found to have a 
higher surface roughness of 17 nm if compared to 10 nm for 
the submicron-sized (~ 180 nm) HA, while the contact an-
gles (a quantitative measure of the wetting of a solid by a 
liquid) were significantly lower for nano-sized HA (6.1) if 

compared to the submicron-sized HA (11.51). Additionally, 
the diameter of individual pores in nanodimensional HA 
compacts is several times smaller (pore diameter ~ 6.6 Å) 
than that in the submicron grain-sized HA compacts (pore 
diameter within 19.8 – 31.0 Å)[159]. A surface roughness is 
known to enhance the osteoblast functions while a porous 
structure improves the osteoinduction compared with 
smooth surfaces and nonporpous structure, respec-
tively[138]. Furthermore, nanophase HA appeared to have ~ 
11% more proteins of fetal bovine serum adsorbed per 1 
cm2 than submicron-sized HA[160]. Interfacial interactions 
between calcined HA nano-sized crystals and various sub-
strates were studied and a bonding strength appeared to be 
influenced not only by the nature of functional groups on 
the substrate but also by matching of surface roughness 
between the nano-sized crystals and the substrate[161]. 
More to the point, incorporating of nanodimensional parti-
cles of HA into polyacrylonitrile fibers were found to result 
in their crystallinity degree rising by about 5%[162]. In a 
comparative study on the influence of incorporated mi-
cron-sized and nano-sized HA particles into poly-L-lactide 
matrixes, addition of nano-sized HA was found to influence 
both thermal and dynamic mechanical properties in greater 
extents[163].  

In general, nanostructured biomaterials[164] offer much 
improved performances than their larger particle sized 
counterparts due to their huge surface-to-volume ratio and 
unusual chemical synergistic effects. Such nanostructured 
systems constitute a bridge between single molecules and 
bulk material systems[165]. For instance, powders of 
nanocrystalline apatites[166-172] and β-TCP[173] were 
found to exhibit an improved sinterability and enhanced 
densification due to a greater surface area. This is explained 
by the fact that the distances of material transport during the 
sintering becomes shorter for ultrafine powders with a high 
specific surface area, resulting in a densification at a low 
temperature. Therefore, due to low grain growth rates, a 
low-temperature sintering appears to be effective to produce 
fine-grained apatite bioceramics[174]. Furthermore, the 
mechanical properties (namely, hardness and toughness) of 
HA bioceramics appeared to increase as the grain size de-
creased from sub-micrometers to nanometers[175]. 

More to the point, nano-sized HA is also expected to 
have a better bioactivity than coarser crystals[176-178]. 
Namely, Kim et al., found that osteoblasts (bone-forming 
cells) attached to the nano-sized HA/gelatin biocomposites 
to a significantly higher degree than to micrometer size 
analog did[179]. An increased osteoblast and decreased 
fibroblast (fibrous tissue-forming cells) adhesion on nano-
phase ceramics[180-184], as well as on nanocrystalline HA 
coatings on titanium, if compared to traditionally used 
plasma-sprayed HA coatings, was also discovered by other 
researchers[185-187]. Scientists also observed enhanced 
osteoclast (bone-resorbing cells) functions to show healthy 
remodeling of bone at the simulated implant surface[177]. 
Besides, the proliferation and osteogenic differentiation of 
periodontal ligament cells were found to be promoted when 
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a nanophase HA was used, if compared to dense HA bioce-
ramics[188]. Thus, the underlying material property, re-
sponsible for this enhanced osteoblast function, is the sur-
face roughness of the nanostructured surface[18]. Interest-
ingly, but an increased osteoblast adhesion was discovered 
on nano-sized calcium orthophosphate powders with higher 
Ca/P ratios[189], which points out to some advantages of 
apatites over other calcium orthophosphates. Furthermore, a 
histological analysis revealed a superior biocompatibility 
and osteointegration of bone graft substitutes when 
nano-sized HA was employed in biocomposites[190-192]. 
However, data are available that nano-sized HA could in-
hibit growth of osteoblasts in a dose-dependent man-
ner[193]. Furthermore, a cellular activity appeared to be 
affected by the shape and dimensions of nano-sized HA. 
Namely, the cellular activity of L929 mouse fibroblasts on 
nano-sized fibers with a diameter within 50 – 100 nm was 
significantly enhanced relative to that on a flat HA surface, 
while nanodimensional HA needles and sheets with a di-
ameter/thickness of less than 30 nm inhibited cellular adhe-
sion and/or subsequent activity because cells could not form 
focal adhesions of sufficient size[194]. 

Obviously, the volume fraction of grain boundaries in 
nanodimensional calcium orthophosphates is increased sig-
nificantly leading to improved osteoblast adhesion, prolif-
eration and mineralization. Therefore, a composition of 
these biomaterials at the nano-scale emulates the bone’s 
hierarchic organization, to initiate the growth of an apatite 
layer and to allow for the cellular and tissue response of 
bone remodeling. These examples emphasize that nano-
phase materials deserve more attention in improving ortho-
pedic implant failure rates. However, to reduce surface en-
ergy, all nano-sized materials tend to agglomerate and, to 
avoid self-aggregation of calcium orthophosphate 
nano-sized particles[195-198], special precautions might be 
necessary[54, 60, 120, 199-202]. 

Finally yet importantly, nano-sized crystals of CDHA 
obtained by precipitation methods in aqueous solutions 
were shown to exhibit physico-chemical characteristics 
rather similar to those of bone apatite[203]. In particular, 
their chemical composition departs from stoichiometry by 
calcium and hydroxide ions deficiency, leading to an in-
creased solubility, and in turn bioresorption rate in vivo[148, 
204-206]. The nano-sized crystals of CDHA have also a 
property to evolve in solution (maturation) like bone crys-
tals. Namely, freshly precipitated CDHA has been shown to 
be analogous to embryonic bone mineral crystals whereas 
aged precipitates resemble bone crystals of old verte-
brates[203]. 

4. Nanodimensional and Nanocrystalline 
Calcium Orthophosphates in    
Calcified Tissues of Mammals 

4.1. Bones 

 
Figure 1.  The seven hierarchical levels of organization of the zebrafish 
skeleton bone. Level 1: Isolated crystals and part of a collagen fibril with 
the triple helix structure. Level 2: Mineralized collagen fibrils. Level 3: 
The array of mineralized collagen fibrils with a cross-striation periodicity 
of nearly 60-70 nm. Level 4: Two fibril array patterns of organization as 
found in the zebrafish skeleton bone. Level 5: The lamellar structure in one 
vertebra. Level 6: A vertebra. Level 7: Skeleton bone. Reprinted from 
Ref.[208] with permission 

Bone is the most typical calcified tissue of mammals and it 
comes in all sorts of shapes and sizes in order to achieve 
various functions of protection and mechanical support for 
the body. The major inorganic component of bone mineral is 
a biological apatite, which might be defined as a poorly 
crystalline, non-stoichiometric and ion substituted 
CDHA[2-5, 204-207]. From the material point of view, bone 
can be considered as an assembly of distinct levels of seven 
hierarchical structural units from macro- to micro- and to 
nano-scale (Fig. 1) to meet numerous functions[2, 5, 134, 
208-210]. Furthermore, all these levels of bones permanently 
interact with cells and biological macromolecules. At the 
nanostructural level, tiny plate-like crystals of biological 
apatite in bone occur within the discrete spaces within the 
collagen fibrils and grow with specific crystalline orientation 
along the c-axes, which are roughly parallel to the long axes 
of the collagen fibrils[211]. Type I collagen molecules are 
self-assembled into fibrils with a periodicity of ~ 67 nm and 
~ 40 nm gaps between the ends of their molecules, into 
which the apatite nano-sized crystals are placed. A bio-
composite of these two constituents forms mineralized fibers. 
The fibers also may be cross-linked, which provides a highly 
dynamic system capable of modification through the selec-
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tion of different amino acids to allow for different me-
chanical properties for different biomaterial applica-
tions[212]. This is why bone is usually termed a fi-
ber-reinforced composite of a biological origin, in which 
nanometer-sized hard inclusions are embedded into a soft 
protein matrix[213]. Though dimensions of biological apa-
tite crystals reported in the literature vary due to different 
treatment methods and analytical techniques, it is generally 
around the nanometric level with values in the ranges of 30 – 
50 nm (length), 15 – 30 nm (width) and 2 – 10 nm (thick-
ness)[214]. Some details on the stability reasons of nano-
dimensional apatites in bones are available in literature[215, 
216]. 

Why does the nanometer scale appear to be so important to 
bones? It was recently demonstrated that natural biocompo-
sites exhibit a generic mechanical structure in which the 
nanometer sizes of mineral particles are used to ensure the 
optimum strength and maximum tolerance of flaws[217, 
218]. Furthermore, nanodimensional apatite has another 
crucial function for organisms. It is a huge reservoir of cal-
cium and orthophosphate ions necessary for a wide variety of 
metabolic functions, which offer or consume calcium and 
orthophosphate ions through a so-called “remodeling” 
process because of a continuous resorption and formation of 
nanodimensional apatite by osteoclasts and osteoblasts, 
respectively, in a delicate equilibrium[2, 5]. Additional de-
tails on the structure, properties and composition of bones 
might be found in special literature[5, 207, 219].  

4.2. Teeth 

Teeth are another normal calcium orthophosphate-based 
calcified tissue of vertebrates. Unlike bone, teeth consist of 
at least two different biominerals: enamel (a crown, the part 
above the gum line) and dentin (root, the part below the gum 
line)[220]. Dental enamel contains up to 98% of biological 
apatite, ~ 1% of bioorganic compounds and up to 2% of 
water. Typical rods in enamel are composed of rod-like 
apatite crystals measuring 25 – 100 nm and an undetermined 
length of 100 nm to 100 μm or longer along the 
c-axis[221-223]. However, the apatite crystals in enamel 
were found to exhibit regular sub-domains or subunits with 
distinct chemical properties[224]. This subunit structure 
reflects an assembly mechanism for such biological crys-
tals[225, 226]. Like that for bones (Fig. 1), seven levels of 
structural hierarchy have been also discovered in human 
enamel; moreover, the analysis of the enamel and bone hi-
erarchical structures suggests similarities of the scale dis-
tribution at each level[227]. In enamel, nano-sized crystals of 
biological apatite at first form mineral nanodimensional 
fibrils; the latter always align lengthways, aggregating into 
fibrils and afterwards into thicker fibers; further, 
prism/interprism continua are formed from the fibers. At the 
micro-scale, prisms are assembled into prism bands, which 
present different arrangements across the thickness of the 
enamel layer. These compositional and structural character-
istics endow enamel special properties such as anisotropic 

elastic modulus, effective viscoelastic properties, much 
higher fracture toughness and stress-strain relationships 
more similar to metals than ceramics[228]. 

Dentin contains ~ 50% of biological apatite, ~ 30% of 
bioorganic compounds and ~ 20% of water. In dentin, the 
nanodimensional building blocks (~ 25 nm width, ~ 4 nm 
thickness and ~ 35 nm length) of biological apatite are 
smaller than those of enamel. Dentin is analogous to bone in 
many aspects, for example, it has a similar composition and a 
hierarchical structure up to the level of the bone lamel-
lae[204, 205]. Additional details on the structure, properties 
and composition of teeth might be found in special litera-
ture[229]. 

5. The structure of the Nanodimensional 
and Nanocrystalline Apatites 

Due to the apatitic structure on natural calcified tissues, 
apatites appear to be the best investigated compounds 
among the available calcium orthophosphates (Table 1). 
Thus, nanodimensional and nanocrystalline apatites have 
been extensively studied by various physico-chemical tech-
niques and chemical analysis methods[197, 230-242] with a 
special attention to the “nano” effect (i.e., an enhanced con-
tribution of the surface against the volume). Unfortunately, 
no publications on the structure of other nanodimensional 
and/or nanocrystalline calcium orthophosphates were found 
in the available literature. 

Due to a nanocrystalline nature, various diffraction tech-
niques have not yet given much information on the fine 
structural details related to apatite nano-sized crystals (as-
semblies of nano-sized particles give only broad diffraction 
patterns, similar to ones from an amorphous material)[230, 
231]. Nevertheless, the diffraction studies with electron 
microprobes of 35 ± 10 nm in diameter clearly indicated a 
crystalline character of the nano-sized particles in these 
assemblies. Furthermore, high-resolution transmission elec-
tron microscopy results revealed that nano-sized particles of 
HA behaved a fine monocrystalline grain structure[197, 
230]. 

Therefore, a recent progress on the structure of nanodi-
mensional and nanocrystalline apatites has relied mainly on 
diverse spectroscopic methods, which are sensitive to dis-
turbances of the closest environments of various ions. 
Namely, the structure analysis revealed an existence of 
structural disorder at the particle surface, which was ex-
plained by chemical interactions between the orthophos-
phate groups and either adsorbed water molecules or hy-
droxyl groups located at the surface of nano-sized apa-
tites[232]. More to the point, infrared (FTIR) spectra of 
nanocrystalline apatites, in the ν4 PO4 domain, revealed the 
existence of additional bands of orthophosphate ions which 
could not be assigned to an apatitic environment and which 
were not present in well-crystallized apatites (Fig. 2). These 
bands were assigned to non-apatitic environments of PO4

3- 
and HPO4

2- ions of the nano-sized crystals. Thus, FTIR 
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spectra can be used to provide a sufficiently accurate 
evaluation of the amounts of such environments. Further-
more, the non-apatitic environments were found to corre-
spond to hydrated domains of the nano-sized crystals, 
which were distinct from the apatite domains[234]. Hence, 
precipitated crystals of nano-sized apatite appeared to have 
a hydrated surface layer containing labile ionic species, 
which easily and rapidly could be exchanged by ions and/or 
macromolecules from the surrounding fluids[233, 232, 241]. 
For the as-precipitated apatites, such a layer appears to con-
stitute mainly by water molecules coordinated to surface 
Ca2+ ions, approximately in the 1 : 1 ratio, while the OH 
groups account only for ~ 20% of the surface hydration 
species. The FTIR data indicated that water molecules, lo-
cated on the surface of nanodimensional apatites, are coor-
dinated to surface cations and experience hydrogen bonding 
significantly stronger than that in liquid water[240]. The 
surface hydrated layer is very delicate and becomes pro-
gressively transformed into a more stable apatitic lattice 
upon ageing in aqueous media. Furthermore, it irreversibly 
altered upon drying[234]. Outgassing at increasing tem-
peratures up to ~ 300 °C resulted in a complete surface de-
hydration, accompanied by a decrease of the capability to 
re-adsorb water. Combination of these data with rehydration 
tests suggested that a significant part of the surface Ca2+ 
ions, once dehydrated, could undergo a relaxation inward 
the surface, more irreversibly as the outgassing temperature 
increased[239]. 

In another study, elongated nano-sized crystals of CDHA 
of ~ 10 nm thick and of ~ 30 – 50 nm length were synthe-
sized followed by investigations with X-ray diffraction and 
nuclear magnetic resonance techniques. The nano-sized 
crystals of CDHA were shown to consist of a crystalline 

core with the composition close to the stoichiometric HA 
and a disordered (amorphous) surface layer of 1 – 2 nm 
thick[238, 239] with the composition close to DCPD[237]. 
Based on the total Ca/P ratio, on the one hand, and the 
crystal shape, on another hand, a thickness of the DCPD 
surface layer along the main crystal axis was estimated to 
be ~ 1 nm[237], which is close to dimensions of the 
unit-cells (Table 2). A similar structure of a crystalline core 
with the composition of the stoichiometric HA and a disor-
dered (amorphous) surface layer was found by other re-
searchers[243]; however, in yet another study devoted to 
nanodimensional carbonateapatites[244], the model of a 
crystalline core and an outer amorphous layer was not con-
firmed. Perhaps, this discrepancy could be explained by the 
presence of carbonates. A lack of hydroxide in nanodimen-
sional apatites was detected; an extreme nanocrystallinity 
was found to place an upper bound on OH- possible in apa-
tites[245]. 

 
Figure 2.  FTIR spectra of poorly crystalline apatites showing the 
non-apatitic environments of the orthophosphate ions (bold lines with 
peaks at 617 and 534 cm-1) and the apatitic PO4

3- (thin lines with peaks at 
600, 575 and 560 cm-1) and HPO4

2- (thin line with peak at 550 cm-1) in the 
ν4 PO4 domain. Reprinted from Ref.[234] with permission 

Table 2.  Crystallographic data of calcium orthophosphates[206]. 

Compound Space group Unit cell parameters Z[a] Density, 
g/cm3 

MCPM triclinic P 1  a = 5.6261(5), b = 11.889(2), c = 6.4731(8) Å, 
α = 98.633(6)º, β = 118.262(6)º, γ = 83.344(6)º 2 2.23 

MCPA triclinic P 1  a = 7.5577(5), b = 8.2531(6), c = 5.5504(3) Å, 
α = 109.87(1)º, β = 93.68(1)º, γ = 109.15(1)º 2 2.58 

DCPD monoclinic Ia a = 5.812(2), b = 15.180(3), c = 6.239(2) Å, β = 116.42(3)º 4 2.32 

DCPA triclinic P 1  a = 6.910(1), b = 6.627(2), c = 6.998(2) Å, 
α = 96.34(2)º, β = 103.82(2)º, γ = 88.33(2)º 4 2.89 

OCP triclinic P 1  a = 19.692(4), b = 9.523(2), c = 6.835(2) Å, α = 90.15(2)º, β = 
92.54(2)º, γ = 108.65(1)º 1 2.61 

α-TCP monoclinic P21/a a = 12.887(2), b = 27.280(4), c = 15.219(2) Å, β = 126.20(1)º 24 2.86 

β-TCP rhombohedral 
R3cH a = b = 10.4183(5), c = 37.3464(23) Å, γ = 120° 21[b] 3.08 

HA monoclinic P21/b 
or hexagonal P63/m 

a = 9.84214(8), b = 2a, c = 6.8814(7) Å, γ = 120° (monoclinic)  
a = b = 9.4302(5), c = 6.8911(2) Å, γ = 120º (hexagonal) 

4 
2 3.16 

FA hexagonal P63/m a = b = 9.367, c = 6.884 Å, γ = 120º 2 3.20 

OA hexagonal P 6  a = b = 9.432, c = 6.881 Å, α = 90.3°, β = 90.0°, γ = 119.9° 1 ~ 3.2 

TTCP monoclinic P21 a = 7.023(1), b = 11.986(4), c = 9.473(2) Å, β = 90.90(1)º 4 3.05 

[a] Number of formula units per unit cell. 
[b] Per the hexagonal unit cell. 
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However, it is possible to address the structure of surface 
terminations of HA nano-sized particles to be amorphous or 
crystalline by properly selecting the preparation parameters 
and, in particular, the temperature; thus, nanodimensional 
HA without the amorphous layer on the surface has been 
prepared[246]. The two types of surfaces (amorphous or 
crystalline) of nanodimensional HA appeared to be quite 
similar in terms of their first hydration layer, as well as 
Lewis acid strength of exposed Ca2+ ions. Both features 
have a strong dependence on the local structure of surface 
sites (well probed by small molecules, such as H2O and CO) 
that appeared essentially unaffected by the organization at a 
longer range. Interestingly, but once treated at 573 K, the 
crystalline surfaces of nanodimensional HA was found to 
adsorb multilayers of water in a larger extent than the 
amorphous ones[246]. 

Nevertheless, after summarizing the available data, the 
following statements on the structure of nano-sized crystals 
of apatites have been made:  

(1) they involve non-apatitic anionic and cationic chemi-
cal environments (in another study, the researchers men-
tioned on “ordered and disordered HA”[238]),  

(2) at least part of these environments are located on the 
surface of the nano-sized crystals and are in strong interac-
tion with hydrated domains,  

(3) immature samples show FTIR band fine substructure 
that is altered upon drying without leading to long-range 
order (LRO) modifications,  

(4) this fine substructure shows striking similarities with 
the FTIR spectrum of OCP[235].  

All these elements favor a model in which nano-sized 
crystals of apatites are covered with a rather fragile but 
structured surface hydrated layer containing relatively mo-
bile ions (mainly, bivalent anions and cations: Ca2+, HPO4

2-, 
CO3

2-) in “non-apatitic” sites (Fig. 3), which is supposed to 
be of either OCP or DCPD structure. Unfortunately, both 
the exact structure and the chemical composition of this 
hydrated layer are still uncertain (regrettably, as the hy-
drated layer cannot be isolated, it is not possible to stan-
dardize the methods for detailed studies)[235, 237-239]. 
Nevertheless, it is known that the surface layer might ad-
sorb considerable amounts of foreign compounds (mole-
cules and ions) in the percent mass range[247]. Strictly 
speaking, all the aforementioned apply to both biological 
apatite of calcified tissues[248] and micron-sized apatites as 
well[249]; nonetheless, in nano-sized crystals, the composi-
tion of the hydrated surface layer contributes to the global 
composition for a non-negligible proportion. The results of 
electron states spectroscopy of nanostructural HA bioce-
ramics are available elsewhere[250, 251]. 

The hydrated surface layer confers unexpected properties 
to nano-sized apatite, is responsible for most of the proper-
ties of apatites, and, for example, can help to explain the 
regulation by biological apatites of the concentration in 
mineral ions in body fluids (homeostasis). These properties 
are important for living organisms; therefore, they need to 
be used in both material science and biotechnology[234]. 

The consideration of this type of surface state can help un-
derstanding and explaining the behavior of biological apa-
tites in participating in homeostasis due to a very high spe-
cific surface area of bone crystals and in constituting an 
important ion reservoir with an availability that depends on 
the maturation state. The important consequences are that 
the surface of nanodimensional apatites has nothing in 
common with the bulk composition and that the chemistry 
of such materials (e.g., binding of protein molecules) must 
be reconsidered[235, 237]. Interestingly, but, in response to 
an electrical potential, the surface of nano-sized HA bioce-
ramics was found to exhibit dynamic changes in interfacial 
properties, such as wettability. The wettability modification 
enabled both a sharp switching from hydrophilic to hydro-
phobic states and a microscopic wettability patterning of the 
HA surface, which may be used for fabrication of spatially 
arrayed HA for biological cells immobilization or gene 
transfer[252]. 

 
Figure 3.  A schematic representation of the “surface hydrated layer 
model” for poorly crystalline apatite nanocrystals. Reprinted from Ref.[235] 
with permission 

Furthermore, dry powders of nanodimensional HA were 
found to contain an X-ray amorphous portion with an un-
specified location[253]. After mixing of an initial 
nano-sized HA powder with a physiological solution 
(aqueous isotonic 0.9 % NaCl solution for injections), this 
amorphous portion was fully converted into the crystalline 
phase of HA. The initial crystallite average size (~ 35 nm) 
was enlarged by a factor of about 4 within the first 100 min 
after mixing the powder with the physiological solution and 
no more structural changes were detected during the fol-
lowing period[253]. In the light of the aforementioned 
studies, presumably, the discovered X-ray amorphous 
component of the initial powder was located on the surface 
of nanodimensional HA. 

6. Synthesis of the Nanodimensional and 
Nanocrystalline Calcium        
Orthophosphates 

6.1. General Nanotechnological Approaches 

The synthesis of nano-scale materials has received con-
siderable attention and their novel properties can find nu-
merous applications, for example, in the biomedical field. 
This has encouraged the invention of chemical, physical and 
biomimetic methods by which such nano-sized materials can 
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be obtained[134]. Generally, all approaches for preparation 
of nanodimensional and nanocrystalline materials can be 
categorized as “bottom-up” and “top-down” ones[142, 254]. 
The bottom-up approach refers to the build up of a material 
from the bottom, i.e., atom by atom, molecule by molecule or 
cluster by cluster and then assembles them into the final 
nanostructured material. An example is production of a 
nano-sized powder and its compaction into the final product 
(e.g., hot-pressed or sintered nanostructured ceramics). The 
top-down approach starts from a bulk material and then, via 
different dimension decreasing techniques, such as milling, 
slicing or successive cutting, leads to the formation of 
nanodimensional materials[134]. Using this approach, a 
novel 2-dimensional carbon material graphene of just 1 atom 
thick has been prepared from bulk graphite. Furthermore, 
environmentally friendly methodologies of nanostructure 
synthesis have been summarized into a special review[255]. 

Concerning calcium orthophosphates, presumably, all of 
them (see Table 1) might be manufactured in a nanodimen-
sional and/or a nanocrystalline state; however, not all of 
them (especially those with low Ca/P ionic ratios) have been 
prepared yet. The details on the available preparation tech-
niques are given below.  

6.2. Nanodimensional and Nanocrystalline Apatites 

First of all, one should stress that the stoichiometric HA 
with well resolved X-ray diffraction patterns might be pre-
pared mostly at temperatures exceeding ~ 700 ºC either by 
calcining of CDHA with the Ca/P molar ratio very close to 
1.67 or by solid-state reactions of other calcium orthophos-
phates with various chemicals (e.g., DCPA + CaO). Thus, 
with the exception of a hydrothermal synthesis[256-258], in 
aqueous solutions only CDHA might be prepared[148, 
204-206, 259-263]. As apatites (CDHA, HA and FA) belong 
to the sparingly soluble compounds (Table 1), simple mixing 
of calcium- and orthophosphate-containing aqueous solu-
tions at pH > 9 results in formation of extremely supersatu-
rated solutions and, therefore, a very fast precipitation of the 
tremendous amounts of very fine crystals[264], initially of 
ACP, those afterwards are re-crystallized into apa-
tites[204-206, 265-268]. The dimensions of the precipitated 
nano-sized crystals might be slightly increased by the Ost-
wald ripening approach (maturation), that is, by boiling 
and/or ambient aging in the mother liquid (Fig. 4)[156, 169, 
203, 235, 257, 267-272]. Heat treatment of ACP might be 
applied as well[273]. Therefore, preparation of nanodimen-
sional and/or nanocrystalline apatites is not a problem at all 
and has been known for many years[156, 157, 274-276]; 
however, prefix “nano” had not been used before 1994. On 
the contrary, with the exception of a thermally stable FA 
(thus, big crystals of FA might be produced by a melt-growth 
process[277, 278]), manufacturing of big crystals of both 
CDHA and HA still is a challenge. 

Many different methodologies have been proposed to 
prepare nanodimensional and/or nanocrystalline struc-
tures[279-286]. Prior to describing them, it is important to 

stress that in the vast majority of the available literature on 
apatites, the authors do not tell the difference between 
CDHA and HA. Therefore, getting through scientific papers, 
an attentive reader often finds statements, as: “Because 
natural bone is composed of both organic components 
(mainly type I collagen) and inorganic components 
(HA), …”[116, p. 357], “The HA nanorods are synthesized 
via a wet precipitation process …”[167, p. 2364], “… (TTCP) 
has been shown previously to be an essential component of 
self-setting calcium phosphate cements that form hy-
droxyapatite (HA) as the only end-product. …”[287, ab-
stract], etc. The matter with distinguishing between CDHA 
and HA becomes even much more complicated, when re-
searchers deal with nanodimensional and/or nanocrystalline 
apatites because the assemblies of nano-sized particles give 
only broad diffraction patterns, similar to ones from an 
amorphous material[230, 231]. While composing this review, 
I always tried to specify whether each cited study dealt with 
CDHA or HA; unfortunately, the necessary data were found 
in just a few papers. Therefore, in many cases, I was forced 
to mention just “apatites” without a further clarification. 
Thus, the readers are requested to be understandable on this 
uncertainty. 

 
Figure 4.  Variation of nanocrystalline apatite dimensions with matura-
tion time. Reprinted from Ref.[235] with permission 

The greater part of the published reports on synthesizing 
of nanodimensional and/or nanocrystalline apatites is fo-
cused on the bottom-up approach. Among the available 
preparation techniques, a wet chemical precipitation is the 
most popular one[74, 86, 88, 103, 119, 121, 167-169, 172, 
178, 201, 203, 265, 274, 288-332]. Various authors dis-
cussed the effects of synthesis parameters, such as tem-
perature[300-303, 322], time[301], calcium ion concentra-
tion[303], presents of surfactants[306-308], calcination[301] 
and the use of different reagents on the morphological 
properties of nanodimensional apatites. In general, the shape, 
stoichiometry, dimensions and specific surface area of 
nano-sized apatites appeared to be very sensitive to both the 
reaction temperature (Fig. 5) and the reactant addition 
rate[300, 315, 322]. Namely, particle sizes of nanodimen-
sional apatites were observed to increase in a linear correla-
tion with temperature[302, 322], which is a good indication 
that sizes of nanodimensional apatites can possibly be tai-
lored. Furthermore, the initial pH values and reaction tem-
peratures both play important roles in the morphology of the 
precipitated apatites, as well as on the phase formation and 
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degree of crystallinity[326]. For example, significant dif-
ferences in the chemical composition, morphology and 
amorphous character of nano-sized CDHA produced through 
the reaction between aqueous solutions of Ca(NO3)2 and 
(NH4)2HPO4 can be induced, simply by changing the pH of 
the reactant hydrogen phosphate solution[327]. Thus, the 
solvent systems, dispersant species and drying methods 
appear to have effects on the particle size and dispersibility. 
However, some conflicting results have been obtained on 
how certain synthesis parameters can affect the morpho-
logical properties of these nano-sized particles. Nevertheless, 
it was commonly observed that nano-sized crystals of apa-
tites synthesized through the chemical precipitation were 
often highly agglomerated; however, these agglomerates 
could be clusters of ultra-fine primary particles[304]. The 
prepared nanodimensional apatites might be consolidated to 
transparent bioceramics[330]. 

 
Figure 5.  The influence of the reaction temperature on the crystal di-
mensions of precipitated CDHA: a – 25 ºC, b – 37 ºC, c – 55 ºC, d – 75 ºC 

A hydrothermal synthesis[69, 72, 156, 157, 257, 258, 288, 
322, 323, 333-357] seems to be the second most popular 
preparation technique of the nanodimensional and/or 
nanocrystalline apatites. The term “hydrothermal” refers to a 
chemical reaction of substances in a sealed heated solution 
above ambient temperature and pressure[358] and this 
process allows synthesis of highly pure fine-grained single 
crystals, with controlled morphology and narrow size dis-
tribution[333]. Extraneous additives, such as EDTA[351], 
surfactants[352, 359], anionic starburst dendrimer[353] etc., 
might be utilized to modify the morphology of nanodimen-
sional and/or nanocrystalline apatites during the synthesis. 
Most of these techniques produced rod-like crystals or 
whiskers, while plate-like shapes were obtained in just a few 
studies[335, 345, 347]. 

 
Figure 6.  A variety of nano-scale calcium orthophosphates with different 
structures and morphologies synthesized by: (A and B) sol-gel processing, 
(C) co-precipitation, (D) emulsion technique, (E) hydrothermal process, (F) 
ultrasonic technique, (G) mechano-chemical method, (H – L) template 
method, (M) microwave processing, (N) emulsion-hydrothermal combina-
tion, (O) microwave-hydrothermal combination. Reprinted from Ref.[452] 
with permission 

Other preparation methods of nanodimensional and/or 
nanocrystalline apatites of various states, shapes and sizes 
include sol-gel[30, 188, 231, 232, 270, 328, 360-376], 
co-precipitation[271, 333, 334, 377-380], mechanochemical 
approach[65, 250, 343, 348, 381-387], mechanical alloy-
ing[388, 389], ball milling[348, 383, 390-392], radio fre-
quency induction plasma[393, 394], vibro-milling of 
bones[395], flame spray pyrolysis[396], liq-
uid-solid-solution synthesis[397], electro-crystallization[158, 
398, 399], electrochemical deposition[400], microwave 
processing[32, 69, 288, 333, 334, 342, 356, 401-415], hy-
drolysis of other calcium orthophosphates[416-418], double 
step stirring[419], emulsion-based[310, 349, 420-433], 
steam-assistant[434], sonochemical[435] and solvother-
mal[436] syntheses. However, still other preparation tech-
niques are also known[31, 45, 147, 154, 275, 355, 437-457]. 
Continuous preparation procedures are also available[200, 
458]. Application of both ultrasound[362, 459-461] and 
viscous systems[462] might be helpful. Furthermore, nano-
dimensional HA might be manufactured by a laser-induced 
fragmentation of HA targets in water[463-467] and in sol-
vent-containing aqueous solutions[344, 371, 468], while 
dense nanocrystalline HA films might be produced by radio 
frequency magnetron sputtering[469, 470]. An interesting 
approach using sitting drop vapor diffusion technique should 
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be mentioned as well[471]. A comparison between the 
sol-gel synthesis and wet chemical precipitation technique 
was performed and both methods appeared to be suitable for 
synthesis of nanodimensional apatite[328]. By means of 
these methods, a variety of nanodimensional calcium or-
thophosphate building blocks with various structures and 
morphologies have been synthesized, including needle-like, 
spherical, fibrous and mesoporous nano-sized crystals, as 
well as nano-sized rods, hollow spheres, layered structures 
and flowers as shown in Fig. 6[452]. 

Table 3 presents some data on the chronological devel-
opment of synthesis of nanodimensional apatites for the 
period of 1995 – 2004[147]. Among the methods described, 
the thinnest crystals of apatite (60 nm × 15 nm × 0.69 or 0.84 
nm) have been prepared by Melikhov et al., they have been 
called “two dimensional crystalline HA”[296], while the 
smallest ones (size between 2.1 and 2.3 nm, i.e. around two 
times the HA unit cell parameters) have been found by 
Biggemann et al.,[197]. Liu et al.,[477, 478] and Han et 
al.,[476] synthesized nano-sized HA via a template mediated 
and a non-template mediated sol-gel techniques, respectively. 
Both triethylphosphate[477, 478] and other alkylphos-
phates[122] might be used to produce nanocrystalline apa-
tites. Besides, nanodimensional ion-substituted CDHA 
might be precipitated from both a synthetic[378] and a 
simulated[479] body fluids. A relatively simple sol-gel 
process using ethanol and/or water as a solvent has also been 

reported to obtain the stoichiometric, nanocrystalline single 
phase HA[371]. 

Nanocrystalline HA powder was synthesized at a low 
calcination temperature of 750 ºC by the citric acid sol-gel 
combustion method[476]. The attractive features of this 
method were to synthesize materials with a high purity, a 
better homogeneity and a high surface area in a single 
step[476, 480]. An array of highly ordered HA nano-sized 
tubes of uniform length and diameter was synthesized by 
sol-gel auto-combustion method with porous anodic alumi-
num oxide template[370]. Varma et al., synthesized 
nano-sized HA by polymeric combustion method and 
self-propagating combustion synthesis by using novel body 
fluid solutions[481]. In another study, nanodimensional HA 
was synthesized by combustion in the aqueous system con-
taining calcium nitrate + diammonium hydrogen ortho-
phosphate with urea and glycine as fuels[482]. Furthermore, 
nano-sized particles of both FA and β-TCP might be syn-
thesized by a simultaneous combustion of calcium car-
boxylate and tributylphosphate based precursors in a flame 
spray reactor[483]. Both a flame-based technique[484] and a 
spray drying approach[125, 485] might be applied as well. 
Furthermore, crystalline and phase pure nano-sized HA and 
CDHA were synthesized in a continuous hydrothermal flow 
system using supercritical water at t < 400 ºC and 24 MPa 
pressure[338].  

Table 3.  Synthesis of nanodimensional apatites – a chronological development[147]. 

Year Process Reference 

1995 Synthesis of nanocrystalline HA (particle size ~ 20 nm) for the first time using calcium nitrate and diammo-
nium hydrogen orthophosphate as precursors by solution spray dry method. [472] 

2000 
Synthesis of biomimetic nanosized CDHA powders (~ 50 nm) at 37 °C and pH of 7.4 from calcium nitrate 

tetrahydrate and diammonium hydrogen orthophosphate salts in synthetic body fluid using a novel chemical 
precipitation technique. 

[378] 

2002 Preparation of nanosized HA particles and HA/chitosan nanocomposite.  [473] 

2002 Direct precipitation from dilute calcium chloride and sodium orthophosphate solutions. [474] 

2003 Radio frequency plasma spray process employing fine spray dried HA powders (average size ~ 15 μm) as a 
feedstock. [393] 

2003 Sol-gel process using equimolar solutions of calcium nitrate and diammonium hydrogen orthophosphate dis-
solved in ethanol. [371] 

2003 Chemical precipitation through aqueous solutions of calcium chloride and ammonium hydrogen orthophos-
phate. [301] 

2003 Mechanochemical synthesis of nanosized HA and β-TCP powders using DCPD and CaO as starting materials. [384] 

2003 Synthesis of nano-powders via sucrose-templated sol-gel method using calcium nitrate and diammonium hy-
drogen orthophosphate as precursor chemicals. [475] 

2004 Hydrolysis method of DCPD and CaCO3 by 2.5 M NaOH (aq). [416] 

2004 Citric acid sol-gel combustion process using calcium nitrate tetrahydrate, diammonium hydrogen orthophos-
phate and citric acid. [476] 
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Nanodimensional powders of the stoichiometric HA of ~ 
20 nm particle size were synthesized by hydrolysis of a 
mixture of DCPD and CaCO3 performed with 2.5 M aque-
ous solution of NaOH at 75 °C for 1 h. The only product 
synthesized was nanocrystalline HA and its crystallinity was 
improved with increasing annealing temperature[416]. 
Similar results were obtained in other studies[417, 418]. 
Furthermore, Xu et al., used radio frequency plasma spray 
process to synthesize nanodimensional HA powders with 
particle size in the range of 10 – 100 nm[393]. Kuriakose et 
al., synthesized nanocrystalline HA of size ~ 1.3 nm that was 
thermally stable until 1200 °C[371]. Nanocrystalline 
plate-shaped particles of HA were directly precipitated at 
ambient temperature and pH ~ 7.4 from dilute aqueous so-
lutions of calcium chloride and sodium orthophosphate. The 
direct precipitation of nano-sized HA was achieved by 
submitting the aqueous suspension to microwave irradiation 
immediately after mixing[474]. A simple and easy approach 
for synthesizing thermally stable nanostructured 
stoichiometric HA powder under invariant pH conditions of 
7.5, known as the NanoCaP process, was developed. Under 
these conditions, the synthesized HA not only remained in 
the nanostructured state but also did not exhibit any compo-
sitional fluctuations that were observed in conventional 
approaches for synthesizing HA[12]. Other preparation 
techniques of nano-sized apatite might be found else-
where[275]. Bulk bioceramics made of nanocrystalline HA 
with a grain size of no more than 50 nm and a 
near-theoretical density might be prepared by application of 
a high (~ 3.5 GPa) pressure in uniaxial compaction of 
nanodimensional powders with subsequent sintering at 
640 °C[168]. A similar approach was reported by another 
research group[406]. 

Mechanochemical processing is another compelling 
method to produce nanostructured apatites in the solid 
state[65, 238, 343, 381-386]. For example, Yeong et al., used 
the appropriate amounts of DCPA and calcium oxide. The 
initial stage of mechanical activation resulted in a significant 
refinement in crystallite and particle sizes, together with a 
degree of amorphization in the starting powder mixture. This 
was followed by steady formation and subsequent growth of 
HA crystallites with increasing degree of mechanical acti-
vation. Finally, a single-phase HA of an average particle size 
of ~ 25 nm, a specific surface area of ~ 76 m2/g and a high 
crystallinity was attained after 20 h of mechanical activa-
tion[382]. 

The use of macromolecules as templating agents to ma-
nipulate the growth of inorganic crystals has been realized in 
many biological systems. Namely, in the presence of bio-
logical macromolecules (such as collagen), nucleation and 
growth of nanocrystalline apatite to form highly organized 
bone minerals is one of the most fascinating processes in 
nature. These processes might be simulated. For example, 
layers of nanocrystalline apatite were formed in situ on the 
surface of various films at soaking them in aqueous solutions 
containing ions of calcium and orthophosphate. The in situ 
synthesized particles were found to be less agglomerated 

which was believed to be the result of nucleation of apatite 
crystallites on the regularly arranged side groups located on 
polymer chains[486, 487]. Another approach comprises 
precipitation of nanodimensional apatites from aqueous 
solutions in the presence of dissolved high molecular weight 
polyacrylic acid[488, 489] that acts as an inhibitor for the 
crystallization of apatite crystals[490, 491]. A similar inhib-
iting effect was found for dimethyl acetamide[492], poly-
vinyl alcohol[291] and several other (bio)polymers[493, 
494]. This type of synthesis is expected to lead to formation 
of nanodimensional composites, which might be structurally 
more comparable to bones with closely related mechanical 
and biological properties. Furthermore, a control of particle 
size of aqueous colloids of apatite nano-sized particles was 
described involving a presence of amino acids[495, 496]. 
The amino acids ensured effective growth inhibition by a 
predominant adsorption onto the Ca-rich surfaces during the 
initial stages of crystallization. Thus, the nano-sized particles 
were formed by an oriented aggregation of primary crystal-
lite domains along the c-axis direction. The size of the do-
mains was shown to be governed by the interactions with the 
amino acid additives, which restricted a growth of the pri-
mary crystallites[495, 496]. Furthermore, nanodimensional 
apatites might be precipitated from aqueous solutions of 
gelatin[70, 497]. The development of nano-sized apatite in 
aqueous gelatin solutions was highly influenced by the 
concentration of gelatin: namely, a higher concentration of 
gelatin induced formation of tiny (4 nm × 9 nm) nano-sized 
crystals, while a lower concentration of gelatin contributed 
to the development of bigger (30 nm × 70 nm) nano-sized 
crystals. In this experiment, a higher concentration of gelatin 
supplied abundant reaction sites containing groups such as 
carboxyl, which could bind with calcium ions. This lead to 
formation of a very large number of nuclei and creation of a 
large number of tiny nano-sized crystals[70]. 

Although each of the reported approaches to produce 
nanodimensional apatites has both a scientific and a practical 
relevance, a little attention has been dedicated to the phys-
icochemical details involved in the careful control of the 
particle size distribution and particle shape. Indeed, in the 
case of particle size distribution, most of the reported ways to 
synthesize nanodimensional apatites really produced a par-
ticle mixture with a wide size distribution from tens to hun-
dreds of nanometers. Moreover, the control of particle shape 
is another problem for these methods, which commonly 
result in pin-like or irregular particles. It is well known that 
bone consists of homogeneous plate-like crystals of bio-
logical apatite of 15 – 30 nm wide and 30 – 50 nm long, 
while enamel consists of rod-like crystals of biological apa-
tite of 25 – 100 nm thick and lengths of 100 nm to microns 
(Fig. 7)[2, 5, 207, 208, 210, 219, 227, 229]. The study of 
higher-level biomineralization and biomimetic assembly 
involves a search for advanced methods so that the synthesis 
of nano-sized apatite can be accurately controlled[498]. 
Namely, the size-controlled synthesis of materials can be 
achieved by using limited reaction spaces. For example, 
microemulsions have been shown to be one of the few 
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techniques, which is able to produce particle sizes in the 
range of nanometers and with minimum agglomeration[499]. 
Thus, microemulsions[349, 423-433], micelles[500] and 
reverse (inverse) micelles[339, 501-504] have been suc-
cessfully applied to synthesize nanodimensional apatites 
with minimal agglomeration. It was found that experimental 
conditions, such as aqueous/organic phase volume ratio, pH, 
aging time, aging temperature and ion concentration in the 
aqueous phase can affect the crystalline phase, surface area, 
particle size and morphology of nanodimensional apatites. 

 
Figure 7.  Scanning electron micrograph of the forming enamel of a 
continuously growing rat incisor showing ordered rods of calcium ortho-
phosphates. Scale bar: 10 μm. Reprinted from Ref.[2] with permission 

In some cases, special polymers can be used as spatial 
reaction vessels for fabrication of CDHA. For example, 
Shchukin et al., employed a poly(allylamine hydrochlo-
ride)/PO43- complex as a source of orthophosphate anions to 
capture calcium cations and make them react in the capsule 
volume[505]. Bose and Saha synthesized spherical-like 
nanocrystalline CDHA powder with particle diameters of ~ 
30 and ~ 50 nm using the emulsion route[425]. Furthermore, 
nano-sized crystals of apatite might be aggregated into mi-
crospheres[438, 506]. Hexadecyl (cetyl)trimethylammonium 
bromide (CTAB) was selected as an efficient agent to 
modulate the formation of CDHA nano-sized particles[501, 
502]. The particle size can be regulated feasibly by changing 
the concentration of CTAB in the supersaturated by calcium 
orthophosphates solutions. For example, three different 
types of spherical particles of nano-sized CDHA with aver-
age diameters of 20 ± 5, 40 ± 10 and 80 ± 12 nm were fab-
ricated using a series of CTAB concentrations to control the 
particle size. The experimental results revealed that the di-
mensions of the prepared nano-sized CDHA were relatively 
uniform. In contrast, nano-sized CDHA grown in the ab-
sence of organic additives are typical, rod-like particles with 
lengths of hundreds of nanometers and width of tens of na-
nometers[507]. Colloidal formulations are known as well[54, 
60, 202]. Interestingly, but nano-sized apatites might per-
form crystalline to amorphous phase transformation when 
powders were aged for 5 months in 30% relative humid-
ity[508]. 

To conclude this part, the nano-sized particles of apatite 
might be functionalized and/or doped by various compounds 
(even by quantum dots[509, 510]) to provide new important 
properties[495, 511-518], e.g., fluorescence[27-29, 515, 516] 
and luminescence[54, 60, 510, 517, 518]. Both fluorescence 

and luminescence can be used as a tracking property for the 
nano-sized particles to give an observable indication of agent 
delivery, while the particles are served to protect the agent in 
vivo until it has reached the destination.  

6.3. Nanodimensional and Nanocrystalline TCP 

Many researchers have formulated synthesis of nanodi-
mensional β-TCP. For example, Bow et al., synthesized 
β-TCP powders of ~ 50 nm particle diameter at room tem-
perature in anhydrous methanol as a solvent[519]. With 
increase in aging time, the phase transformation was found to 
take place from initial DCPA, to intermediate ACP phases, 
then to final β-TCP. The authors observed that incorporation 
of carbonates helped in suppressing formation of ACP 
phases with apatitic structure and its transformation into 
poorly crystalline (almost amorphous) CDHA and favored 
the formation of β-TCP phase[519]. Nano-sized particles of 
both FA and β-TCP were synthesized by a simultaneous 
combustion of calcium carboxylate and tributylphosphate 
based precursors in a flame spray reactor[483]. The same 
technique was used to synthesize nano-sized particles of 
amorphous TCP of 25 – 60 nm size[520-523], those after 
calcinations transformed into α-TCP or β-TCP. Nanodi-
mensional β-TCP powders with an average grain size of ~ 
100 nm[173, 524] and less[525] were prepared by wet pre-
cipitation methods, followed by calcining at elevated tem-
peratures. Furthermore, a sol-gel technique[526], reverse 
micelle-mediated synthesis[527] and a polystyrene template 
method[528] are also applicable. In wet precipitation tech-
niques, dialysis might be applied as a separation 
method[524]. When wet precipitation methods were used, 
initially nanodimensional CDHA with Ca/P ratio of ~ 1.50 
was precipitated, that was transformed into nano-sized 
β-TCP at calcination. 

To synthesize nano-sized TCP, other techniques, such as 
milling[529, 530], a high temperature flame spray pyroly-
sis[531] and pulsed laser ablation[532], might be employed 
as well. Afterwards, the nanodimensional β-TCP powders 
can be compacted into 3D specimens, followed by sintering 
to achieve the appropriate mechanical strength[173]. The 
maximal values of the bending strength, elastic modulus, 
Vickers hardness and compressive strength of the samples 
fabricated from nano-sized β-TCP powders were more than 
two-times higher as compared to those of bioceramics ob-
tained from micron-sized β-TCP powders. However, the 
degradability of bioceramics sintered from nanodimensional 
powders was just about one fourth of that sintered from 
micron-sized powders. Thus, the degradability of β-TCP 
bioceramics could be additionally regulated by the particle 
dimensions[173]. 

Nano-sized whiskers of several calcium orthophosphates 
(HA, β-TCP and biphasic calcium phosphate BCP (HA + 
β-TCP)) were produced by using a novel microwave-assisted 
“combustion synthesis (auto ignition)/molten salt synthesis” 
hybrid route. Aqueous solutions containing NaNO3, 
Ca(NO3)2 and KH2PO4 (with or without urea) were irradiated 
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in a household microwave oven for 5 min at 600 watts of 
power. The as-synthesized precursors were then simply 
stirred in water at room temperature for 1 h to obtain the 
nano-sized whiskers of the desired calcium orthophos-
phate[533]. Furthermore, nanostructured biphasic (HA + 
β-TCP) bioceramics was successfully prepared by micro-
wave synthesis[534, 535] and a polymer matrix mediated 
process[536] in other studies. Good cellular activities of the 
biphasic bioceramics have been reported. 

Layrolle and Lebugle developed a synthesis route of 
nano-sized FA and other calcium orthophosphates, using 
calcium diethoxide (Ca(OEt)2) and H3PO4[154] (+ NH4F to 
prepare FA[537]) as the initial reagents and anhydrous 
ethanol as a solvent. By a simple variance of the ratio of 
reagents, calcium orthophosphates of various chemical 
compositions were precipitated in ethanol. The precipitates 
were characterized and the results indicated that those cal-
cium orthophosphates were amorphous and nanodimen-
sional. Furthermore, they had large specific surface areas and 
possessed a high reactivity[154, 537].  

6.4. Other Nanodimensional and Nanocrystalline    
Calcium Orthophosphates 

Nano-sized particles of DCPD (with some amount of 
CDHA and ACP) of a relatively high monodispersity could 
be synthesized from aqueous solutions of calcium nitrate and 
H3PO4 in the presence of 2-carboxyethylphosphonic acid. 
They are produced in a discoid shape with a diameter of 30 – 
80 nm and a height of less than ~ 5 nm. They form stable 
colloidal solutions displaying minimal agglomeration[538]. 
Nano-sized rods and nanodimensional fibers of DCPD with 
average diameters of 25 ± 5 nm (aspect ratio ~ 6) and 76 ± 20 
nm (aspect ratio ~ 40), respectively, were synthesized by 
sucrose ester based reverse microemulsion technique[539]. 
A similar approach was used in another study[431]. Nano-
dimensional crystals of both DCPD and DCPA were pre-
pared by EDTA-assisted hydrothermal method[351]. An 
interesting approach comprises precipitation of calcium 
orthophosphates inside nano-sized pores of another material. 
For example, nanodimensional clusters DCPD were immo-
bilized into pores of an oxide network by immersion of this 
network into an acidic (pH = 2.7) calcium orthophosphate 
solution at 50 ºC[540]. The acid-base reaction between the 
calcium orthophosphate solution and the hydroxyl groups of 
the oxide network resulted in formation of nanodimensional 
clusters of DCPD immobilized inside the oxide pores. In-
terestingly, but the immobilized nanodimensional clusters of 
DCPD were further converted into those of ACP and CDHA 
by supplementary treatment of the oxide network in alkaline 
solutions[540]. Hollow nano-sized shells of undisclosed 
calcium orthophosphates (presumably, of ACP) with a size 
distribution of (120 – 185) ± 50 nm and predictable mean 
shell thickness from 10 to 40 nm were prepared by crystal-
lization onto the surface of nanodimensional liposomes[541, 
542]. Both the suspension stability and shell thickness con-
trol were achieved through the introduction of carboxyeth-
ylphosphoric acid. Variation of shell thickness and 

stoichiometry may be a way of manipulating the dissolution 
kinetics of ACP coating to control the release of encapsu-
lated materials, necessary for drug delivery purposes[541, 
542]. Other types of calcium orthophosphate shells with 
Ca/P ratios of 0.97 (DCPD or DCPD-like ACP) and 1.45 
(CDHA or ACP) were prepared using liposome tem-
plates[543]. Roughly spherical DCPA particles of approx. 50 
– 100 nm in sizes were synthesized via a spray-drying tech-
nique[125, 544-546], while ribbon-like fibers of nano-sized 
DCPA might be prepared upon hydrolysis in urea[417]. 
Furthermore, nanodimensional calcium orthophosphate 
powders with DCPD as the major phase have been synthe-
sized by an inverse microemulsion system using kerosene as 
the oil phase, a cationic surfactant and a non-ionic surfac-
tant[547]. Microskeletal constructions might be synthesized 
as well[548]. 

When it comes to ACP, it is nanodimensional in the vast 
majority cases. Approximately spherical nano-sized particles 
of ACP with a diameter of about 50 nm can be prepared by 
rapid precipitation from water[549] and subsequent colloidal 
stabilization by coating with polymers[550]. Nano-sized 
clusters of ACP[551] or those comprising a spherical core of 
355 ± 20 DCPD units with density of 2.31 g/cm3 and radius 
of 2.30 ± 0.05 nm surrounded by 49 ± 4 peptide chains with a 
partial specific volume of 0.7 cm3/g, forming a tightly 
packed shell with an outer radius of 4.04 ± 0.15 nm were 
prepared by precipitation using 10 mg/ml of the 
25-amino-acid N-terminal tryptic phosphopeptide of bovine 
β-casein as a stabilizing agent[552]. Nano-sized particles of 
ACP were prepared by mixing of solutions of 
Ca(NO3)2·4H2O (450 mmol/L) in acetone and 
(NH4)2HPO4 (30 mmol/L) in deionized water at pH within 
10.0 – 11.0[553]. Furthermore, nanodimensional particles of 
ACP might be prepared by electrostatic spray pyrolysis[554, 
555], pulsed laser ablation[532], spray drying[125], as well 
as by flame spray synthesis[457]. By means of the latter 
technique, one can produce nanodimensional ACPs with a 
broad Ca/P ratio within 0.5 – 1.5[457]. 

Self-assembled shell cross-linked poly(acrylic 
acid-b-isoprene) micelles and/or cross-linked poly(acrylic) 
acid nano-sized cages in aqueous solutions might be used as 
templates for preparation of polymer/calcium orthophos-
phate nanodimensional capsules of 50 – 70 nm in diameter, 
which consisted of spherical polymer nano-sized particles 
enclosed within a continuous 10 – 20 nm thick surface layer 
of ACP[556]. Synthesis of hollow spherical calcium ortho-
phosphate nano-sized particles using polymeric templates 
has been also reported by other researchers[557]. Further-
more, bundles of surfactant-coated ACP nanodimensional 
filaments of ~ 2 nm in width and > 300 μm in length were 
synthesized in reverse micelles[558]. Bundles of the nano-
dimensional filaments were stable in the reverse micelle 
phase up to around 5 days, after which they transformed into 
5 nm-wide surfactant-coated CDHA rods. Discrete filaments 
of 100 – 500 × 10 – 15 nm in size and a linear superstructure 
based on the side-on stacking of surfactant-coated ACP 
nano-sized rods were also prepared[490]. A double re-
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verse-micelle strategy was realized to synthesize amine, 
carboxylate- and polyethylene glycol surface functionalized 
calcium orthophosphate nano-sized particles of an undis-
closed nature[559]. Furthermore, the reverse micelle tech-
nique might be applied to prepare nanodimensional 
DCPA[501, 560]. 

Concerning OCP, an oriented growth of nanodimensional 
belts of OCP with a clean surface has been achieved by 
wet-chemical approach using cetyltrimethylammonium 
bromide[561]. Pulsed laser deposition technique was em-
ployed to obtain thin films of nanocrystalline OCP on pure Ti 
substrates[562]. The deposition was performed by a pulsed 
UV laser source in a flux of hot water vapors. 
High-resolution electron microscopy and X-ray diffraction at 
grazing incidence investigations indicated that the coatings 
were made of nanocrystalline OCP (unfortunately, the di-
mensions were not indicated). In vitro tests proved that both 
fibroblasts and osteoblasts adhered, reached a normal mor-
phology, proliferated and remained viable when cultured on 
the nanocrystalline OCP coatings, supporting a good bio-
compatibility and absence of any toxicity[562]. 

Nanodimensional powders of BCP (both HA + 
β-TCP[563-565] and HA + α-TCP[566]) have been fabri-
cated as well. To get the details, the interested readers are 
referred to the original publications. 

Similar to that for apatites (see above), nano-sized parti-
cles of TCP, ACP and other calcium orthophosphates might 
be functionalized and/or doped by various compounds to 
provide new important properties[200, 559, 566-572], such 
as fluorescence[569, 570], luminescence[572] or a good 
disperseability in organic solvents[566]. Furthermore, 
nano-sized calcium orthophosphates might be used as tem-
plates to manufacture nanodimensional capsules[573].  

6.5. Biomimetic construction using nanodimensional 
particles 

Morphological control of bioinorganic materials is an-
other interested issue in biomineralization, by which inor-
ganic materials with complex morphologies can be produced. 
Complex forms or patterns with a hierarchical structure over 
several length scales are important features of biominerali-
zation. Pattern formation in biomineralization is a process in 
which self-assembled organic templates are transformed by a 
material’s replication into organized inorganic structures. 
Needless to mention, that researchers try to reproduce these 
processes in laboratories. For example, Chen et al., reported 
a way to create enamel-like structures by modifying syn-
thetic nano-sized rods of apatite with a surfactant, 
bis(2-ethylhexyl)sulfosuccinate salt, that allowed the 
nano-sized rods to self-assemble into prism-like structures at 
the water/air interface[225]. A nanometer-scale rod array of 
apatite having preferred orientation to the c-axis was suc-
cessfully prepared simply by soaking calcium-containing 
silicate glass substrates in Na2HPO4 aqueous solution at 
80 °C for various periods[574]. A biomimetic bottom-up 
route to obtain the first hierarchical level of bone was re-

ported[212]. A pH-induced self-assembly of pep-
tide-amphiphile to make a nanostructured fibrous scaffold 
reminiscent of extracellular bone matrix was obtained. After 
the cross-linking of the scaffold, the fibers were able to direct 
mineralization of CDHA to form a biocomposite, in which 
the crystallographic c-axes of the nano-sized crystals of 
CDHA were aligned with the long axes of the fibers. This 
alignment was similar to that observed between collagen 
fibrils and crystals of biological apatite in bones[212]. Other 
attempts to fabricate artificial materials having bone-like 
both nanostructure and chemical composition were per-
formed and several significant achievements were ob-
tained[575, 576]. 

The classical model of biomineralization considers min-
eral formation as an amplification process in which indi-
vidual atoms or molecules are added to existing nuclei or 
templates[1, 2, 577]. This process occurs in the presence of 
various bioorganic molecules, which deterministically 
modify nucleation, growth and facet stability. A model in-
volving aggregation-based growth[578] recently challenged 
this conventional concept for the crystal growth. Inorganic 
nano-sized crystals were found to aggregate into ordered 
solid phases via oriented attachment to control the reactivity 
of nanophase materials in nature[19, 579]. A model of 
“bricks and mortar” was suggested to explain the biological 
aggregation of nano-sized apatite[580]. In this model, ACP 
acts as “mortar” to cement the crystallized “bricks” of 
nano-sized HA. Meanwhile, biological molecules control the 
construction process. By using nanodimensional spheres of 
HA as the building blocks, highly ordered enamel-like and 
bone-like apatites were hierarchically constructed in the 
presence of glycine and glutamate, respectively. It is inter-
esting that, during the evolution of biological apatite, the 
amorphous “mortar” can be eventually turned into the 
“brick” by phase-to-phase transformation to ensure the in-
tegrity of biominerals[580].  

 
Figure 8.  Particle sizes and crystallinity of HA powders after a heat 
treatment at various temperatures: a – 300 ºC, b – 500 ºC, c – 700 ºC, d – 900 
ºC 
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7. Biomedical Applications of the   
Nanodimensional and          
Nanocrystalline Calcium        
Orthophosphates 

7.1. Bone Repair 
Due to advances in surgical practice and a fast aging of the 

population, there is a permanently increasing demand for 
bone grafts[581]. Modern grafts should not only replace the 
missing bones, but also should be intrinsically osteoinduc-
tive by acting as scaffolds for guided bone growth. Fur-
thermore, an ability to form a biologically active apatite layer 
to bond to living bone it is an essential requirement to mod-
ern biomaterials[582]. In addition, a good graft should pro-
vide a framework to support new blood vessels and soft 
tissues in forming a bridge to existing bones[581]. 

Calcium orthophosphate bioceramics of micron dimen-
sions have been used in dentistry, orthopedics and surgery 
for over 30 years because of their chemical similarity to 
calcified tissues of mammals and, therefore, excellent bio-
compatibility[148, 204-206, 259, 260]. Due to a rapid de-
velopment of nanotechnology, the potential of nanodimen-
sional and nanocrystalline forms of calcium orthophosphates 
has received a considerable attention[18] because they pro-
duce favorable results in repair of bone defects[583, 584]. 
For example, due to an improved sinterability, an enhanced 
densification and a better bioactivity than coarser crystals, 
they might be chosen as the major components of self-setting 
bone cements[14, 25, 520, 521, 585-589]. However, there is 
a study in which an increase of particle and crystallite sizes 
of TCP did not prolong but shortened the induction time until 
the cement setting reaction started[523], which was against 
the common physical rules (generally, smaller particles or 
crystallites should enhance reactivity). Nevertheless, two 
general directions of the biomedical application of nanodi-
mensional and nanocrystalline calcium orthophosphates can 
be outlined: (i) using them in powder form as filling materi-
als to impart bioactivity to various biocomposites and hybrid 
biomaterials[64-104, 179, 590]; (ii) manufacturing of either 
dense compacts or porous scaffolds, possessing the sufficient 
mechanical properties[74, 96, 294, 295, 575, 576, 591, 592]. 
As the nanodimensional and nanocrystalline calcium or-
thophosphates tend to agglomerate at heating (Fig. 8)[313, 
593-595], normally a low-temperature[169, 371] and/or a 
rapid consolidation[169, 258, 323, 596-602] techniques must 
be employed. The low-temperature approach comprises gel 
hardening (at 4 ºC)[371] and uni-axial pressing at 150 – 200 
ºC[169]. The rapid consolidation techniques comprise spark 
plasma sintering[169, 258, 323, 596-599], pressure sinter-
ing[597] and microwave sintering over the temperature 
range 1000 – 1300 ºC, using a rapid sintering sched-
ule[600-602].  

Furthermore, nanodimensional crystals of calcined HA 
might be fabricated by calcination at 800 ºC for 1 h with an 
anti-sintering agent surrounding the original nano-sized 
CDHA particles and the agent is subsequently removed by 
washing after the calcination[603-605]. These consolidation 

approaches provided a limited alteration of the initial 
nano-sized crystals, while the final bioceramics possessed 
the mechanical properties similar to those reached with sin-
tered stoichiometric HA. 

Already in 1990-s, implants prepared from nanodimen-
sional apatites, as well as biocomposites of nanodimensional 
apatite with organic compounds were tested in 
vivo[606-608]. Cylinders made of both pure nanodimen-
sional apatite and organoapatite containing a synthetic pep-
tide were analyzed 28 days after implantation into spongy 
bones of Chinchilla rabbits. Both implant types were well 
incorporated and interface events were found to be similar to 
those observed on human bone surfaces with regard to re-
sorption by osteoclast-like cells and bone formation by os-
teoblasts. That study revealed a suitability of such materials 
for both bone replacement and drug release purposes[606]. 
Similar results were obtained in other studies[607, 608]. 

Among the available commercial formulations, NanOss™ 
bone void filler from Angstrom Medica, Inc.[609] is con-
sidered as the first nanotechnological medical device re-
ceived the clearance by the US Food and Drug Administra-
tion (FDA) in 2005. It is prepared by precipitation of 
nano-sized calcium orthophosphates from aqueous solutions 
and the resulting white powder is then compressed and 
heated to form a dense, transparent and nanocrystalline ma-
terial. NanOss™ mimics the microstructure, composition 
and performance of human bone, as well as it is mechani-
cally strong and osteoconductive. It is remodeled over time 
into human bone with applications in the sports medicine, 
trauma, spine and general orthopedics markets[609]. 

Ostim® (Osartis GmbH & Co. KG, Obernburg, Germany) 
is another popular commercial formulation. This 
ready-to-use injectable paste received CE (Conformite Eu-
ropeenne) approval in 2002. Ostim® is a suspension of 
synthetic nanocrystalline HA (average crystal dimensions: 
100 × 20 × 3 nm3 (a needle-like appearance); specific sur-
face area ~ 100 m2/g) in water, prepared by a wet chemical 
reaction[610]. After completion, the HA content in the paste 
is ~ 35%. Ostim® does not harden when mixed with blood or 
spongiosa, so it is highly suitable for increasing the volume 
of autologous or homologous material. Simultaneously, its 
viscosity enables its applications to form-fit in close contact 
with the bone. Ostim® can be used in metaphyseal fractures 
and cysts, alveolar ridge augmentation, acetabulum recon-
struction and periprosthetic fractures during hip prosthesis 
exchange operations, osteotomies, filling cages in spinal 
column surgery, etc.[609-622]. It might be incorporated into 
bones and a new bone formation is visible after only three 
months[623]. For a number of clinical applications, Ostim® 
might be combined with other types of calcium orthophos-
phate bioceramics, e.g., with a HA bioceramic core (Cer-
abone®)[610, 624] or with biphasic (β-TCP + HA) granules 
(BoneSaves®)[625]. Application of such combinations of a 
nanocrystalline Ostim® with the microcrystalline calcium 
orthophosphate bioceramics appeared to be an effective 
method for treatment of both tibia head compression frac-
tures[610] and metaphyseal osseous volume defects in the 
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metaphyseal spongiosa[624]. Besides, such combinations 
might be used for acetabular bone impaction grafting pro-
cedures[625]. 

Cui et al., developed nano-sized HA/collagen biocompo-
sites, which mimicked the nanostructure of bones[208, 626]. 
After implantation, such biocomposites can be incorporated 
into bone metabolism. Due to processing difficulties and 
poor mechanical properties of bulk calcium orthophosphates, 
their applications are currently confined to non-load-bearing 
implants and porous bodies/scaffolds. Porous 3D biocom-
posites of nanodimensional HA and collagen/polymer mimic 
bones in composition and microstructure and can be em-
ployed as a matrix for the tissue engineering of bone[89]. 

 
Figure 9.  a – A photo of a titanium implant coated with electrochemi-
cally deposited HA at 37 ºC (Cenos® BoneMaster); b – A micrograph of a 
titanium implant surface coated with electrochemically deposited HA at 37 
ºC. Reprinted from Ref.[650] with permission. Other micrographs of 
nano-CDHA coatings biomimetically deposited on NaOH-treated Ti6Al4V 
surfaces might be found in Ref.[651] 

Owing to their low mechanical properties, the use of cal-
cium orthophosphates in load-bearing applications is rather 
limited: calcium orthophosphates are too stiff and brittle for 
such use. Today’s solutions for weight-bearing applications 
rely mostly on biologically friendly metals, like co-
balt-chromium alloys, titanium and its alloys, as well as 
stainless steel 316L, but problems with stress-shielding and 
long-term service can cause failures. All these metals, al-
though nontoxic, are always bioinert and cannot bond to 
bone directly. In order to improve the biological properties of 
the metallic implants, nanostructured calcium orthophos-
phates (mainly, apatites) are generally used as a coating 
material to accelerate bone growth and enhance bone fixa-
tion[186, 187, 316, 439, 562, 627-648]. The coating tech-
niques include thermal spraying, sputter coating, pulsed laser 

deposition, dynamic mixing method, dip coating, sol-gel 
method, electrophoretic deposition, biomimetic process, hot 
isostatic pressing and some other methods[649]. In the ma-
jority cases, the coatings are composed of uniform 
nanocrystalline apatites (Fig. 9). They are capable in per-
forming bone formation and promoting direct osseointegra-
tion with juxtaposed bone[652-655]. For example, an en-
hanced new bone formation can be clearly seen on nano-
phase HA-coated tantalum compared to micro-scale 
HA-coated tantalum and non-coated tantalum (see Fig. 2 in 
Ref.[116]). Furthermore, nanostructured calcium ortho-
phosphates might be used as a coating material to impart 
surface bioactivity to other materials, e.g., glasses[656] and 
polymers[657, 658]. Finally but yet importantly, such coat-
ings might be patterned, e.g., by laser direct writing[574] or 
electrohydrodynamic atomization spraying technique[659].  

7.2. Nanodimensional and Nanocrystalline Calcium  
Orthophosphates and Bone-Related Cells 

It is well accepted that bone-related cells (especially, os-
teoblasts and osteoclasts) play the key roles in the physio-
logical formation of calcified tissues. Bone-related cells not 
only are speculated to take part in the formation of biomin-
erals and macrostructure constructions of bones, but they 
also continuously modulate the density, regeneration and 
degradation of bones. Therefore, understanding the rela-
tionship between the bone-related cells and nano-sized cal-
cium orthophosphates has been paid much attention in order 
to elucidate the formation mechanism of bones, to prevent 
and cure bone-related diseases and to design novel biomate-
rials. Better structural biomimicity and osteoconductivity 
can be achieved using nanodimensional and nanocrystalline 
calcium orthophosphates[178, 179, 185, 186, 660-663]. 
Biocompatibility of such biomaterials is the key question for 
their application possibility for clinical use. For example, 
adhesion, proliferation and differentiation of mesenchymal 
stem cells were studied on nano-sized HA/polyamide bio-
composite scaffolds. The results indicated that such bio-
composites exhibited a good biocompatibility and an exten-
sive osteoconductivity with host bone in vitro and in vivo 
and proved that nano-sized HA/polyamide scaffolds had a 
potential to be used in orthopedic, reconstructive and max-
illofacial surgery[664-666]. 

Most results demonstrate that nanostructured HA can 
improve cell attachment and mineralization in vivo, which 
suggests that nano-sized HA may be a better candidate for 
clinical use in terms of bioactivity[185, 186, 190, 667-669]. 
The size effects of nanodimensional HA on bone-related 
cells, as well as the influence of crystallinity of nano-sized 
HA were studied[507, 670]. Different nano-sized particles of 
HA, typically of 20 ± 5, 40 ± 10 and 80 ± 12 nm in diameter, 
were prepared and their effects on the proliferation of two 
types of bone-related cells, bone marrow mesenchymal stem 
cells (MSCs) and osteosarcoma cells (U2OS and MG63) 
were studied. The cell culture experiments showed an im-
proved cytophilicity of the nanophase HA if compared to the 
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submicron-sized HA. A greater cell viability and prolifera-
tion of MSCs were measured for nano-sized HA, remarkably 
for 20 nm-sized particles. However, the opposite phenome-
non occurred for bone tumour cells when nano-sized HA 
were co-cultured with cells. Nano-sized HA can inhibit pro-
liferation of U2OS and MG63 cells and the inhibited 
strengths were inversely proportion to the particle size, i.e. 
smaller particles possessed a greater ability to prevent cell 
proliferation. This suggests that nano-sized HA can exhibit 
favorable cell proliferation to optimize biological function-
ality, in which the particle dimensions are believed to play a 
key role. These in vitro findings are of a great significance 
for the understanding of cytophilicity and biological activity 
of nano-sized particles during biomineralization[507]. Fur-
thermore, an early osteogenic signal expression of rat bone 
marrow stromal cells appeared to be influenced by nanodi-
mensional HA content[671]. On the other hand, there is a 
study on early bone healing, in which an importance of 
nanometer thick coatings of nanodimensional HA on tita-
nium implants appeared to be insignificant if compared to 
the control[672]. 

Studies confirmed that nano-sized ACP had an improved 
bioactivity if compared to nano-sized HA since a better 
adhesion and proliferation of osteogenic cells had been ob-
served on the ACP substrates[673]. However, in order to 
understand the influence of crystallinity of the nano-sized 
calcium orthophosphates on the osteogenic cells correctly, it 
was critical to use nano-sized ACP and HA of the same size 
distribution[670]. Thus, ACP and HA particles of ~ 20 nm 
size were synthesized and the effects of crystallinity were 
studied. The adhesion, proliferation and differentiation of 
MSC cells were measured on both ACP and HA films and 
compared at the same size scale. Surprisingly, more cells 
were adsorbed and proliferated on the films of the well 
crystallized nano-sized HA than those on the films of 
nano-sized ACP. Alkaline phosphatase activity assay and 
RT-PCR assay were also used to evaluate the differentiation 
of MSC cells. The results showed that the differentiation of 
MSC cells from osteoblasts was promoted significantly by 
nano-sized HA. These experimental phenomena clearly 
demonstrate that the crystallized phase of HA provides a 
better substrate for MSC cells than ACP, when the factor of 
size effect is removed. This new view on the relationship 
between the crystallinity of calcium orthophosphates and the 
responses of cells emphasized the importance of both size 
and phase control in the application of biomedical materi-
als[670-673]. 

On the other hand, the chemical composition of the sam-
ples appears to be important. Interestingly, but in spite on the 
fact that the biological apatite of bones contains the sub-
stantial amount of carbonates, among investigated samples 
of nanocrystalline apatites, osteoclastic differentiation was 
found to be constrained on carbonate-rich samples, leading 
to smaller numbers of osteoclast-like cells and fewer re-
sorption pits. Furthermore, the highest resorption rate was 
found for nanodimensional HA with a low carbonate content, 
which strongly stimulated the differentiation of osteo-

clast-like cells on its surface[674].  
Cells are sufficiently sensitive and nano-scale alterations 

in topography might elicit diverse cell behavior[675-677]. 
How cells can recognize the particle size and other very 
small differences in the properties of nano-sized HA in these 
experiments remains unclear. Actually, determining the 
mechanisms whereby nano-sized particles of calcium or-
thophosphates and their sizes exert effects on bone-related 
cells will require further systematic studies.  

7.3. Dental Applications 

Dental caries is a ubiquitous and worldwide oral disease. 
At the initial stage of caries lesions, bacteria cause damage of 
dental enamel, which is the exterior coating of teeth and 
possesses remarkable hardness and resistance. As the most 
highly mineralized structure in vertebrate bodies, enamel is 
composed of numerous needle-like apatite crystals of nano-
dimensional sizes, which are bundled in parallel ordered 
prisms to ensure unique mechanical strength and biological 
protection. As a non-living tissue, the main constituent (~ 97 
wt. %) of mature enamel is inorganic nanodimensional apa-
tite so that enamel is scarcely self-repaired by living organ-
isms after substantial mineral loss. Filling with artificial 
materials is a conventional treatment to repair damaged 
enamel. However, secondary caries frequently arise at the 
interfaces between the tooth and foreign materials[678]. 

Nanodimensional HA and CDHA are often considered as 
model compounds of dental enamel due to the chemical and 
phase similarities[148, 204, 205]. Therefore, enamel remin-
eralization by using nanodimensional apatite or other cal-
cium orthophosphates is suggested in dental research[679]. 
For example, toothpastes containing nanodimensional apa-
tite could promote a partial remineralization of demineral-
ized enamel[680-684], as well as possess some whitening 
effect[685]. Furthermore, nano-sized HA might be added to 
methacrylate-based root canal sealers[686], as well as to a 
fluoride-containing mouth rinse[687]. A remineralization 
potential of sports drink, containing nano-sized HA, was also 
investigated[688, 689]. A positive influence of addition of 
nanodimensional β-TCP against acid demineralization and 
promoted remineralization of enamel surface was detected as 
well[690]. Unfortunately, these chemically analogous 
compounds of enamel are not widely applied in clinical 
practices. The native structure of dental enamel is too com-
plex to be remodeled and the synthesized apatite crystallites 
often have different dimensions, morphologies and orienta-
tions from the natural ones, which result in a poor adhesion 
and mechanical strength during dental restoration. Recent 
advances in biomineralization also indicate that features of 
smaller particles of nano-sized HA might approximate fea-
tures of biological apatite more closely than features of the 
larger HA particles that are conventionally used[13]. For 
example, it has been demonstrated that nano-sized HA can 
be self-assembled to form enamel-like structures in the 
laboratory[225]. Therefore, a biomimetic technique is sug-
gested as follows: the localized repair of the enamel surface 
can be improved by nano-sized HA (dimension of ~ 20 nm), 
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analogues to the basic building blocks of enamel rods. Fur-
thermore, it is found that nano-sized HA can adsorb onto the 
enamel surface strongly and can even be integrated into the 
natural enamel structure[691]. 

It is surprising but nano-sized HA of ~ 20 nm can inhibit 
significantly a mineral loss from the enamel surface[228]. 
Without any treatment, the demineralization of the natural 
enamel surface was remarkable in acidic solution (pH ~ 4.5 ± 
0.1, experimental period of 2 days) and damaged sites were 
observed. The mass loss rate was about 0.12 ± 0.04 mg/mm2 
per day. In contrast, a layer of nano-sized HA on the treated 
enamel surface was almost unchanged in acidic solution. The 
rate of mass loss of enamel coated by nano-sized HA ap-
proached zero (< 0.02 mg/mm2 per day), which was beyond 
the sensitivity of the detection methods. Since the coating by 
nano-sized HA appeared to be insensitive to dissolution, the 
underlying enamel surface was well protected under slightly 
acidic conditions. Furthermore, the enamel surface coated by 
~ 20 nm-sized HA had a hardness of 4.6 ± 0.4 GPa and an 
elastic modulus of 95.6 ± 8.4 GPa. These data appeared to be 
very similar to those of natural enamel samples, which are 
4.2 ± 0.2 and 94.1 ± 5.4 GPa, respectively[228]. 

The similarity between ~ 20 nm-sized HA and building 
blocks of dental enamel results in a good fixation of artificial 
biomaterials to natural tissues. Moreover, the enamel struc-
ture appears to be reinforced by nano-sized HA since sec-
ondary caries formation is suppressed and hardness is re-
tained[678, 692, 693]. This strategy may have prospective 
applications in dentistry as it offers an easy but effective 
method to reconstruct tooth enamel that is suffering from 
mineral losses. Generally, these studies also suggest that 
analogues of nanodimensional building blocks of biominer-
als should be highlighted in the entire subject of biominer-
alization. 

In the case of nanodimensional DCPA, decreasing of 
DCPA particle dimensions were found to increase the Ca- 
and PO4-ions releases from DCPA-based biocomposites. 
Therefore, biocomposites based on nano-sized DCPA, pos-
sessing both a high strength and good release of Ca- and 
PO4-ions, may provide the needed and unique combination 
of stress-bearing and caries-inhibiting capabilities suitable 
for dental applications[546].  

7.4. Other Applications 

Several other applications of nanodimensional and 
nanostructured calcium orthophosphates are in progress, 
some of which are described here. For example, there is a 
report on a successful preparation of a multi-modal contrast 
agent based on nano-sized crystals of HA, which was engi-
neered to show simultaneous contrast enhancement for three 
major molecular imaging techniques such as magnetic 
resonance imaging, X-ray imaging and near-infrared fluo-
rescence imaging[694]. Furthermore, various compositions 
based on nanodimensional calcium orthophosphates have 
been already tested for cancer treatment[48, 60, 199, 354, 
570, 695-697]. Besides, nanodimensional HA was found to 

be effective for proliferation inhibition of highly malignant 
melanoma cells[698] and human chronic myeloid leukemia 
K562 cells[699]. 

Surface modification of nanodimensional calcium ortho-
phosphates was performed in order to modulate their colloid 
stability, prevent dissolution in the case of low pH, avoid 
inflammation, serve as an intermediate layer to allow strong 
bond formation between HA/polymer matrices and poten-
tially enhance its bioactivity or improves its conjugation 
ability with special functional groups[12, 700-706]. Such 
surface modified nano-sized particles might be applied for 
oral insulin delivery[707].  

 
Figure 10.  A generalized schematic setup of a nanodimensional particle 
of a calcium orthophosphate suitable for both imaging and drug delivery 
purposes. Reprinted from Ref.[756] with permission 

In another aspect, many strategies have been employed to 
load various agents, i.e. therapeutic, bio imaging, etc., to 
nanodimensional calcium orthophosphates (mainly, apa-
tites)[708]. In summary, these strategies can be broadly 
categorized into two main approaches. One approach is to 
load these agents during the synthesis – so called in situ 
loading. This is done by adding the desired agent(s) to the 
reaction mixture before the formation of a nanodimensional 
calcium orthophosphate is completed. The second approach 
is to load the agent(s) only after a nanodimensional calcium 
orthophosphate has been fully synthesized or, in other words, 
after the synthesis process – so called ex situ loading. This is 
mainly done through surface adsorption where the agents are 
adsorbed onto the surfaces of pre-synthesized nanodimen-
sional particles[709]. Therefore, due to established bio-
compatibility, ease of handling and notorious adsorption 
affinity, nano-sized calcium orthophosphates have been 
applied as non-viral carriers for drug delivery and gene 
therapy[133, 203, 289, 318, 325, 511, 542, 559, 600d, 695, 
710-721]. After loading with genes or drugs, nanodimen-
sional calcium orthophosphates provide a protective envi-
ronment that shields them from degradation while providing 
a convenient pathway for cell membrane penetration and 
controlled release of the genes or drugs[512]. The experi-
mental results proved that nanodimensional calcium ortho-
phosphates possessed a higher penetration rate into cell 
membranes and their transfection efficiency could be 25-fold 
higher than that of the micron-sized particles. Furthermore, 
due to the larger specific surface areas, nanodimensional 
calcium orthophosphates can hold larger load amounts of 
drugs than coarser particles. These results indicate the po-
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tential of nano-sized calcium orthophosphates in gene de-
livery and as drug carriers[512, 722-725]. Since a charge of 
the particles influences their ability to pass through the cel-
lular membrane and a positive charge is beneficial, posi-
tively charged nano-sized particles of calcium orthophos-
phate/polymer biocomposites were successfully applied for 
photodynamic therapy[726]. Furthermore, nanodimensional 
calcium orthophosphates can be stably loaded with radio-
isotopes[318, 727]. 

A transfer of functional foreign nucleic acids (DNA or 
RNA) into nuclei of living cells (transfection) with the aim of 
repairing missing cell function and to provide means to en-
hance or silence gene expression is currently used exten-
sively in the laboratory and is fast becoming a therapeutic 
reality. As nucleic acids alone are unable to penetrate the cell 
wall, efficient carriers are required[728, 729]. Nanodimen-
sional calcium orthophosphates can be represented as a 
unique class of the non-viral vectors, which can serve as 
efficient and alternative DNA carriers for targeted delivery 
of genes[289, 696, 697, 708, 714, 730-742] and cells[567, 
743-749]. The standard transfection method using calcium 
orthophosphates, first introduced by Graham and van der Eb 
in 1973[748], is still used in biochemistry. It involves a 
straightforward in situ precipitation of calcium orthophos-
phate/DNA aggregates. A similar experimental approach is 
used to load calcium orthophosphates by drugs[719]. Inter-
estingly, but the transfection efficiency of nanodimensional 
calcium orthophosphates were found to depend on Ca/P 
ionic ratio: namely, calcium orthophosphates with Ca/P = 
1.30 ratio exhibited a fourfold increase in the transfection 
efficiency over the ones with Ca/P = 1.65 ratio composi-
tion[289]. This data emphasizes the importance of under-
standing the interaction between calcium orthophosphates 
and DNA to optimize the DNA uptake and its channeling to 
the nucleus of the cell. Besides, it has been demonstrated that 
surface modified particles of nano-sized calcium ortho-
phosphates can be used in vivo to target genes specifically to 
a liver[750]. Attachment of galactose moiety onto the parti-
cle surface has increased the targetability of the nano-sized 
particles. Furthermore, this surface modification makes it 
possible for site-specific gene delivery[750, 751]. Assem-
blies of block-copolymer/nano-sized calcium orthophos-
phate were prepared and used for cell transfection; a high 
biocompatibility of this system was emphasized[752]. 
Structures that are even more complex are known as 
well[753-755]. A schematic drawing of a functionalized 
nano-sized particle suitable for both imaging and drug de-
livery purposes is shown in Fig. 10[756]. Furthermore, vac-
cination to protect against human infectious diseases may be 
enhanced by using adjuvants that can selectively stimulate 
immuno-regulatory responses and nano-sized particles of 
calcium orthophosphates were found to be suitable for such 
purposes[757, 758]. 

In all these new applications of nano-sized calcium or-
thophosphates, knowledge of the exact internalization 
pathway into the cells represents the first necessary step 
towards the detailed investigation and optimization of the 

functional mechanism. The main groups of pathways into the 
cell are diffusion, passive and active transport, as well as a 
number of endocytic mechanisms[695]. Bigger particles of 
far above 10 nm are internalized by eukaryotic cells through 
the endocytic pathways including phagocytosis, macropi-
nocytosis, clathrin-mediated endocytosis and 
non-clathrin-mediated endocytosis such as internalization 
via caveolae. To date, the exact internalization pathway of 
nano-sized calcium orthophosphates into cells has not been 
determined and there are many questions that remain to be 
answered, particularly, concerning possible interactions of 
calcium orthophosphates with nucleic acids. Furthermore, 
the mechanisms of cellular uptake and transport to the cell 
nucleus of calcium orthophosphate/DNA nanodimensional 
complexes remain unclear either. Therefore, there is a need 
to conduct a focused study on the synthesis of various forms 
of nano-sized calcium orthophosphates that could elucidate 
the mechanisms of binding, transport and release of attached 
plasmid DNA for understanding the gene delivery method. 
Research is also warranted to understand the tracking of 
DNA intracellularly[745] to understand the release and 
transport of DNA into cellular nuclei. 

Concerning the healing abilities of nano-sized calcium 
orthophosphates, an in vitro inhibiting effect and even 
apoptotic action of un-functionalized nano-sized HA of 
about 50 nm diameter on a hepatoma cell line in the con-
centration range of 50 – 200 mg/1 was reported[759]. A 
similar inhibiting effect was discovered for discrete 
nano-sized particles of HA, which appeared to cause apop-
tosis of leukemia P388 cells[119] and rat macrophages[760]. 
This effect might be due to a harmful increase in the intra-
cellular calcium concentration. However, the correlation 
between the particle dimensions and the apoptotic action of 
nano-sized calcium orthophosphates appears not to be 
straightforward. Namely, the apoptosis efficacy of nanodi-
mensional particles of HA of various sizes was found to 
decrease in the order of 45 nm > 26 nm > 78 nm > 175 
nm[761].  

Hollow nano-sized spheres are extremely attractive con-
structions because they can greatly enhance the load quantity. 
Though these novel biomaterials can improve the total intake 
of drugs, they also bring new problems, e.g., uncontrolled 
release kinetics and unreasonable metabolism pathway of the 
carriers[762]. In order to solve these problems, calcium 
orthophosphates were selected as suitable biomaterials to 
construct nanodimensional spheres hollow inside[198, 541, 
542, 717, 763, 764]. Such spheres with dimensions ranged 
from 110 to 180 nm were synthesized by an ultra-
sonic-assisted wet chemical reaction in the presence of a 
modifier[765]. In addition, they might be prepared through 
emulsions[766]. Transmission electron microscopy investi-
gations revealed that the uniform nanodimensional spheres 
were formed and they were well dispersed in the solutions. 
Thickness of the shells was about 45 nm; thus, they always 
had ~ 60 nm-sized internal cavities, which could be used to 
load drugs. The hollow spheres appeared to be stable in both 
air and aqueous solutions without ultrasonic application. 
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However, when an ultrasonic treatment (40 kHz, 150 W) was 
applied, the hollow structures deconstructed to form pin-like 
nano-sized crystals of calcium orthophosphates[765]. Dur-
ing this transformation, the encapsulated drugs and chemi-
cals are released[559, 765]. Different from a free and slow 
diffusion of encapsulated drugs from the cavity through the 
shells[199], the release kinetics in this system was triggered 
and controlled by ultrasound. Furthermore, the power den-
sity of ultrasound can conveniently regulate the release dy-
namics. Besides, the formed pin-like nano-sized crystals of 
calcium orthophosphates had similar behavior to the bio-
logical apatite of bones. Thus, a combination of the hollow 
calcium orthophosphate nanospheres and ultrasonic treat-
ment might provide a good system for drug delivery and 
release[765].  

8. Non-Biomedical Applications of the 
Nanodimensional and Nanocrystal-
line Calcium Orthophosphates 

Just a few publications are available on non-biomedical 
applications of the nanodimensional and nanocrystalline 
calcium orthophosphates. For example, nano-sized particles 
of calcium orthophosphates with a mean size of 150 ± 20 
nm filled with a solution containing luminol, haematin and 
fluorescein were found to improve the ease and accuracy of 
H2O2 sensing[767]. Besides, nanodimensional HA particles 
were tested as a component of a green slow-release fertil-
izer composition[768]. Also, addition of nanodimensional 
HA remarkably inhibits desorption of heavy metals from 
soils, which increases their geochemical stability in metal 
contaminated soils[769]. Furthermore, nanodimensional HA 
was found to hold a great potential to remove cationic 
heavy metal species from industrial wastewater[770-774]. 
Finally yet importantly, nanodimensional and nanocrystal-
line calcium orthophosphates occasionally might possess a 
catalytic activity[775, 776]. 

9. Summary and Perspectives 
As the basic building blocks of calcified tissues of 

mammals, nano-sized calcium orthophosphates of the apa-
titic structure play an important role in the construction of 
these biominerals. Therefore, they appear to be almost the 
ideal biomaterials due to their good biocompatibility and 
bioresorbability. Even more enhanced applications are ex-
pected in drug delivery systems[777]. However, there is still 
an unanswered question concerning their structure: whether 
the majority of nanodimensional calcium orthophosphates 
appear to be almost amorphous (according to numerous 
results of X-ray diffraction studies) due to their nanoscopic 
dimensions of well-crystallized structures or due to a really 
amorphous (i.e., retaining only a short-range order at the 
scale of few atomic neighbors) matter? A good attempt to 
discuss this topic is available in literature[778], where the 

interested readers are referred to. 
In future, an ability to functionalize surfaces with differ-

ent molecules of varying nature and dimensions by means 
of their attachment to cells will enable them to act selec-
tively on biological species such as proteins and peptides. 
The capability of synthesizing and processing of nanodi-
mensional and nanocrystalline calcium orthophosphates 
with the controlled structures and topographies, in attempts 
to simulate the basic units of bones and teeth, will provide a 
possibility of designing novel proactive bioceramics neces-
sary for enhanced repair efficacy. The various primary posi-
tive results on the biocompatibility and biomimicity of 
novel nanostructured bioceramics merit further confirma-
tions. Namely, much work remains to be undertaken to ad-
dress the following key challenges and critical issues of 
nanodimensional and nanocrystalline calcium orthophos-
phates[779]: 
 Consistency of the processing technologies; 
 Optimization the structure and properties mimicking 

bones; 
 Matching the strength of nanodimensional and 

nanocrystalline constructs with those of bones in order to 
provide a uniform distribution of stresses (load sharing); 
 Optimizing bioresorption without comprising the me-

chanical properties; 
 Assessing the inflammatory response to validate their 

biosafety. 
Furthermore, substantial research efforts are required in 

the analysis of cells and their different behaviors with re-
gard to their interactions with nanodimensional and 
nanocrystalline calcium orthophosphates[779]. An impor-
tant but still unsolved question is how the cells can recog-
nize the particle dimensions and crystallinity of nano-sized 
calcium orthophosphates. What is the signal for nanodi-
mensional biomaterials to promote cell proliferation and 
differentiation and how can the pathways be found out? 
According to the experiments results on transfection, 
nano-sized particles can enter into cells readily but many 
details of this process remain unclear. Namely, the path-
ways for the nano-sized particles to enter the cells through 
the membranes should be revealed[780]. A greater influ-
ence of the hydrated surface layer with labile ionic species 
of smaller particles and crystals (see section 5. The struc-
ture of the nanodimensional and nanocrystalline apatites 
for the details) might be another possible option, to be con-
firmed experimentally. Then, it is important to examine the 
metabolism process of nano-sized calcium orthophosphates 
inside cells, so the existing forms of these particles during 
the biological processes could be understood. Further, a 
critical step will be the investigation of possible changes of 
gene or protein expression in the absence and presence of 
various nano-sized calcium orthophosphates, which may 
directly be related to cell proliferation and differentia-
tion[13]. 

Understanding of the interactions between nano-sized 
particles and living cells is still a great challenge[779]. 
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Namely, elucidating mechanisms, by which cells internalize 
and process nanodimensional particles, is of great impor-
tance for understanding their potential toxicity and for im-
proving the targeted delivery of nanodimensional particles 
for biomedical applications. Already, some data are avail-
able that clathrin-mediated endocytosis might be responsi-
ble for the uptake of nano-sized HA[695]. In another study, 
nanodimensional particles of HA were sequestered within a 
specialized membrane-bound surface-connected compart-
ment, directly connected to the extracellular space[781]. 
Future studies will focus on (1) the detailed interfacial 
structure of nanodimensional calcium orthophosphates and 
the specific adsorption of proteins or other matrices; (2) an 
uptake processes of the nano-sized particles by cells; (3) 
metabolism of nano-sized calcium orthophosphates inside 
the cells and its possible interference with physiological 
reactions. Another important topic is a biological security of 
nano-sized particles in general[144, 145, 782, 783] and 
those of calcium orthophosphates particularly[178, 376, 
784]. For example, toxicity of nano-sized HA was found to 
vary considerably, which was related to their phys-
ico-chemical properties. Furthermore, cell death correlate 
strongly with the load of nano-sized particles. Namely, the 
biological effects of rod-shaped apatite, 50 – 80 nm in 
length, were investigated on human monocyte-derived 
macrophages[178]. High concentrations of apatite (200 
nano-sized particles per cell) were incubated for 24 hours 
with the macrophages in both serum and serum-free condi-
tions. This induced high levels of lactate dehydrogenase 
release, which is an indicator of cellular damage. However, 
lower concentrations (20 and 2 nano-sized particles per cell) 
of the rod-shaped apatite did not affect the cell viability 
similarly to the control group that did not contain 
nano-sized apatite[178]. Similarly, intracellular dissolution 
of nano-sized HA as a function of time suggests that in-
creased cytoplasmic calcium load is likely to be the cause of 
cell death[784]. Furthermore, nano-sized calcium ortho-
phosphates were found to interfere with cell cycle of cul-
tured human ovarian granulosa cells thus increasing cell 
apoptosis[785]. That pilot study suggested that effects of 
nano-sized particles on ovarian function should be exten-
sively investigated. Additional examples of cytotoxicity 
experiments of nanodimensional calcium orthophosphates 
are well described in a recent review[709]. 

To finalize this topic, one should stress that, in vivo 
evaluation of nano-sized particles includes the particle’s 
activity, biodistribution and pharmacokinetic proper-
ties[786]. Ultimately, all these properties are determined by 
dimensions, surface charge, morphology and surface chem-
istry. Furthermore, nano-sized particles penetrate and leave 
biological organisms more readily using a number of path-
ways. Namely, very small (< 10 nm) particles are generally 
eliminated from the body via renal clearance, i.e. being fil-
tered through the kidneys and eliminated through urine, 
while nano-sized particles of larger dimensions are phago-
cytized by tissue macrophages of the reticuloendothelial 
system in the liver and spleen[713]. For example, intrave-

nously administered nanodimensional (~ 40 nm and ~ 200 
nm) rod-shaped crystals of apatite showed clearance from 
the bloodstream within two hours, with ~ 90 % of them 
being cleared in the first 10 minutes post injection; those 
nanodimensional crystals of apatite were observed primarily 
in the liver with a minority seen in the spleen[318]. These 
results indicate that bloodstream clearance occurs rapidly 
for a wide range of nanodimensional sizes. The accumula-
tion of nanodimensional (50 – 100 nm in size) apatite in the 
liver was also noted in another study[510]. 

Thus, understanding the biological influence of 
nano-sized and nanocrystalline calcium orthophosphates is 
essential for a future development of bionanotechnol-
ogy[787]. This interdisciplinary approach is very compli-
cated and the effective collaboration of scientists from dif-
ferent disciplines is the key[13]. 

10. Conclusions 
With a high surface area, un-agglomerated nanodimen-

sional and nanocrystalline bioceramic particles are of interest 
for many applications including injectable or controlled 
setting bone cements, high strength porous or non-porous 
synthetic bone grafts and the reinforcing phase in biocom-
posites that attempt to mimic both the complex structure and 
superior mechanical properties of bone. Therefore, 
nano-sized and nanocrystalline calcium orthophosphates 
have already gained much regard in the biomedical field due 
to their superior biocompatibility and biomechanical prop-
erties. This is easily seen from a permanent increasing of the 
amount of publications. At present, apatites (HA and CDHA) 
and β-TCP are the major calcium orthophosphates used in 
clinics. Currently, nanodimensional apatites are used pri-
marily as bioactive coatings on bioinert materials like tita-
nium and its alloys, in bone tissue repairs and implants, as 
well as for drug delivery purposes. The nano-sized β-TCP 
exhibits a significant biological affinity and activity and 
responds very well to the physiological environment. A lot of 
research is expected for much enhanced applications of the 
nanodimensional and nanocrystalline calcium orthophos-
phates for both drug delivery systems and as resorbable 
scaffolds that can be replaced by the endogenous hard tissues 
with the passage of time[147, 787]. 

Although the nanostructured biomaterials may have many 
potential advantages in the context of promoting bone cell 
responses[534-536, 677], it is important to remember that 
studies on nanophase materials have only just begun; there 
are still many other issues regarding human health that must 
be answered. Since particles of very low size have higher 
reactivity and effectiveness, a rapid technical development 
of nanometer-scaled particles in the biomedical field leads to 
concerns regarding the unknown risks of such materials[782, 
783]. These nano-sized particles might induce inflammatory 
reactions, cytotoxicity, oxidative stresses or thrombogenesis 
when injected for drug delivery purposes. Namely, 
nano-sized particles may enter the human body through 
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pores and may accumulate in the cells of the respiratory or 
other organ systems (when becoming dislodged through 
wear debris) and the health effects are yet to be largely 
known. This could happen during commercial-scale proc-
essing of the nano-sized particles as well as using these 
materials as implants[790]. Besides, nano-sized particles 
might be the objects whose existence has not been assumed 
by living body defense system[18, 144, 145]. Up to now, 
only a small number of short-term and small-scale health 
effects of single nanodimensional materials have been ex-
amined in toxicological studies, usually of the lungs[783]. 
Therefore, prior to clinical applications, any toxicity con-
cerns of the nanophase materials[791-796] need to be over-
come. 

In summary, despite the challenges that lie ahead, sig-
nificant evidences now exist elucidating that nanophase 
biomaterials represent an important growing area of research 
that may improve bonding between the implants and the 
surrounding tissues. It has proven to be a versatile approach 
that can increase bone cell functions on a wide range of 
orthopedic implant chemistries. Even if the nanodimensional 
and nanocrystalline calcium orthophosphates do not provide 
the ultimate answer for increasing bone cell responses (due 
to some potential problems as mentioned above), researchers 
have learned a tremendous amount of information concern-
ing bone cell recognition with nanostructured surfaces that 
will most certainly aid in improving orthopedic implant 
efficacy[144, 145].  

11. Post-Conclusion Remarks 
According to Prof. D. F. Williams[115], the term “nano-

material” should not exist because it is senseless (see section 
2. General information on “nano”). Following this logic, the 
term “nanoapatite” is senseless as well. However, it is pre-
sented in the titles of several publications, namely Refs.[606, 
629, 653, 667]. In a slightly modified form, the term 
“nano-apatite” is presented in the titles of several other pub-
lications, namely Refs.[89, 100, 226, 511, 631, 735, 789]. 
Furthermore, similar terms “nano-HA”[103, 575, 608, 659, 
681, 692], “nano-hydroxyapatite”[42, 87, 91, 92, 96, 97, 102, 
119, 190, 191, 294, 295, 314, 338, 451, 459, 486, 492, 578, 
583, 606, 627, 628, 641, 664, 666, 677, 682, 685, 687, 693, 
698, 701, 703, 705, 770, 773], nano-fluorapatite[104, 684] 
and “nanohydroxyapatite”[86, 93, 99, 162, 201, 239, 240, 
242, 246, 253, 274, 320, 329, 362, 462, 576, 656, 664, 764] 
are presented in the titles of still other publications. Pre-
sumably, it is wiser not to use these terms anymore. 
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