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Abstract  Signal transmission in the form of propagating waves of electrical excitation is a fast type of communication and 
coordination between cells that is known in cardiac tissue as the action potential.In this article we used an efficient model of 
cardiac ventricular cell that is based on partial differential equations(PDE).After that a computational algorithm for action 
potential propagation was represented that according to this algorithm and proposed efficient model, We demonstrated action 
potential propagation in one-dimensional (1D) and two-dimensional (2D) space lattices using the central finite-difference 
method.In addition we investigated the effect of obstacles on the propagation of normal action potential using represented 2D 
excitable medium.Our results show that proposed efficient model, represented algorithm and excitable media are suitable for 
simulation of action potential propagation in cardiac tissue. 
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1. Introduction 
Traveling waves transmit information through space and 

always an excitable medium serves to promote propagation. 
an excitable medium is typically comprised of a continuous 
set of locally excitable regions,which can be both inde-
pendently stimulated and inhibited.these media exhibit a 
sensitivity threshold blow which the media persist undis-
turbed at a stable resting state.while subthreshold perturba-
tions are rapidly diminished, greater than threshold signals 
induce an abrupt local transformation within a portion of 
the medium. shortly after this change occurs, the region 
becomes transiently refractory to further perturbation, after 
which it relaxes to the resting state. 

The bioelectric activity of cardiac cells results from the 
transport processes of ionic species across the membrane 
through voltage-gated ion channels. The ion channels act as 
gates that regulate the permeabilities of sodium, potassium 
and calcium ions. At rest, the cell maintains a constant, 
negative transmembrane voltage, called the resting potential. 
However, if a strong enough depolarizing current is passed 
through the membrane, the cell departs from equilibrium 
and responds with a sharp change in the transmembrane 
voltage followed by a return to the resting state. This rapid 
course of the transmembrane voltage is called action poten-
tial (AP) that is the fastest form of communications in the 
cardiac excitable tissue. Conduction of AP in the heart 
occurs by electrotonic mechanisms, in which the local 
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release of stored energy is spent to trigger similar cellular 
events in adjacent regions. Action potential waves are 
self-sustaining signals in the sense that they retain their am-
plitude and shape at the expense of energy provided by the 
cell metabolism. During normal sinus rhythm, AP waves 
are periodically initiated by the pace maker cells of the si-
noatrial node and propagate through atria and ventricles. 
Cardiac arrhythmias are disorders of either wave initiation 
or wave propagation. 

Modeling studies have a long-standing tradition and play 
very significant role in cardiac electrophysiological research. 
Mathematical models and computer simulations play an 
increasingly important role in cardiac arrhythmia research. 
Electrophysiological models have complete description from 
details of cardiac cells processes and can be used for accurate 
study in cellular level. One of the most important applica-
tions of these theoretical studies is the simulation of the 
human heart, which is important for a number of reasons. 
First, the possibilities for doing experimental and clinical 
studies are very limited. Second, animal hearts used for 
experimental studies may differ significantly from human 
hearts [heart size, heart rate, action potential (AP) shape, 
duration, and restitution, vulnerability to arrhythmias, etc]. 
Finally, cardiac arrhythmias, especially those occurring in 
the ventricles, are three-dimensional phenomena whereas 
experimental observations are still largely constrained to 
surface recordings[1]. Computer simulations of arrhythmias 
in the human heart can overcome some of these problems. 

The excitable behavior of cardiac tissue has traditionally 
been described using either cellular automata (CA) models 
or partial differential equation (PDE) models. The first 
models used to study re-entry by Wiener & Rosenblueth 
(1946)[2] and fibrillation by Moe (1964)[3] were CA mod-
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els. In these models, cells have a discrete state (resting, ex-
cited, refractory), and rules describe state transitions de-
pending on the current state of the cell and its neighbors. 
Because of their computational simplicity, CA models have 
been used extensively in whole heart models to reproduce 
normal and abnormal excitation sequences. However, in 
order to precisely model properties such as action potential 
duration and conduction velocity restitution and wave front 
curvature effects, large numbers of different states and a set 
of complex transition rules is needed. This will lead to the 
loss of computational simplicity of the CA model. There-
fore, for studying the mechanisms behind onset and dy-
namics of reentrant arrhythmias, for which properties such 
as curvature and restitution are essential, usually PDE mod-
els are used. 

Among the PDE based models phenomenological models 
such as FitzHugh–Nagumo like models (FitzHugh 1960, 
1961[4,5], Nagumo 1962[6], Aliev and Panfilov 1996[7]) 
and the Fenton–Karma model (Fenton and Karma 1998[8]) 
are computationally very efficient, but lack lectrophysi-
ological detail. The first generation of cardiac cell models 
aimed to reproduce the action potential based on available 
experimental information about the voltage and time de-
pendence of ion channel conductance data, reviewed in 
Rudy (2006)[9]. The ion channel kinetics are based on those 
used in the Hodgkin–Huxley model of the squid giant axon 
(Hodgkin and Huxley 1952[10]), first adapted for cardiac 
Purkinje cells by Noble (Noble 1962[11]). The Beeler 
Reuter model (Beeler and Reuter 1977[12]) was the first 
ionic model of ventricular myocytes, as distinct from mod-
els of Purkinje cells. 

Second-generation models are more computationally in-
tensive to solve than first-generation models because they 
include more state variables for ion channels, pumps and 
exchangers, as well as the intracellular ion concentrations 
and transfer. The first second-generation model was the 
DiFrancesco-Noble model of Purkinje cells (DiFrancesco 
and Noble 1985[13]), and other early second-generation 
models of ventricular cells include the Luo Rudy dynamic 
(LRd) model (Luo and Rudy 1994[14]) and the Noble 
1998[15] model for guinea pig ventricular cells. Both first 
and second generation ionic models contain a lot of elec-
trophysiological detail, but are computationally very expen-
sive. We therefore need a model of an intermediate type. 
Bernus[16] in 2002 constructed a relatively simple ionic 
model for human ventricular cells based on the second gen-
eration Priebe–Beuckelmann ionic model (Priebe and 
Beuckelmann 1998[17]). The disadvantage of this interme-
diate type model is that the Priebe–Beuckelmann model 
itself is based on only a limited amount of at that time 
available human cardiac cell data. 

To be able to study human whole heart activities and how 
these are linked to (sub) cellular processes such as ion 
channel mutations, a human cardiac cell model that is both 
detailed and computationally efficient is needed. So in this 
computational study we use an efficient PDE model (Ten 
Tusscher&Panfilov 2006)[18] with two mentioned charac-

teristics. This model is based on partial differential equation 
method. In the second section of this article we explain the 
equation of action potential propagation, numerical method 
for solving this equation and characteristics of represented 
excitable media, respectively. Then the stimulation ways 
that we apply for generating AP in the excitable medium are 
described and at end of this section our proposed wave 
propagation algorithm is represented. In third section firstly 
single action potential in the ventricular cardiac cell is 
simulated and in continue, our simulations contain action 
potential propagation in one-dimensional(1D) and 
two-dimensional(2D) states. All simulations were written in 
DELPHI. 

2. Methods 
2.1. Numerical Method  

Action potential generation and propagation in a one- 
dimensional strand of ventricular muscle and in a two- di-
mensional grid of cardiac ventricular cells was described 
using the following differential equation as in[19]:  

           (1) 

Where V is the transmembrane potential,Cm is the trans-
membrane capacitance, D is the diffusion coefficient, Iion are 
currents constituted by various ions across the cell mem-
brane and Istim is the external current signal.  

For numerical solving of two-dimensional wave propaga-
tion, central finite difference method is used with a time step 
of 0.02 millisecond and a space step of 0.25 millimeter.This 
method can be derived from performing Taylor expansion of 
V at x as follows: 

V(x + h) = V(x) + hV´(x) + h2

2
V"(x) + h3

6
V‴ (x) + O(h4)  (2) 

V(x − h) = V(x) − hV´(x) + h2

2
V"(x) − h3

6
V‴ (x) + O(h4)  (3) 

By considering h≪1 and adding the equations (2) and (3) 
central finite difference approximation is achieved as equa-
tions (4) : 

V"(x) ≃ (V(x + h) − 2V(x) + V(x − h))/h2  + O(h2)   (4) 
We assume C=1μF/cm2 and for D we use D = 0.00154 

cm2/ms in one dimensional and two dimensional grid of cells 
simulations to obtain a maximum planar conduction velocity 
(CV) of 68 cm/s consistent with measurements in human 
ventricular tissue[18], and a value of D = 0 cm2/ms for single 
cells.  

2.2. Excitable Media 
In this work, for studying the 1D wave propagation we 

assume that cardiac cells are connect to one another, form-
ing an excitable cellular cable including 50 cells at the same 
direction and then for 2D wave propagation study the simu-
lations are performed on a square excitable medium with 80 
cells in both x and y directions. 

2.3. Stimulation Methods 

It's mentioned that for generating the propagating waves 
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in an excitable medium stimulation signals are always re-
quired. In this simulation study, at first in 1D propagation 
state, by applying the stimulation at one side of our excit-
able cable the AP wave propagates along the cable. In 2D 
propagation state, we apply the stimulation in two different 
ways. Firstly by stimulating the bottom side of represented 
square excitable medium and secondly by an external 
stimulus, applied at the left down corner of excitable me-
dium. 

2.4. Wave Propagation Algorithm 

In this article we represent a computational algorithm for 
action potential propagation as given in flowchart(1).This 
flowchart shows the procedure of 2D action potential 
propagation. According to flowchart(1), x and y are two 
spatial variables and t is time variable, applied in our pro-
posed algorithm. Moreover Xend , Yend and tend are final val-
ues, assigned to two spatial parameters and time parameter 
respectively. Likewise ΔX and ΔY indicate two space steps 
and Δt indicates time step of algorithm. The procedure of 1D 
action potential propagation is also similar to 2D one, but 
instead of two spatial variables and consequently two space 
loops in the algorithm, there is only one spatial variable and 
naturally one space loop. 

In each loop and in each stage, computations continue 
until the certain variable of each loop doesn't become more 
than its assigned final value. If it becomes more than the 
mentioned final value, the space loops by adding the space 

step to spatial variable and the time loop by adding the time 
step to time variable enter to next computational stage. In 
final stage the computations will be finished and the desired 
output as AP signal will be achieved. 

3. Results 
3.1. Action Potential of Single Cell  

The typical cardiac action potential has 5 phases from 0 
up to 4 including: (0) depolarization or upstroke phase,(1) 
partial repolarization or notch phase (2) plateau phase (3) 
repolarization phase and (4) resting membrane potential 
phase[20]. In this section at first AP response of single cell 
is simulated. Figure(1) illustrates the simulation of AP in 
cardiac ventricular myocardium cell. According to this fig-
ure, five phases of action potential signal is observable. In 
figure(1) vertical axis depicts the transmembrane voltage in 
millivolt and horizontal axis shows time in millisecond. 

3.2. One-dimensional (1D) Action Potential Propagation 

In this stage we study the AP generation and its propaga-
tion in 1D state.Figure(2) demonstrates this type of propa-
gation.Vertical axis in this figure represents the transmem-
brane voltage and horizontal axis shows the number of cells 
that formes 1D excitable cable. Figure(2) clearly illustrates 
when we stimulate the start of the excitable cable, AP wave 
initiates and propagates along the horizontal axis. 

 
Flowchart(1): Represented algorithm for action potential propagation 
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Figure 1.  Action potential of single cardiac cell(ventricle myocardial cell) 

 
Figure 2.  The procedure of action potential propagation in one-dimensional(1D) state 
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According as we observe in figure(2) AP wave naturally 
continues in every point of excitable cable in a specific du-
ration and the repolarization process starts from region that 
depolarization process was initiated and then at the same 
direction that depolarization wave has proceeded, repolari-
zation process will be continued too. According to all or 
nothing principle that is true in all natural excitable media, 
when an AP occurs in any point of excitable medium the 
depolarization process travel through space.This law is also 
confirmed in our represented excitable medium. 

3.3. Two-dimensional (2D) Action Potential Propagation 

In this stage, we survey the 2D action potential propaga-
tion according to our represented algorithm and 2D excitable 
medium and also based on the proposed efficient model .The 
propagation quality of two different wave fronts as plane 
wave front and as convex wave front will be studied. One of 
the most important characteristics of 2D propagation is 
curvature. A plane wave front conserves its length locally 
and thus each depolarized cell needs to depolarise only one 
cell in front of it. In contrast the length of a convex wave 
front steadily increases, and therefore the current initiating 
depolarisation spreads to a larger area than that for a plane 
front. As a result, convex fronts propagate more slowly than 
a plane front[21]. Now for validating of our represented 
propagation algorithm and excitable medium we study this 
scientific reality in this section. 

Figure(3) illustrates the procedure of action potential 
propagation in 2D excitable medium as a plane wave front. 
In the beginning, we don't apply any stimulation and the 
excitable medium is in the resting state. By applying the 
stimulation to the entire bottom side of the medium, excited 
status is formed in the cells and depolarization signal as a 
planar wave front starts to propagate in the tissue until it's 
gently damped and the excitable medium regains its own 
resting state. Similar to 1D state all or nothing principle is 
confirmed in the represented 2D excitable medium. 

 
Figure 3.  2D action potential propagation as a plane wave front (series of 
snapshots 0,3,6,8,10,12 milliseconds after start of propagation, from top 
row to bottom row respectively and in each row from left side to right side) 

In the second time according to figure(4), a point stimu-
lation is applied to the medium. Like the previous case,in the 
absence of any stimulation the medium remains as is. When 

we apply an external stimulus at the left down corner of 
excitable medium, a convex wave front is formed that after 
damping, excitable medium returns again to rest.In both 
figure(3) and figure(4),dark color and light color depict 
resting state and excited status of excitable medium, respec-
tively.  

 
Figure 4.  2D action potential propagation as a convex wave front (series 
of snapshots 0,0.5,2,4,6,8,10,12,14 milliseconds after start of propagation, 
from top row to bottom row respectively and in each row from left side to 
right side) 

According to the recorded times of snapshots in figures(3) 
and (4), it's clearly observable that convex wave front needs 
more time than plane wave front to traverse the medium. On 
the other hand the plane wave propagation speed is more 
than convex wave front. Now for more validating of our 
work, we study the effect of obstacles on the AP propagation 
in our represented excitable medium.  

In the normal heart, rhythmic cardiac contraction is coor-
dinated through non-linear electrical waves of excitation that 
smoothly propagate through the cardiac tissue. A common 
cause of cardiac arrhythmias are reentrant waves. The term 
reentry was coined to describe a wave front that reenters and 
hence re-excites the same tissue again and again as opposed 
to the normal planar wave front emitted by the sinus node 
that excites all tissue only once. 

In two dimension tissue, reentry can be caused by a wave 
front curved around an inexcitable obstacle that This so- 
called anatomical re-entry (Wiener & Rosenblueth 1946[2]; 
Winfree 1980[22]; Zykov 1987[23]). in fact the dead regions 
of the cardiac tissue play the role of inexcitable obstacles.An 
AP wave front, for successfully expanding in tissue, requires 
that there be a sufficient number of Na ions that can diffuse 
into adjacent resting cells and raise the membrane potential 
to the firing threshold. Hence, in this study we creat the local 
inexcitable obstacle as a dead tissue with considering the 
sodium ion conductance equal to zero in the excitable me-
dium. 
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Figure 5.  Effect of inexcitable obstacle as a dead tissue on the normal 
action potential propagation 

As given in figure(5), a rectangular obstacle in the me-
dium is considered with conditions that we mentioned be-
fore. According to this figure its observed the considered 
obstacle that exists in the passing way of wave front disor-
ders it. This perturbation causes changes in normal AP 
propagation in the grid, which disturbs the normal cardiac 
rhythmic pattern and arrhythmia condition is achieved. The 
cumulative effect of the disturbance in the abnormal cardiac 
rhythmic pattern forms a reentry in the location where ob-
stacle exists. The reentry is formed because the dead region 
of the tissue acts as an obstacle for normal AP propagation. 
As time elapses the reentry waves move to all regions of 
grid and thus causing total arrhythmic pattern in the grid. 

4. Discussion  

It's mentioned that the cardiac electrical activity is known 
as action potential (AP) that travels through atria and ven-
tricles in a synchronized fashion. In this article a human 
cardiac cell model that is both detailed and computationally 
efficient was used. 

Confirmation of all or nothing principle in the represented 
excitable media was an evidence for validity of our both 
computational algorithm and excitable mediums. According 
to this principle in the excitable media an AP signal either 
occurs fully or doesn't occur at all. In continue for more 
validation of our work, we compare the quality of AP 
propagation as plane wave front and convex wave front. In 
this issue we illustrated that the speed of a plane wave front 
is more than convex one. For final validation of our work we 
investigated the effect of inexcitable obstacles on AP 
propagation. For this purpose we refered to this concept that 
a wave front, for successfully expanding in tissue, requires 
recruiting an adequate supply of sodium ions(Na) that can 

diffuse down a concentration and voltage gradient into ad-
jacent resting cells thereby depolarizing the local membrane 
potential to the Na channel opening threshold. Because re-
cently recruited Na channels inactivate, they must be rapidly 
replaced with newly recruited channels in order to prevent 
wave front collapse. the process of charge diffusion and 
subsequent opening of resting Na channels adjacent to the 
wave front is referred as a recruiting process. So we created 
our desired inexcitable obstacle by considering Na ion 
conductance (GNa) equal to zero in a specific area of medium 
and it was observed the reentry was formed in this manner 
that is one of main reasons leading to the cardiac arrhyth-
mias. 

There are two main limitations to the PDE model we 
proposed in this paper. First, because of the absence of so-
dium and potassium dynamics in this model, we cannot 
investigate the development of conditions such as ischaemia 
and hyperkalaemia. Second, because of the absence of in-
tracellular calcium dynamics in this PDE model it cannot be 
used for studying conditions such as calcium overload, 
spontaneous calcium release, calcium-induced alternans and 
the influence of calcium dynamics on wave break. Fur-
thermore because of using personal computer in this com-
putational study, we had some restrictions for implementa-
tion of 2D simulations in larger scales. 

5. Conclusions 
In this work, we represented an algorithm and subse-

quently the excitable media for studying the AP formation 
and its propagation in 1D and 2D states. The simulations 
were implemented using an efficient PDE model. Results 
approved that proposed efficient model, represented algo-
rithm and excitable media are suitable for simulation of AP 
propagation in cardiac tissue.  

Because of capability of represented computational algo-
rithm, it can be extended to 3D state for simulation of 
three-dimensional AP propagation in cardiac tissue. More-
over since ionic concentrations like sodium and calcium 
have a significant effect on formation and controlling the 
cardiac arrhythmias, the offered algorithm, excitable media 
and proposed PDE model are useful for investigating these 
issues. In addition, the presented algorithm can be used for 
simulation of AP propagation in any electrophysiological 
models.  
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