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Abstract  The study was aimed at verifying how oxidative status varies with age of diabetes mellitus (DM) in sufferers 
with adequate blood sugar control. Forty-one diabetic otherwise healthy (DOH) volunteers and 57 apparently healthy 
controls were used and plasma levels of two endogenous antioxidant enzymes (Superoxide dismutase, SOD, and catalase, 
CAT) as well as two markers of oxidative damage (Malondialdehyde, MDA and erythrocyte osmotic fragility, EOF) were 
determined. Results obtained showed significant decreases in plasma SOD and CAT activities, and significant increases in 
plasma levels of MDA and EOF as age of disease increases. In addition, there were clear significant differences between the 
oxidative status of DOH and apparently healthy control subjects of similar chronological (birth) age group. Plasma MDA and 
EOF as markers of oxidative damage were significantly higher in DOH subjects compared with healthy control subjects of 
similar age. However, plasma SOD and CAT activities were observed to be significantly lower in DOH subjects compared 
with healthy control subject of comparable age. It could thus be concluded that diabetes is associated with progressive 
increase in tissue oxidative damage. 
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1. Introduction 
The imbalance between the generation of reactive oxygen 

species (ROS) and the counteracting oxidant defenses, called 
oxidative stress is closely associated with a number of 
disease conditions particularly those of cardiovascular and 
metabolic origin. Hypertension, a state of sustained elevation 
of blood pressure beyond 140/90 mmHg, and its 
complications have a causal relationship with oxidative 
stress. The generation of reactive (oxygen or nitrogen) 
species by various enzymatic and non – enzymatic 
mechanisms is the cause of this stress situation. The 
destruction or inactivation of the various antioxidant systems 
may also yield an unfavorable oxidative status. 

Oxidative stress has been defined as excess formation 
and/or insufficient removal of highly reactive molecules 
such as reactive oxygen or nitrogen species (ROS or 
RNS)[1]. The amounts of ROS and RNS in plasma are, in 

 
* Corresponding author: 
olubamike2000@yahoo.co.uk (Om Oluba) 
Published online at http://journal.sapub.org/ajb 
Copyright © 2012 Scientific & Academic Publishing. All Rights Reserved 

part, dependent on the activities of ROS – generating 
enzymes and their modulators. Such enzymes include nitric 
oxide synthase (NOS)[2], NAD(P)H oxidase[3] xanthine 
oxidase[4], phospholipase A2 and other enzyme involved in 
lipid metabolism including lipoxygenase (LOX) and 
cyclooxygenase (COX) [5]. A novel agent, asymmetric 
dimethylarginine (ADMA), which inhibits NOS by 
competing with L – arginine, the substrate for the enzyme, is 
found in elevated amounts in hypertension[4]. 

As the rate of ROS formation increases, the rate of its 
pathological consequences also increase including vascular 
remodeling, lipid peroxidation, protein oxidation, etc[6]. 
Increased vascular ROS itself may induce endothelial NOS 
uncoupling as a consequence of increased oxidation of 
tetrahydrobiopterin and inhibition of dimethyl – arginine 
dimethyl – amino hydrolase (DDAH), the hydrolyzing 
enzyme of ADMA[7]. ADMA levels positively correlate 
with age and mean arterial pressure[8]. The activity of 
NAD(P)H oxidase is also modulated by ADMA. There is 
evidence that xanthine oxidase, which generates superoxide 
radical is involved in the pathogenesis of hypertension[4]. 

Endogenous Nitric oxide (NO) plays an important role in 
the regulation of blood pressure. This regulatory role is 
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evident in the hypertension that occurs when the endogenous 
production of NO is prevented by blockade of NOS, the 
enzyme that produces NO. Nitric oxide (NO) of endothelial 
origin, normally maintains vascular smooth muscle in a 
particularly relaxed state. When endogenous NO is 
eliminated, additional contraction of vascular smooth muscle 
occurs, resulting in an increase in vascular resistance and 
elevation of blood pressure[9]. Wei et al[10] proposed that 
“superoxide and other radicals interfere with acetylcholine – 
induced endothelium – dependent vasodilation, probably 
because they destroy the endothelium – derived relaxant 
factor. This relaxant factor was later established to be 
NO[11]. 

Gryglewski et al[12] observed that the stability of NO was 
markedly increased by the treatment with superoxide 
dismutase (SOD). The reaction of NO and O2

- results in the 
formation of peroxynitrate (ONOO-) which is also a 
vasorelaxant but with a shorter half life and less potency than 
NO[13,14].Treasure et al[15] have reported a deficit in 
endothelial NO released in several vascular beds in human 
hypertension. In another study by Moro et al[13] it was 
found that during hypertension there is in the endothelial 
cells an excess of superoxide radicals (O2

-) that scavenges 
NO as it is produced. 

Several indicators exist for the state of oxidative stress. 
This may include, among others, levels of endogenous 
enzymes such as catalase (CAT) and SOD[16]. 
Malondialdehyde (MDA), a product of lipid peroxidation, is 
used as an indicator of oxidative stress in cells and 
tissues[17,18]. Erythrocyte osmotic fragility defines the 
integrity of cell membranes, a major site of lipid 
peroxidation and protein oxidation. It thus indicates the 
stability and functionality of plasma membranes[19]. This 
study aims to see whether there is any definable pattern in the 
variation of oxidative status with disease age in sufferers of 
solitary hypertension with consistently well – controlled 
blood pressure. This is expected to underpin the importance 
of tissue oxidation – reduction in hypertension, as distinct 
from the elevated blood pressure, in the pathogenesis, 
progression and complication of the disease. 

2. Materials and Methods 
Reagents 

All chemicals and reagents used are Analar grade and are 
either products of either BDH Chemical Limited (Poole, 
England or Randox Laboratories Limited (USA) unless 
otherwise stated. 
Sample Population 

Volunteer Hypertensive patients without any other 
chronic medical condition (n = 56; 23 males and 33 females) 
and regularly attending the medical out – patient clinic of the 
Central Hospital were used for this study. The duration of the 
hypertension in the patient was taken as the “disease age” 
and the patients’ health status was written as HOH meaning 
“Hypertensive, otherwise healthy”. Inclusion Criteria 

include: clinically confirmed hypertension (BP≥140/90 
mmHg persistently); 

Age of hypertension of at least one year; chronological 
(birth) age of both hypertensive and control volunteers of at 
least 20 years; and evidence of antihypertensive drug 
compliance and documented values of regular blood pressure 
check consistently lower than 140/90 mmHg. Patients were 
excluded from the study on the following basis: blood 
transfusion within the last 3 months years; intravenous fluid 
management in the last 24 hrs, patient`s refusal. 
Blood collection 

After consent was obtained from both patient and 
institution (hospital management) blood samples were 
obtained from each patient in heparinized bottles and frozen 
in the refrigerator at 40C before used. A maximum of two 
freeze / thawing cycles was allowed since three or more 
cycles modify the oxidative status of the blood[20] and 
storage increases the levels of the markers of oxidative 
damage[21]. The plasma was assayed for superoxide 
dismutase activity, catalase activity and malondialdehyde 
(MDA) level. 
Preparation of Erythrocyte (Blood Tissue) Samples 

The erythrocytes were washed by centrifugation method 
as described by Tsakiris et al.[22]. The samples were 
introduced into centrifuge test tubes containing 3.0 mls of 
buffer solution (pH = 7.4) of 250 mM Tris (hydroxlmethyl) 
amino – ethane – HCl (Tris HCl), 140 mM NaCl, 1.0 mM 
MgCl2 and 10 mM glucose. The suspension was centrifuged 
at 120 g for 10 min to separate the erythrocytes from the 
liquid phase. After centrifugation, the supernatant was 
carefully withdrawn with Pasteur pipette and decanted. The 
sediment constituted harvested erythrocytes. The 
erythrocytes were re – suspended in the buffer and washed 
three times by similar centrifugation technique. The 
erythrocytes were finally suspended in 1ml of this buffer 
solution. 
Estimation of Malondialdehyde (MDA) Level 

The extent of lipid peroxidation was determined 
spectrophotometrically by thiobarbituric acid reactive 
substances (TBARS) method as described by Varshney and 
Kale[23]. Results were expressed in terms of 
malondialdehyde (MDA) formed per mg protein. MDA, a 
product of lipid peroxidation (TBARS) under acid 
conditions forms a pink colored product that has a maximum 
absorbence at 532 nm. 
Determination of Erythrocyte Osmotic Fragility 

Erythrocyte fragility was determined by a slight 
modification of the blend of the methods of Kraus et al.[24] 
as modified by Karabulut et al.[25]. In principle erythrocyte 
membranes undergo lysis when erythrocytes are suspended 
in a NaCl solution with concentration of NaCl less than the 
physiological concentration (about 0.8–0.9%). Haemoglobin 
released when the cells are haemolysed, absorbs maximally 
at 450 nm. The optical density increased with the amount of 
cells haemolysed and hence the amount of haemoglobin 
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released. 
Assay of Superoxide Dismutase (SOD, EC. 1.15.1.1) 

SOD activity was determined using adrenaline as a 
substrate according to the method described by Fridovich[26] 
and was expressed as enzyme unit/mg protein. One unit of 
enzyme is defined as the amount required for 50% inhibition 
of adrenaline auto oxidation. 
Determination of Catalase (CAT, EC. 1.11.1.1) activity 

The method of Goth[27] was followed in the 
determination of serum CAT activity. The procedure is 
based on the ability of CAT to convert hydrogen peroxide to 
water and oxygen. Catalase activity (level) is the rate at 
which it causes the disappearance of the substance (H2O2). 
Briefly, aliquots of the blood (0.5 ml) were added into ice – 
cold test tubes while the blank contained 0.5 ml distilled 
water. The reactions were initiated by adding sequentially, at 
fixed intervals, 5 ml of cold 30 mM of H2O2 and were mixed 
thoroughly by inversion. After exactly 3 minutes, the 
reaction was stopped sequentially at the same fixed intervals 
by rapidly adding 1 ml of 6 M of H2SO4 and was mixed 
quickly by inversion and of absorbance of 480 nm, read 
within 30 – 60 seconds. The spectrophotometer standard was 
prepared by adding 7 ml of 0.01 M potassium permanganate 
to a mixture of 5.5 ml 0.5 M phosphate buffer, pH 7.0 and 1 
ml 6 M H2SO4. The enzyme activity was expressed in terms 
of “Kat.f” as Ks-1mg-1protein, where K is the first order rate 
constant. 
Protein determination 

Protein was determined by the Biuret method as described 
by Gornall et al[28] using bovine serum albumin (BSA) as 
standard. 
Statistical Analysis 

The parametric single factor analysis of variance 

(ANOVA) was used in testing for significant differences in 
the indices of oxidative status among the various DOH 
treatments while student’s t-test was used in testing the 
significant differences between healthy control and DOH 
subjects. Where significant differences (P<0.05, P<0.01, 
P<0.001) were detected by ANOVA and student’s t-test, the 
aposterior Duncan Multiple range test was used to locate the 
source(s) of significant difference(s) among the 
treatments[29]. All statistical tests were carried out using 
SPSS version 17.0. 

3. Results 
Plasma MDA level was significant (p<0.001) elevated in 

hypertensive but otherwise healthy (HOH) subjects within 
the ages of 11 – 20 years compared with the levels observed 
in subjects under 11 years and those above 20 years (Table 1). 
There was no significant chage in plasma MDA observed in 
subjects under 11 years and those above 20 years. Blood 
EOF values were not significantly altered within the three 
age range grouping in HOH subjects. Similarly, plasma SOD 
activity was not significantly changed in HOH subjects 
within the three age groupings. Significantly (p<0.05) higher 
activity was observed in CAT acivity in HOH subjects 
within 11-20 years old compared to HOH subjects within 
0-10 and 21 years and above (Table 1). Table 2 showed a 
comparative analysis of plasma MDA, EOF, SOD activity 
and CAT activity between normal control and HOH subjects 
of comparable age. Plasma MDA showed a significant 
increase (p < 0.001) in HOH group comparared to control. 
Similarly, plasma EOF was significantly higher (p < 0.001) 
in HOH group compared with control. Similarly, plasma 
SOD and CAT activities were significantly lower (p < 0.001) 
in HOH group compared with control. 

Table 1.  Age of diabetes otherwise healthy (HOH) volunteers 

Parameter 1-10 yrs 11 – 20 yrs 21 yrs & above P- value 

MDA (nmolmg-1 protein) 2.87 ± 0.16a 4.77 ± 0.38b 3.22 ± 0.56a P < 0.01 

EOF (x100% Haemolysis) 0.41 ± 0.01a 0.44 ± 0.01a 0.44 ± 0.03a P > 0.05 

SOD (Umg-1protein) 11.12 ± 0.12a 10.83 ± 0.14a 11.04 ± 0.21a P > 0.05 

CAT (Umg-1 protein) 5.12 ± 0.17a 3.79 ± 0.09b 4.17 ± 0.67a P < 0.05 

Note: Similar letters indicate mean that are not significantly different from each other. 
P<0.0 - Highly significant 
P<0.05 - Significant 
P>0.05 - Not significant 
HOH-Hypertensive otherwise Healthy 

Table 2.  Comparison of the means of the various indices in HOH  and  healthy controls of similar chronological (birth) age groups 

Parameter Control HOH P-value 
MDA (nmolmg-1 protein) 1.72 ±0.08 3.07 ± 0.16 P<0.001 

EOF (X 100% Haemolysis) 0.36 ±0.01 0.42 ±0.01 p<0.001 

SOD (Umg-1 protein) 14.36±0.11 11.08±0.10 P<0.001 
CAT (Umg-1protein) 6.87±0.22 4.90±0.16 P<0.001 

Note: Similar letters indicate mean that are not significantly different from each other. 
P < 0.001 - Highly significant 
HOH - Hypertensive otherwise Healthy 
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4. Discussion 

Oxidation – reduction reaction occur in the human body 
system. Several physiological and pathological events occurs 
that impact on the overall health status the cumulative effects 
of several of these physiological events lead to accumulation 
of free radicals with advancing age with both cover and overt 
manifestations such as increasing levels of lipid peroxides, 
alteration in enzyme activities and greater osmotic 
fragility[30]. The erythrocyte osmotic fragility has been 
previously studied in healthy young and elderly subjects as 
well as in sufferers of hypertension[31-32]. 

Though no significant difference was observed in mean 
SOD and MDA levels as the age of hypertension increases in 
HOH subject, significant differences were observed when 
these subjects (HOH) were matched with apparently healthy 
control subjects of similar ages thus suggesting a causal 
effect of hypertension in modulating plasma oxidative status. 

Our findings are consistent with those of Redon et al[33] 
that circulatory levels of MDA are significantly higher in 
hypertensive subjects than in normotensive controls and that 
there are significantly lower activities of SOD and catalase in 
hypertensives. It is also consistent with the findings of 
Fasanmade[34] who had earlier reported that erythrocyte 
osmotic fragility is significantly elevated in hypertensives 
than in normotensives. Accentuation of oxidative stress 
results when ageing coexist with hypertension. This is 
corroborated by Akila et al[30] who reported an increased 
rate of lipid peroxidation with a corresponding decrease in 
antioxidants status in elderly hypertensive subjects. 

The observed increase in MDA and EOF levels as markers 
of oxidative damage –could be attributed to the observed 
decrease in activities of the antioxidant enzymes, SOD and 
CAT[35]. This indicates that any plausible attempt to delay 
complications of hypertension could as well decrease the 
activities of antioxidant enzymes. This is strongly 
contradictory to the assertion made from some studies[36] 
that there is no health benefit of taking antioxidants. 

Results from this study suggest that hypertension results in 
more oxidative damage than would have been expected 
under normal situation. This accounts for the decrease in 
activities of antioxidant enzymes (SOD and CAT) and 
increase in markers of blood oxidative damage (MDA and 
EOF). Despite the fact that blood pressures of the subjects 
used for this study were consistently well – controlled the 
imbalance in oxidative status in HOH was found to exceed 
that under normal conditions of graceful ageing. This 
suggests that other factors exist apart from the elevated blood 
pressure, that disrupts oxidative balance and precipitate 
development of complications. Reactive oxygen species 
appear to account for a significant part of these factors. The 
findings here do not provide supportive evidence for the 
Mitohormesis model of Ristow and Zarsek[37] that 
undermines the health benefit of antioxidant 
supplementation and debunks the oxidative stress theory of 
ageing and disease complications. 
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