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Abstract  This paper presents the application of particle swarm optimizat ion for gain tuning of integrated flight and 
propulsion control. For this purpose, an integrated simulation of the aircraft  body and the gas turbine engine is first developed. 
Conventional fuel controller for the aircraft engine and glide slope and velocity controllers for the aircraft body are then 
designed separately based on control requirements and constraints. Subsequently, the gains of the controllers are tuned by 
particle swarm optimization, where the tuning process is formulated as an optimization problem. In th is approach, the pilot 
lever angle tracking and smooth and stable operation for the engine, as well as the glide angle tracking and the smooth 
variation of velocity in flight maneuver for the body, are considered as the objective functions to be optimized. Moreover, the 
effect of neighbor acceleration on optimization results is studied. The results show that the neighbor acceleration factor has a 
considerable effect on the convergence rate of the particle swarm process. Finally, the results obtained from the simulation of 
the optimized controllers for integrated flight and propulsion control confirm the effectiveness of the proposed approach and 
its ability to design an optimal controllers resulting in an  improved flight and propulsion performance while ensuring 
protection against the physical limitations. 
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1. Introduction 
In the early 1980s, the US Air Force init iated a study 
called the DMICS with the objective of developing method
ologies for the design of IFPC laws for an advanced tactical 
aircraft[1]. Two very different approaches to IFPC design w
ere developed as a result of this study. These methods are a 
centralized approach, which consists of designing a "global" 
integrated compensator considering the fully integrated syst
em as one high-order system[2], and a decentralized hierarc
hical approach, which consists of partit ioning the integrated 
system into loosely coupled subsystems and then designing 
separate controllers for the sub-systems such that some 
high-level performance criterion is met[3]. 

Owing to bilateral effects between the aircraft  engine and 
body, separate optimization of propulsion and body might 
cause suboptimal system perfo rmance. Therefore, IFPC p a r
ameters should be tuned and optimized simultaneously. One 
of the complexit ies of IFPC design is simultaneous con tro ll
ers gain tuning. The tradit ional approaches for the tuning of 
the control parameters, such as manual tuning approaches, 
are based  on  trial and  erro r and  may  not  resu lt  in an 
optimized engine and body performance. Consequently, the   
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tuning process for the controller parameters is viewed as an 
optimization problem. Due to the nonlinearity and the switc
hing nature of the industrial GTE control strategy[4], as well 
as to complexity of gain tuning for the flight controller, gra
dient - based optimization methods have weak performance 
for gain tuning. As a result, this problem requires anon-gradi
ent optimization technique. In this study, the PSO is 
investigated for simultaneous tuning of the IFPC parameters 
in order to ach ieve an improved performance for the engine 
and body. In addition, the effect o f neighbor acceleration on 
PSO results is studied.  

PSO is presented by James Kennedy and R. C. Eberhart in  
1995. This algorithm is based on the simulation of social 
behavior of birds flocking, fish schooling and herds of 
animals to adjust to their environment, find rich sources of 
food, and keep away from predatory of other animals by 
using an “informat ion sharing” and “social cognitive intelli
gence”[5, 6]. This algorithm generates a set of solutions in a 
multid imensional space randomly, which represent the init ial 
swarm. This in itial swarm contains particles that move in the 
space and search for the best global position. Iterations will 
be continued until the best global position is reached. After 
presentation of PSO by Eberhart, fu rther researches are intr
oduced which modify the method and for faster convergence 
using adaptive PSO algorithm and neighbor acceleration 
effect[6-13]. In  the aerospace field, the PSO method is used 
for parameterization of airfo ils shape and its application in 
aerodynamic optimizat ion[14]. Also, Praveen andDuvigneau 
applied the PSO to aerodynamic shape design. They 
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illustrated that the use of mixed evaluations by metamodels / 
CFD can significantly reduce the computational cost of PSO 
while y ield ing optimal designs as good as those obtained 
with the costly evaluation tool[15]. Moreover, Bessette and 
Spencer successfully employed the PSO for space 
trajectoryoptimization[16, 17]. In 2012, Montazeri et.al used 
the PSO method for a jet engine Min-Max fuel controller 
design in order to reduce the fuel consumption and response 
time of a turbojet engine[18]. 

This paper applies the PSO in the IFPC gain tuning 
problem for the first time. For this purpose, an integrated 
flight and propulsion model is firstly developed in order to 
simulate the bilateral effects between the engine and body. 
The model consists of a 6 D.O.F nonlinear flight simulation 
which is derived from the equations of mot ion andaerodyna
mic equations, and a turbojet engine Wiener model which  is 
confirmed  by experimental data. The structure of the GTE 
fuel controller is then described based on an industrial fuel 
control strategy. A conventional glide slope control as well 
as a velocity control is also designed for the flight control 
system. Subsequently, the simultaneous tuning of the IFPC 
parameters is formulated as an optimizat ion problem based 
on the PSO approach. For this optimization problem, the 
objective function is defined to min imize the PLA tracking 
error and oscillation of the operational parameters for the 
engine as well as the glide slope tracking and s mooth 
variation of velocity for the body. Moreover, the effect of 
neighbor acceleration on PSO results is studied. Finally, the 
results of the PSO with and without neighbor acceleration 
factor are compared  with the DP and the GA results to 
investigate the effectiveness of the proposed technique for 
IFPC gain tuning problem. 

2. Integrated Flight and Propulsion 
Simulation 

In order to perform the optimizat ion of the aircraft GTE 
and body controllers in  a practical manner, it is necessary to 
simulate these two systems simultaneously. This is because 
of the bilateral effects between the engine and the body in 
various flight conditions. In  other words, separate optimizat
ion of the aircraft engine or flight controllers may not satisfy 
the safe operation of the aircraft in various operating conditi
ons. To achieve this purpose, a combined dynamic simulati
on consisting of both engine and flight is needed. In this 
section, simultaneous modeling of the engine and flight 
simulator is developed to evaluate the performance of the 
controllers.  

2.1. GTE Modeling  

The turbojet is the simplest form of gas turbine in that the 
hot gases generated in the combustion process escape 
through an exhaust nozzle to produce thrust. The main 
components of a basic GTE are shown in Figure1[19]. 

 
Figure 1.  Schematic of a basic GTE 

Modeling of a GTE in order to design a controller usually 
carried out with transfer function or simplified thermodyna
mic models. Also block-structure model is used extensively 
for this purpose. Block-structured systems are systems that 
can be represented by interconnections of linear dynamic 
models and static nonlinear systems. The Hammerstein 
model shown in  Figure2 (a) consists of the cascadeconnecti
on of a static nonlinearity followed by a linear time-invariant 
system. Hammerstein models are usually used to approxima
te systems, where the nonlinearity is caused only by the 
variation of dc gain with input amplitude. These models have 
constant dynamic behavior regardless of the input amplitude. 
It thus seems that Hammerstein models are not appropriate 
for nonlinear gas turbine modeling since the dynamics of the 
engine changes with the input amplitude. The Wiener model 
shown in Figure2 (b) consists of a linear dynamic element in 
series with a static nonlinear part. Unlike Hammerstein 
models, the nonlinearity in Wiener models is caused by the 
variation of the system static and dynamic characteristics 
with input amplitude. W iener models thus seem to be appro
priate candidates for nonlinear gas turbine modeling[20]. 

 
Figure 2.  Nonlinear model structures: (a) Hammerstein (b) Wiener 

In this paper, a Wiener model is developed for fuel 
controller design. This model consists of a first order transfer 
function as a linear time invariant part and look-up-tables as 
nonlinear static part. The linear t ime invariant part simulates 
the engine lag, whereas the static nonlinear part gives details 
about the relationship between the fuel flow and the engine 
parameters such as rotor speed, compressor pressure ratio, 
exhaust gas temperature and thrust. All of the engine model 
parameters are taken from the data obtained by experimental 
tests performed on the engine. More details about the engine 
modeling can be found in[21-23]. 
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Figure3 compares the simulation results with the 
experimental data. The good agreement between the results 
support the simulation model used in this study. 
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Figure 3.  Comparison between GTE simulation and experimental results 

2.2. Flight Simulation 

The flight mathematical model used in this study is a 
nonlinear representation of an aircraft with rigid body. The 
rig id body motion is modeled using six nonlinear force and 
moment equations and six kinematics equations. So the 
aircraft dynamics are modeled  as a set of 12 first-order 
coupled nonlinear differential equations: 

( ) ( ) ( )( )
( ) ( ) ( )( )

t =f t , t ,

t =h t , t .

X X u

y X u



                (1) 

The state vector is defined the same as the output vector 
and can be represented as: 

[ ]= u v w p q rθψx y z ,Y ϕ= X       (2) 

where: 
u, v, w: air speed in body axes, 
p, q, r: body roll, p itch and yaw rates, 
θ φ ψ: Eu ler orientation angles, 
x, y, z: Position of the body center of mass, 
And the control vector is defined as: 

[ ]e r a=δδδf ,u               (3) 

where:  

e

a

r

δ : elevator deflection,
δ : aileron deflection,
δ : rudder deflection,
f : engine thrust.

 

The equations of motion are developed based on the 
assumption of the flat earth and constant mass properties. 
Also, aerodynamic forces and moments are obtained using 
stability and control derivatives based on an extensive 
theoretical works given in the format of a numerical look-up 
table.  

In this research, the aircraft maneuver is in the vertical 
plane. So, the aircraft is maintained at a constant glide angle 
just by trimming the elevator deflection ( eδ ) provided by the 
flight path controller. Moreover, the aircraft forward speed 
(u) is controlled by the engine thrust (f) and the elevator 
deflection ( eδ ). 

2.3. Integration between Flight Simulation and GTE 
Model 

The methodology used in this study for integration of 
flight simulat ion and engine model is to simulate the engine 
and airframe dynamics in a modular fashion to test both 
engine and body controllers for various altitudes, Mach nu
mbers and p ilot commands. The schematic of the integrated 
engine and airframe simulation is shown in Figure4. 

3. Controller Design 
In this section, the engine fuel controller as well as the 

body glide slope and velocity controllers are described based 
on the engine control modes and flight simulation control 
requirements. The structure of the controller is shown in 
Figure 5.  

 

 
Figure 4.  schematic of engine model integrated with airframe model 
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Figure 5.  Engine and aircraft  controllers’ structure 

3.1. GTE Controller Design 

The control of a gas turbine engine can be summarized by 
three different control modes including a steady state control 
mode to satisfy the pilot command at steady-state condition, 
a transient control mode to regulate the time response of the 
engine, and a physical limitation control mode to fulfill the 
overspeed, over temperature and aerodynamic limitations.  

In this paper, the fuel control system is designed based on 
an industrial strategy which divides the fuel flow into two 
parts including a steady state fuel flow and a transient fuel 
flow[4, 24]. The engine steady state fuel flow is defined for 
every equilibrium point. The steady-state controller is respo

nsible to meet the first requirement of the GTE control 
system i.e . the steady state control mode. In this study, this 
part of the fuel flow is calculated by a scheduling controller 
as a function of the engine rotor speed as shown in Figure5. 

In addition to the steady-state control mode, a transient 
fuel flow is considered for the control of the engine transient 
performance as well as the engine limitations. Transient fuel 
flow is the variation of the fuel flow with respect to its 
steady-state value. In  this study, the engine transient fuel 
flow is calculated using a min-max strategy where four 
proportional control loops are defined for calculation of the 
transient fuel flow including PLA loop, Deceleration loop, 
Acceleration loop and Maximum rotor speed loop as shown 
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in Figure5. The proportional gains of these control loops 

named max, , ,acc NPLA decK K K K  respectively.  

3.2. Airspeed and Flight Path Control  

Airspeed is a critical variable in the flight dynamics of an 
aircraft. The airspeed affects all o f the aerodynamic forces 
and moments through the dynamic pressure. The airspeed 
controller uses a pitot tube to measure airspeed (u) and a PID 
controller to shape the control command which is sent to the 
throttle servo to adjust the propulsion power as follows: 

( ) ( ) ( )u
u uu u i u d

e s
PLA K e s K K se s

s
= + +  

      (4) 

Where ( ) ( ) ( )= −u desiredU s U se s  and Ku, Kui and 

Kud are the PID controller gains for the airspeed control 
system that must be tuned. 

In addition the g lide path, controller uses the pitch angle (θ) 
from the gyro and a PI controller to form the control 
command which is sent to the elevator servo. The glide path 
controller has the same structure as the altitude hold 
controller except that the reference input is the glide path 
angle. So the Proportional-Integral controller of glide angle 
takes the following form  

( ) ( )= +e ei
e s

Elevator K e s K
s

γ
γ           (3) 

Where ( )γ desired=γ(s)-γ(s)e s
 
and Ke and Kei are the PI 

controller gains for the glide angle control system that must 
be tuned. 

Both throttle and elevator affect the speed but the short 
and long-term effects of each of these controls are quite 
different. The throttle essentially affects the speed only in the 
short term but the elevator changes the steady-state speed. 
The schematic of the aircraft controllers is shown in Figure5. 

As it is observed in Figure5, there are 9 gains that must be 
tuned simultaneously for the engine and body control 
system. 

3.3. Initial  Gain Values 

In order to select the initial gain values for the 9 previously 
mentioned control loops, a manual tuning process is carried 

out as follows: 
For GTE controller: 
− The engine PLA loop gain ( PLAK ) is firstly initialized 

to achieve a preliminary response time. In order to improve 
the engine response time, PLAK  is then increased until the 
process begins to oscillate. Then, in order to protect the 
engine against surge, the a ccK   is changed until the 
maximum rotor speed derivative ( N ) is limited to an  
allowable value. After that, the decK is changed until the 
minimum rotor speed derivative ( N ) is limited to an 
allowable value. Consequently, the engine is protected 
against flameout. Finally, in o rder to keep the engine 
integrity, maxNK − is increased until the overspeed in every 
condition are vanished without overshoot.  

For body controllers: 
− The value of eK  is increased to achieve an acceptable 

glide slope tracking. Next, the e iK   value is increased to 
eliminate the steady state error of glide slope tracking. 
Subsequently, the values of , ,u u i udK K K  are changed in 
the same ways until a reasonable velocity tracking is reached 
for the aircraft. 

The initial values obtained by the above process for a case 
study in Seal Level Standard (SLS) condition is shown in 
Table.1. 

As mentioned earlier, the manual gain tuning process 
based on a trial and error manner may not result in an  optimal 
controller fo r the aircraft and engine. Therefore, in order to 
achieve an improved performance for the engine and body 
simultaneously, the PSO method is proposed for IFPC gain 
tuning problem in this paper.  

But, taking the iterative nature of PSO method into 
account, and since the IFPC controllers gain tuning problem 
is a 9-d imensional optimizat ion problem, the design variable 
ranges play in important role in computational effort of the 
optimization algorithm. Therefore, these ranges are 
restricted by a manual sensitivity analysis. Table (2) shows 
the lower and upper bound for the design variables.  

Table 1.  Initial controller loop gains 

 PLAK  maxNK  accK  decK  eK
 eiK

 uK
 uiK

 udK
 

Gains 1 3 0.25 0.45 0.25 0.07 0.4 0.35 0.2 

Table 2.  Solution space of IFPC gain tuning problem 

Aircraft controllers 
Glide slope controller 

Ke Kei 

[0.05-0.3] [0.01-0.1] 

Velocity controller Ku Kui Kud 
[0.1-1] [0.3-0.6] [0-3] 

Engine controller KPLA Kacc Kdec KN-max 
[0.5-3] [0.01-1] [0.01-1] [1-5] 
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4. Problem Formulation 
In this section, application of PSO for optimization of the 

previously described controllers is exp lained. For this 
purpose, an overview of the method is firstly presented. The 
controller gain tuning procedure is then formulated as an 
optimization problem. Finally the PSO method is applied 
and the results are analyzed in the next section. The effect of 
neighbor acceleration factor on PSO results is also 
investigated in this paper. 

4.1. Particle Swarm Optimization (PSO) 

Particle swarm optimization is a method for performing 
numerical optimization without explicit knowledge of the 
gradient of the problem to be optimized. PSO is attributed to 
Kennedy, Eberhart  and Sh i[9] who are the founders of the 
field. Originally  intended for simulating social behavior, the 
algorithm has been simplified  after the particles have been 
observed to be performing optimizat ion. The book by Kenne
dy and Eberhart describes many philosophical aspects of 
PSO and swarm intelligence[5]. 

PSO shares many similarities with evo lutionary computat
ion techniques such as GA. The system is init ialized with a 
population of random solutions and searches for optima by 
updating generations. However, unlike GA, PSO has no 
evolution operators such as crossover and mutation. In PSO, 
the potential solutions, called particles, fly through the 
problem space by following the current optimum particles. 
More details can be found in[6, 25, 26]. 

One of the main  advantages of PSO is that the PSO has 
few parameters to adjust and therefore is easy to implement. 
PSO has been successfully applied in many areas including 
function optimization, art ificial neural network training, fuz
zy system control, and other areas where GA can be applied. 
This study suggests the PSO for IFPC optimization for the 
first time.  

In this method, each part icle refers to a point in a multi 
dimensional space whose dimension is related to the number 
of design parameters. The positions of points are changed in 
moves (iterations) with velocit ies which are calculated in 

each step. In the first step, position
i
ox and velocity

i
ov  for 

each point are generated randomly by upper and lower 
bounds of variable using the following equations:  

min max min( )i
ox x rand x x= + −    (6) 

max min max min( ) 2 ( )i
ov x x rand x x= − − + −  (7) 

where 
i
ox      position of thi particle in the first step, 

i
ov       velocity of thi particle in the first step, 

minx     lower bound of variable,  

maxx         upper bound of  variable,  

rand           random variable between 0 & 1. 
As mentioned earlier, the first population is distributed 

uniformly in the design space by this process. In the second 
step, PSO calcu lates new velocities to move the part icles 
from positions at time k  to new positions at time k+1. For 
calculation of new velocit ies, three terms are needed: 

• Inertia  term: each particle wants to continue its motion in  
its own current direct ion. Th is term is modeled by multip lyi
ng the particle’s current velocity vector by a number called 
inertia factor. 

• Cognitive term: taking the self confidence characteristic 
into account, each particle has a velocity in the direction of 
its own best position over all the previous and current steps,

iP . This term is modeled by mult iplying the difference 
between the particle’s current position and the best position 
over all previous iterations by a number called self confiden
ce factor. 

• Social term: each part icle also gets effect from other 
particles. One part icle may  be affected by the best position of 

particles in the current swarm, 
g
kP , or by the best position 

of particles in its own vicinity, kPL
. In the first case the 

algorithm is termed gBest PSO (global best) and in the 
second case it is termed LBest PSO (local best). The social 
confidence factor is used to model this term. 

PSO employs these three terms in addition to their 
corresponding coefficients to calculate new velocities for the 
next iteration using a random distribution function. The 
coefficients inertia  factor, self confidence factor and social 
confidence factor show the effect of the current motion, 
particle own memory  and swarm influence on the velocity 
vector of each particle, respectively.  

The pseudo code of the procedure is as follows[11, 27] 

For each particle  
Initialize particle 
End 
Do 
For each particle  
Calculate objective value 
If the objective value is better than the best objective value 

(pBest) in history 
set current value as the new pBest 
End Choose the particle with the best objective value of all 

and/or some of  particles as the gBest and/or lBbest 
For each particle  
Calculate particle velocity  
Update particle position  
End 

Based on the above explanation, the velocity  update 
formula takes the form (8) for gBest PSO and form (9) for 
LBest PSO: 

1 1 2( ) ( )i i i i g i
k k k k kv wv c rand P x c rand P x+ = + − + − (8) 

1 1 3( ) ( )i i i i L i
k k k k kv wv c rand P x c rand P x+ = + − + − (9) 
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where: 
w          Inert ia factor, 

i
kv

        Velocity of thi particle in the current motion, 

1c
         Self confidence factor, 

2c          Social confidence factor (gBest), 

3c          Social confidence factor (LBest), 
i
kx

        Position of thi particle in current motion, 
iP         Best position of particle thi in current and all 

previous iterations, 
g

kP
     Position of the particle with best global 

objective at current iteration k, 
L

kP       Best local neighbor position in the current 
iteration. 

In this paper, the PSO approaches, take the effects of both 
gBest and Lbest in the velocity equation. In this case, the 
approach is referred to as neighbor acceleration effect. This 
modification is implemented in order to improve the speed of 
convergence[20]. Consequently, the velocity update formula 
with neighbor acceleration effect takes the following form: 

1 1 2

3

( ) ( )

( )

i i i i g i
k k k k k

L i
k k

v wv c ra n d P x c ra n d P x

c ra n d P x
+ = + − + −

+ −

     

  

    

          
 (10) 

Using the updated velocities vectors calculated by 
equation (4) and (5), the position of each particle is changed 
through the following equation: 

1 1
i i i
k k kx x v t+ += + ∆            (11) 

where 
i
k+1x  is the Position of thi  particle at step (k+1). 

This algorithm is repeated until a stopping criterion is 
reached. This criterion may  be an iteration number or a 
specified tolerance on the minimum improvement of the best 
global value. 

A schematic v iew of the position update of a part icle in  
gbest PSO and PSO with the neighbor acceleration effect is 
shown in Figure6. Moreover, in order to take both Lbest and 
gbest effect into account, a star social structure is defined for 
the swarm in this paper. Since all particles are connected 
using this topology, each particle can be affected easily by all 
the particles or by its own neighbor. In this paper, neighbor
hood is defined based on particles ind ices. In other words, 
neighbors of particle ith, are particles (i+1)th and particle 
(i-1)th . Another definition for neighborhood is presented by 
Suganthan, based on Euclidean distance[28]. 

4.2. Objective Function 

As mentioned earlier, the jet engine fuel controller, the 
aircraft glide slope and velocity controllers are designed to 
satisfy GTE control modes including steady state, transient 
and physical limitation control modes as well as aircraft 
control requirements. In  other words, the objective o f the 
engine controller is to drive the GTE to the pilot desired 
set-point with good tracking with respect to flight path and 
speed requirements. Also, the objective of the body 
controller is to track the desired glide slope based on the 
specified aircraft maneuver as well as s mooth and reasonable 
variation of the speed with respect to safe operation of the 
engine. In both engine and body, the oscillation of 
parameters should be avoided. In addition, the engine must 
be protected from the physical limitations such as over speed, 
flame out, lean and rich  blowout and surge in  compressor. 
These terms are defined as penalty functions for the 
objective. Therefore, the objective function is formulated as 
follows: 

    
(a)                                               (b) 

Figure 6.  PSO position updates (a): gbest PSO, (b): PSO with neighbor acceleration effect 
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∑

∑
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where: 
CPR                   Compressor Pressure Ratio, 

fm                     Instantaneous total fuel flow, 

sim_time               simulat ion time, 
γ                       Glide angle, 
U                      A ircraft Velocity, 

iβ                      Weighting coefficients, 

iα                      Penalty factors, 

iP                      Penalty functions. 
In equation (12), the performance indices are normalized 

first and then weighted according to their importance by the 
coefficients of iβ . In this paper all of these coefficients 
are assumed the same (0.25). The first and second terms in 
the equation (12) are related to the engine parameters. The 
first term guarantees the PLA tracking. It is worth 
mentioning  that what the pilot usually wants to achieve while 
moving the thrust lever is to let the engine deliver a certain 
percentage of the thrust that is available at the current flight 
conditions[29]. Since thrust itself is not measurable in flight, 
the relative thrust command given by the PLA setting must 
be translated into a command change of a measured variable. 
The relative thrust corresponds very well to the CPR and this 
parameter can be used for thrust modulation in  controller 
design. The second term in (12) is aimed at obtaining a 
smooth change in the fuel flow, which results in  a s mooth 
variation of the engine operating parameters. 

The third and fourth terms in (12) are related to the aircraft 
glide slope tracking and the smooth variat ion of aircraft 
velocity respectively. The iα  are termed to penalty 
factors tuned manually to achieve the reasonable results and 

iP  are termed to physical limitation as mentioned earlier. 
Moreover, the design optimization variables are the 

controllers loop gains including maxNK , accK , decK ,

PLAK  in engine controller, eK , e iK   in g lide slope 

controller, uK , u iK   and u dK   
in velocity controller as 

shown in Figure5. In other words, these 9 variables are going 
to be tuned using PSO in order to minimize the objective 
function of equation (12). 

5. Optimization Results and Analysis 
In this section, the result obtained from the gain tuning 

approach is studied in order to confirm the effect iveness of 
the PSO method for the optimization of IFPC performance. 
Subsequently, the effect of neighbor acceleration on the PSO 
results is analyzed and compared with the in itial optimized 
controller. Moreover, the results obtained from the applicati
on of a GA method are compared with the PSO results. 
Finally, the engine and aircraft performance with the 
optimized controllers derived from PSO with and without the 
neighbor acceleration effect along with GA are investigated 
and compared in order to evaluate the effectiveness of the 
methods on the optimization of IFPC performance.  

In this study, a computer simulat ion program is developed 
for a single spool turbojet engine integrated with a 6 D.O.F 
nonlinear flight simulat ion as a case study. Using each set of 
controller’s parameters, the time domain simulation is 
performed and the objective value is determined. The 
objective function is first evaluated by simulating the IFPC 
model considering a climb-cru ise-landing maneuver as 
shown in Figure 7. 

5.1. PSO Results 
In order to achieve an improved performance, theoptimiz

ation process has been run in a trial and error manner with 
several PSO parameters to find the best set of parameters. 
The best results are achieved for the parameters presented in 
Table (3). It is worthwhile to mention that there are some 
heuristic methods in the literature to find  the PSO parameters. 
A study about these methods as well as their theoretical 
limitat ions can be found in[30, 31]. As shown in Table (3), 
the inertia factor decreases each iteration in order to 
transform the exp loration nature o f the algorithm in the 
initial runs to explo itation nature in the final runs. The 
variation of this factor is linear as shown in Figure8. The 
confidence factors are set to 1.5 and the neighbor factor is set 
to 0 fo r gbest PSO. Moreover, the weight factors

0.25iβ = , are selected fo r the ob jective functions in 
equation (12). It means that the importance of the objectives 
is equal in the optimization p rocess. Optimizat ion is 
terminated in the prespecified number of generations. 

Table 3.  Parameters used in PSO 

Swarm size = 100 

Maximum Iteration = 50 

c1 and c2 = 1.5 (confidence factors) 

Wstart , Wend = 0.5, 0.45 

c3=0 
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Figure 7.  Simulated maneuver 

 
Figure 8.  The variation of the inertia factor 

 
Figure 9.  The PSO optimization process history (average of 15 runs) 
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Figure 10.  Objective function value for PSO (average of 15 runs) 

In order to analyze the effect of the neighbor accelerat ion 
factor on the PSO results, the effect of the positions of the 
neighbor particles is also considered in this paper. For this 
purpose, the term with factor c3=1 is used in equation (10). 
Figure 9 shows the history of the objective function for both 
gbest PSO and PSO with neighbor effect. This Figure is 
derived from average of 15 runs of PSO with the Table (3) 
parameters. It is clear from Figure 9 that, when the effect of 
neighbor acceleration is considered on the velocity update, 
the PSO converges faster (12 generations with neighbor 
acceleration effect against 28 generations without it). The 
faster convergence for the PSO with neighbor effect is due to 
more informat ion sharing among part icles. In other words, 
the particles degree of freedom is increased using the neigh
bor acceleration factor. It  should be mentioned that 
increasing or decreasing of c3 factor can increase or decrease 
the information sharing weight between the particles 
respectively. The value of c3=1 causes the best results for 
the in hand problem. More details can be found in[18]. 

Generally , the literature reports that the gbest PSO conve
rges faster than Lbest PSO because of better information 
sharing among the particles. The results of this paper show 
that the combined PSO (gbest PSO with neighbor effect) has 
better static convergence characteristics in comparison with 
gbest PSO for the problem at hand. Moreover, the neighbor 
effect gives a clustering character to the algorithm and 
prevents the solution from trapping in local optima. 

Figure 10 shows the normalized objective function value 
respect to the value of initial controller (controller with the 
gains presented in Table (1)). This Figure shows that the 
PSO method improves the objective value and confirms the 
effectiveness of the approach. The values of the objective 
function obtained from PSO with and without neighbor 
effect are approximately  the same (about 26% improvement 
in comparison with the initial controller). 

5.2. Comparison between PSO and GA 

In this section, the PSO results are compared with the 

results obtained from the Genetic Algorithm (GA) in order to 
confirm the effectiveness of the proposed approach in 
optimization of IFPC gain tuning problem. The structure of 
simple GA used in this paper is composed by an iterative 
procedure through the five main steps: To start the algorithm, 
an init ial population of individuals (chromosomes) is defined. 
A fitness value is then associated with each individual, 
expressing the performance of the related solution with 
respect to a fixed object ive function (defined in  equation (12)) 
to be min imized. Reproduction is then carried on as a p rocess 
of generating a new population from the current population. 
The next step is selection, a mechanism for selecting the 
individuals with high fitness over low fitted ones to produce 
the new individuals for the next population. The variant used 
here is the roulette wheel method in which the probability to 
choose a certain individual is proportional to its fitness. 
Subsequently, crossover and mutation are applied to the 
population as GA operators. Crossover is the method of 
merging the genetic informat ion of two indiv iduals (parents) 
to produce the new individuals (ch ildren). The scattered 
crossover method is used in this study. Mutation is a 
probabilistic random deformation of the genetic information 
for an individual. This process can be handled by altering 
each gene randomly with  a s mall probability. The positive 
effect of mutation is the preservation of genetic diversity and 
that the local maxima can be avoided. Following the 
evaluation of the fitness of all chromosomes in the populatio
n, the genetic operators are applied to produce a new 
population. After repetitions of the above operations, the 
new set of strings is obtained. This ends an iteration of the 
GA. This process is iterated and new populations are 
produced until a termination criterion is fulfilled. The GA 
was also run several times with various parameters for 
achieving the best results. Since the GA has more parameters 
than PSO, setting the best parameters for GA runs is more 
complicated than for PSO. Table (4) shows the best 
parameters of GA for the IFPC controllers gain tuning 
problem. In addition, the population size, initial population 
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and stopping criterion are set to the same values in PSO and 
GA in order to compare the two approaches more precisely. 
More details about the application of GA in aero-engine 
problem can be found in[32]. 

Table 4.  Parameters used in GA 

Parameter Value 
Population size 100 

Fitness scaling method Rank 
Selection method Tournament (4) 

Elite count 2 
Crossover method Scatter 

Crossover probability 0.8 
Mutation probability 0.03 

Mutation shrink factor Shrink= 1 
Stopping criterion Generation = 50 

• Static convergence comparison 
In order to investigate the ability of the proposed approach 

to find the global optimal solution, the dynamic 
programming (DP) method is also applied to the problem. 
The DP method works based on the principle of optimality. It 

should be mentioned that DP cannot give the controller 
parameters and only calculates the optimal control signal for 
the defined input PLA by breaking it down into simpler 
sub-problems in a recursive manner. The DP algorithm used 
in this paper is generated based on the theory presented by 
Dasgupta et al[33]. Table (5) compares the best objective 
value obtained from PSO and GA with DP. This table also 
shows the average of 15 runs. As it can be seen in this table, 
the objective value of the PSO is reasonably close to the 
objective value obtained from the global solution of DP. 
These results confirm that PSO provides almost the g lobal 
optimal value for this problem. It seems that the GA method 
requires a parameters tuning process to achieve fitter results. 
Table (5) also compares the generation in which theoptimiz
ation algorithms find the final solution. As shown in this 
table, the PSO method converges faster than GA for the 
IFPC gain tuning problem. It confirms the effectiveness of 
the proposed approach for IFPC controller design. However, 
it is worth mentioning that regarding the time consumption 
of all applied methods, the methodology used in this paper 
cannot implemented in a real-t ime application.  

Table 5.  comparison between PSO and GA results (average of 15 runs) 

Method                     
 (average of 15 runs) Initial GA   PSO 

 (without neighbor) 
  PSO       

 (with neighbor) DP 

Cost function value (Normalized) 1.5501 1.3573 1.2481 1.2476 1.2455 

Optimization time   (minute:second) - 52:25 38:20 38:45 254:00 

Converge at generation number - 32 28 12 - 

 

 
Figure 11.  Standard deviation of population for PSO and GA 
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● Comparison of computational effort  
As shown in table (5), the PSO run time is less than GA 

because of fewer fitness evaluations in PSO. Taking the 
reduced number of parameters and the faster convergence of 
PSO into account, this table clearly demonstrates the simpli
city of the PSO algorithm that resulted into huge saving in 
the computational efforts, in comparison with other compara
tively old  and well-established techniques for population 
based evolutionary computations like the GA. In addition, 
another advantage of PSO is that PSO has fewer parameters 
to adjust and therefore is easy to implement.  

● Dynamic convergence comparison 
In order to compare the dynamic convergence of the used 

optimizat ion approaches, the standard deviation of populati
on in each generation for the GA and PSO is plotted in 
Figure (11). These results are extracted from a typical run 
and it can be shown that this trend is similar for all runs. As 
shown in Figure11, the dynamic convergence of PSO is 
considerably better than GA because GA uses mutation ope
rator that increase the standard deviation. 

The results presented in this section confirm the effective
ness of PSO method in IFPC gain tuning as a real-world 
engineering optimization problem. The comparison between 
the PSO and GA results illustrates the relative merits of PSO 
from various points of view such as static and dynamic 
convergence and computational effort. Moreover, the PSO is 
easier to program in comparison with GA. In addit ion, taking 
the effect of both gbest and Lbest into account, leads to 
improving the PSO results considerably. Therefore, the PSO 
method is recommended for the IFPC simultaneous gain 
tuning problem. The effect of the optimization process on 
IFPC performance is presented in the next section. 

5.3. Effect of Optimization on the IFPC Performance 

The PSO changes the IFPC loop gains and simulates the 
engine and aircraft performance iterat ively until the stopping 
criteria o f the optimization prob lem are fulfilled. In order to 
verify and compare the effect iveness of the optimized contr
ollers, the perfo rmance o f the PSO with and without neighb
or acceleration effect is tested for the specified maneuver. 
These results are compared with the results obtained from 
simulation of the initial controller with the gains presented in 
Table (1). As mentioned earlier, a  climb-cruise-landing man
euver as shown in Figure7 is employed in this study. 

Figure12 shows the variat ion of altitude during the mane
uver. As shown in this Figure, the init ial controller cannot 
satisfy the maneuver altitude tracking. Both of PSO methods 
give good results in aircraft altitude control. 

Figure13 shows the variation of aircraft speed. As shown 
in this Figure, the steady-state error is eliminated by the PSO 
methods. However, the PSO results with neighbor effect are 
better than the PSO results without neighbor effect. The 
smooth variation of aircraft speed around the desired magnit
ude is also reached using the optimization method. 

Figure 14 shows the glide angle tracking for the defined 
manuever using the initial and the optimized  controllers. As 
shown in this Figure, the results obtained from PSO show 
fast and acceptable response to the glide slope change, 
whereas the initial glide slope controller has a little lag to 
follow the specified g lide slope. 

Figures 15 and 16 depict the engine performance. Figure 
15 shows the PLA tracking of the GTE. Th is Figure shows 
that the results obtained from PSO outperform the init ial 
controller.  

Figure 16 shows the engine rotor speed in climb  – cruise - 
landing maneuver. Th is Figure shows the ability of the 
optimization approach to achieve an efficient variation of 
RPM in this maneuver. 

 
Figure 12.  The variation of altitude through the maneuver 
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Figure 13.  The variation of aircraft  velocity through the maneuver 

 
Figure 14.  The glide angle tracking through the maneuver 

 
Figure 15.  The gas turbine engine PLA tracking through the maneuver 
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Figure 16.  The gas turbine engine rotor speed variation through the maneuver 

 
Figure 17.  The 3-D maneuver 

 
Figure 18.  The glide angle and velocity tracking through the 3-D maneuver 
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Figure 19.  The variation of gas turbine engine rotor speed and compressor pressure ratio through the 3-D maneuver 

It can be observed from Figures.12-16 that both PSO 
without neighbor effect and PSO with neighbor effect 
outperform the init ial controller. The response with PSO is 
much faster, with less overshoot and settling time compared 
to the initial controller. The responses of PSO with and 
without neighbor effect are almost similar, but the PSO with 
neighbor effect converges in fewer generations. 

5.4. Reliability of Optimized Controllers 

Finally, to confirm the reliab ility of PSO method in  
optimization of IFPC problem, the optimized controller is 
tested in a 3-dimensional challenging spiral maneuver as 
shown in Figure (17). This maneuver is carried on in 350 
seconds. The optimized controller found by PSO with 
neighbor effect (in section 5.1) is used for this simulat ion. 

Figure (18) shows the aircraft parameters through the 
maneuver. As shown in this Figure, the optimized controller 
performs very well in tracking  the glide slope as well as the 
desired velocity. This Figure proves the reliability of the 
optimized glide slope and velocity controller of the aircraft. 

Also, Figure (19) shows the engine parameters through the 
maneuver. This Figure also shows the smooth variation of 
the engine CPR and RPM, which confirms the optimized 
operation of aero-engine as well as protection of the engine 
against physical limitations. 

Figures 18 and 19 confirm the reliab ility of PSO as a 
swarm intelligence optimization method in simultaneous 
gain tuning of integrated flight and propulsion control as a 
challenging real-word optimization problem. Finally, it 
should be mentioned that the tuned controller with frozen 
gains performs well up to 7000 meter as shown in Figure17. 
Future studies can focus on other altitudes and also on noise 
rejection and load disturbance attenuation. 

6. Conclusions 
In this paper, application of PSO techniques is presented 

for the simultaneous IFPC gain tuning. PSO is applied to 
optimize a long term objective function in order to achieve a 
simultaneous acceptable performance for both engine and 
aircraft. The results show that the PSO optimized controller 

outperforms the initial controller in all object ive function 
terms. Moreover, comparison between PSO and GA results 
confirms the effect iveness of PSO as an appropriate candida
te to optimize the IFPC problem in  comparison with other 
non-gradient based optimizat ion methods like conventional 
GA. In addition, the influence of the neighbor acceleration 
effect on the PSO performance is investigated in this paper. 
The results show that the neighbor acceleration factor has a 
considerable effect on the convergence rate of the PSO 
process. For this purpose, a computer simulation is develope
d for a single spool turbojet engine integrated with a 6 D.O.F 
nonlinear aircraft model to evaluate the objective function 
and to investigate the effectiveness of the approaches. For 
this optimizat ion problem, the objective function is consider
ed as a combination of the weighted PLA tracking and 
smooth response for the engine as well as glide slope tracki
ng and velocity control for the aircraft. The results show that 
PSO can be used successfully for the optimizat ion of the 
IFPC parameters. The PSO has the advantage of fewer para
meters to adjust which makes it easy to implement. Finally, 
the reliability of the optimized  controller is illustrated using a 
3-D spiral maneuver. In other words, the results of this paper 
show the successful application of PSO in an  important 
aerospace control problem. 

Abbreviations 
Particle swarm optimization (PSO) 
Integrated flight and propulsion control (IFPC) 
Gas turbine engine (GTE) 
Pilot lever angle (PLA) 
Design Methods for Integrated Control Systems (DMICS) 
Dynamic programming (DP) 
Genetic Algorithm (GA) 
Proportional-Integral-Derivative (PID) 
Degree of Freedom (D.O.F) 
compressor pressure ratio (CPR) 

 

REFERENCES 

0 50 100 150 200 250 300 350
0

0.2

0.4

0.6

0.8

1

time (sec)

En
gi

ne
 C

PR

0 50 100 150 200 250 300 350
0

0.2

0.4

0.6

0.8

1

time (sec)

En
gi

ne
 rp

m



70 M. Montazeri-Gh et al.:  Application of Particle Swarm Optimization in   
Gain Tuning of Integrated Flight and Propulsion Control 

 

[1] Sanjay Garg and Duane L. Mattern, R.E.B.: Integrated Flight
/Propulsion Control System Design Based on a Centralized 
Approach, N.T.M. AIAA-89-3520, (1989) 

[2] Smith, K.L.: Design methods for integrated control systems. 
Wright Patterson AFB, OH, Rep. AFWAL-TR-86-210, 
(1986) 

[3] Shaw, P.D., Rock, S.M., and Fisk, W.S: Design Methods for 
Integrated Control Systems, A.P.L. A F WAL-TR-88-2061 , 
Wright Patterson AFB, Dayton OH, Editor. (1988) 

[4] A. Kreiner, K.L.: The use of onboard real-time models for jet 
engine control. MTU Aero Engines, Germany. p. 27. (2002) 

[5] Kennedy, J. And R. Eberhart.: Particle Swarm Optimization, 
in Proceedings of the IEEE International Conference On 
Neural Networks, Perth, Australia (1995) 

[6] Eberhart ,Yuhui Shi.: Particle Swarm Optimization, Develop
ments, Applications and resources. IEEE, (2001) 

[7] Eberhart ,Yuhui Shi.: A modified particle swarm optimizer, in 
IEEE Int. Conf. Evol. Comput., Anchorage, AK, pp. 69–73. 
(1998) 

[8] Venter, G. and Sobieski, J.: Particle Swarm Optimization. 
AIAA 2002-1235, 43rd AIAA/ASME/ASCE/ AHS/ASC 
Structures, Structural Dynamics, and Materials Conference, 
Denver, CO., April (2002) 

[9] Y. Shi and R. C. Eberhart.: Empirical study of particle swarm 
optimization, in Proc. IEEE Int. Conf. Evol. Comput., 
Washington, DC, pp. 1945–1950. July (1999) 

[10] Zwe-Lee Gaing, M., IEEE, A Particle Swarm Optimization 
Approach for Optimum Design of PID Controller in AVR 
System. IEEE transactions on energy conversion, vol. 19, no. 
2, June (2004) 

[11] Lin, C. O. W.: Comparison between PSO and GA for 
Parameters Optimization of PID Controller, in Proceedings of 
the IEEE International Conference on Mechatronics and 
Automation June 25 - 28, Luoyang, China. (2006) 

[12] Majid Zamani, Nasser Sadati, and Masoud Karimi Ghartema
ni.: Design of an H∞ PID Controller Using Particle Swarm 
Optimization. International Journal of Control, Automation, 
and Systems (2009) 

[13] M. R. Yousefi, S.A.E., S. Eshtehardiha, and M. Bayati 
Poudeh,: Particle Swarm Optimization and Genetic 
Algorithm to Optimizing the Pole Placement Controller on 
Cuk Converter, in 2nd IEEE International Conference on 
Power and Energy (PECon 08), December 1-3, Johor Baharu, 
Malaysia. (2008) 

[14] H´ajek , Parameterization of Airfoils and Its Application in 
Aerodynamic Optimization, WDS'07 Proceedings of 
Contributed Papers, Part I, 233–240, (2007) 

[15] C. Praveen, R. Duvigneau,: Low cost PSO using metamodels 
and inexact pre-evaluation: Application to aerodynamic shape 
design, Comput. Methods Appl. Mech. Engrg. 198 (2009) 

[16] Bessette, CR, and Spencer, DB: Isentifying Optimal interpla
netary trajectories Through a Genetic Approach, AIAA 
2006-6306 AIAA/AAs Astrodynamics (2006) 

[17] Bessette, CR, and Spencer, DB: Optimal space trajectory 
Design: A Heuristic-Based Approach, Advances in Astronau

tical Sciences, Univelt inc., San Diego, CA, 124, 1611-1628; 
AAS paper 06-197 (2006) 

[18] Morteza Montazeri-Gh, Soheil Jafari, Mohammad R.Ilkhani.: 
Application of Particle Swarm Optimization in Gas Turbine 
Engine Fuel Controller Gain Tuning, Engineering Optimizati
on, http://dx.doi.org/10.1080/0305215X.2011.576760. Vol. 
44, No. 2, February 2012, 225–240 (2012) 

[19] Tony Giampaolo, M., PE,: Gas Turbine Handbook: Principles 
and Practices. Fairmont Press, Inc. (2006) 

[20] A.Thompson, G.G.K.a.H.: Dynamic Modeling of Gas 
Turbines. Industrial control center, Glasgow, scotland, U.K. 
(2003) 

[21] Montazeri-Gh. M, Safarabadi-f.M,: Modeling and simulation 
of gas turbine engine performance in order to design of fuel 
control system design (in Persian). International Journal of 
Engineering Science (IJES) vol.19, No.10. (2008) 

[22] Evans, C.: Testing and modeling aircraft gas turbines: an intr
oduction and overview, in UKACC International Conference 
on Control. Conference Publication No. 455. (1998) 

[23] M. Montazeri-Gh, S.Mojallal.: Modeling and simulation of 
gas engine performance, in MESM Sharjah. (2002) 

[24] H. Austin Spang, H.B.: Control of jet engines. Control 
Engineering Practice, p. 17. (1999) 

[25] Fei Gao, H.T.: Particle Swarm Optimization: An efficient 
Method for Tracing Periodic Orbits and Controlling Chaos, in 
Proceedings of the International Conference on Complex 
Systems and Applications. Watam Press. (2006) 

[26] Engelbrecht, A.: Particle Swarm Optimization Pitfalls and 
convergence Aspects, in Department of computer science, 
University of Pretoria, South Africa. (2005) 

[27] Sidhartha Panda, N.P.P.: Comparison of Particle Swarm 
Optimization and Genetic Algorithm for TCSC-based 
Controller Design. International Journal of Computer Science 
and Engineering, (2007) 

[28] Suganthan, P. N.: Particle Swarm Optimizer with Neighborh
ood Operator. In Proceeding of the IEEE congress on 
Evolutionary Computation, Paged 1958-1962. IEEE press 
(1999) 

[29] Cohen, H., Rogers, G. F. C., & Saravanamuttoo, H. I. H., Gas 
turbine theory, ed. t. ed. Essex: Longman. (1996) 

[30] Perez, R.E. and Behdinan, K.: Particle swarm approach for 
structural design optimization", Computers and Structures, 
Vol. 85, pp. 1579-1588 (2007) 

[31] Sedighizadeh, D., Masehian, E.: Particle swarm optimization 
methods, taxonomy and 
applications", International Journal of Computer Theory and 
Engineering, Vol. 1, pp. 1793-8201, (2009) 

[32] M. Montazeri-Gh and S. Jafari,: Evolutionary Optimization 
for Gain Tuning of Jet Engine Min- Max Fuel Controller,  
JOURNAL OF PROPULSION AND POWER, Vol. 27, No. 5, 
September–October (2011) 

[33] Dasgupta, S., Papadimitriou, C. H, Vazirani, U. V., Algorith
ms. McGraw - Hill Higher Education (2007)

 


