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Abstract  Our scope in this paper is to treat the problem of detecting what is called  moderately fluctuating targets when 

the operating environment is contaminated with a number of outlying targets along with the target under test (mult iple -target 

situations). The illumination of this important class of radar targets by a coherent pulse train, return a train  of correlate d pulses 

with a correlation coefficient in  the range 0<ρ<1 (intermediate between SW II & SWI). To  achieve this goal, we choose the 

OS based type of adaptive detectors owing to its immunity to interfering targets. However, the homogeneous performance of 

OS technique is always lower than that of the CA scheme. Therefore, it is preferab le to choose the more efficient version, 

which combines the benefits of these two schemes, of the adaptive detectors. This modified version is known as censored 

mean-level (CML) in the literature. It implements trimmed averaging of a weighted ordered range samples. Here, the 

detection performance of the CML processor is analyzed on the assumption that the radar receiver collects data from M 

successive pulses and the radar system operates in target multip licity environments. The primary as well as the secondary 

interfering targets fluctuates in accordance with χ
2
 fluctuation model. SWI and SWII cases represent the situations where the 

signal is completely correlated and completely decorrelated, respectively, from pulse to pulse. Exact expressions are derived 

for the detection and false alarm rate performances in nonideal situations. For weak SNR, it is shown that the processor 

performance improves as the correlation coefficient ρ increases and this occurs either in the absence or in the presence of 

outlying targets. This behavior is rapid ly changed as the SNR becomes stronger where the p rocessor performance degrades as 

ρ increases, and the SWII and SWI models embrace all the correlated target cases.  

Keywords  Adaptive Radar Detectors, Postdetection Integration, Partially-Correlated Χ
2
 Fluctuating Targets, Swerling I 

and II Models, Target Multip licity Environments  

 

1. Introduction 

Radar target characteristics are the driving force in design 

and performance analysis of all radar systems . Although the 

Swerling  models  fo r target  fluctuat ion  specificat ions 

together with the nonfluctuating case bracket the behavior of 

fluctuating targets of practical interest, they still inadequate 

as descript ion models for the fluctuat ion behav ior of all 

target populations of importance. On the other hand, most 

radar echoes result from the coherent combination o f the 

contributions of many scaterers such as in the cases of clutter 

(e.g. rain) and of the hot spots of an aircraft. For such echoes, 

a convenient  coherent model is a wide sense stationary 

Gaussian process with an assigned autocorrelation function. 

Such  targets are termed as moderately  fluctuat ing. The 

Swerling I and II (SWI & SWII) models are regarded as 

limit ing  cases relevant  to a flat  autocorrelat ion  funct ion 

(SWI case) or to a Dirac impulse case (SWII model). The  
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detection of this type of radar target fluctuations is of great 

importance[1-3].  

In modern radar systems, equipped with automatic 

detection circuits, the use of constant false alarm rate (CFAR) 

algorithms is necessary to keep false alarms at a suitably low 

rate in an a priori unknown, time varying and spatially 

non-homogeneous environment. A variety of CFAR 

techniques are developed according to the logic used to 

estimate the unknown noise power level. An attractive class 

of such schemes includes cell-averaging (CA), ordered - 

statistics (OS) and their modified versions . The threshold in  a 

CFAR detector is set on a cell basis using estimated noise 

power by processing a group of reference cells surrounding 

the cell under test. The CA processor is an adaptive scheme 

that can play an effective part in much noise and clutter 

environments, and provide nearly the best ability of  signal 

detection while reserving the enough constant false alarm 

rate. This algorithm has the best performance in 

homogeneous background since it uses the maximum 

likelihood estimate of the noise power to set the adaptive 

threshold. However, the existence of heterogeneities in 

practical operating environments renders this processor 

ineffective[3]. Heterogeneities arise due to the presence of 
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multip le targets and clutter edges. In the case of multip le 

targets, the detection probability of CA degrades seriously 

due to the non-avoidance of including the interfering signal 

power in noise level estimate. Consequently, this in turn 

leads to an unnecessary increase in overall threshold.  When 

a clutter edge is present in the reference window and the test 

cell contains a clutter sample, a significant increase in the 

false alarm rate results. Both of these effects worsen as the 

clutter power increases. In order to overcome the problems 

associated with non-homogeneous noise backgrounds , 

alternative schemes have been developed to address this 

issue, including OS and its versions as well as various 

windowing techniques aimed to exclude heterogeneous 

regions. The well-known OS processor estimates the noise 

power simply by select ing the K
th

 largest cell in the reference 

set of size N. It suffers only minor degradation in detection 

probability and can resolves closely  spaced targets 

effectively for K different from the maximum. However, this 

processor is unable to prevent excessive false alarm rate at 

clutter edges, unless K is very close to N, but in this case the 

processor suffers greater loss  of detection performance[4]. In 

this situation, the censored mean-level (CML) scheme, in 

which a few of the largest reference cells are excised, is 

suggested[5]. The performance of this detector is quite 

robust in the presence of extraneous targets as long as their 

number is less than or equal to the number of the censored 

cells from the reference channel[6-8] 

Following this introduction, we review the detection 

performance of the CML in  a locally homogeneous noise 

environment and extend the results to the multip le-target 

situation, where the moderately fluctuating model is used to 

represent the primary as well as the secondary interfering 

targets. Once the problem under consideration is fo rmulated 

in section II, we proceed to consider the performance of the 

CML in section III. The key step in our analysis is the 

evaluation of the moment generating function (MGF) of the 

noise level estimate. We are able to calculate this MGF 

analytically for the case where the reference channel is free 

of or contaminated with a specified number of outliers. 

Section IV is devoted to our numerical results and we 

terminate this research by a brief d iscussion about the 

obtained results along with our conclusions.  

2. Theoretical Background and Problem 
Formulation 

The block diagram of typical CFAR with  post-detection 

integration of M pu lses is shown in Figure (1). Here, we 

consider a radar system in which t ime diversity transmission 

is employed and assume that M pulses hit the target. Since 

the signal-to-noise ratio (SNR) is a popular measure of 

effectiveness of a radar receiving system for combating noise, 

the maximization of this parameter is one of the earliest 

criteria investigated. In the early  days of the receiver art, 

band pass filtering techniques were developed to effect 

discrimination between a desired signal and an interfering 

signal with adjacent but non-overlapping spectra. A  filter 

that maximizes SNR may be regarded as an extension of this 

concept. Matched filter theory is one of the important results 

of this criterion. Therefore, the received IF signal is applied 

to a matched filter, the output of which is then passed 

through a square-law device to extract the baseband signal. 

This signal is then sampled and the sampling rate is chosen in 

such a way  that the samples are statistically  independent. The 

square-law detected video range samples are sent serially 

into a shift register of N+1 resolution cells resulting in  a 

matrix of Mx(N+1) observations  which are denoted by yij. 

The M observations from the cell under test, which is the one 

in the middle of the processing window, are represented by 

y0. The center bin (test cell) is tested on whether it contains a 

target’s return or not. The detection procedure involves the 

comparison of the received signal with a certain  threshold. 

The CFAR schemes set this threshold adaptively according 

to local information on the background noise power. The 

estimation of the mean power of the local clutter (Z) is 

usually based on the N neighboring bins. The name of the 

specific CFAR detector is determined according to the kind 

of operation used to estimate this unknown power. In this 

manuscript, we are concerned with the censored mean-level 

(CML) processor which is hybrid between CA and OS 

schemes. 

In order to analyze the detection performance of the 

underlined processor, let the input to the square-law device 

consists of M-pulses, each composed of a steady signal 

component and Gaussian noise. Denote the in-phase and 

quadrature components of the signal over the M-pulses by 

the Mx1 vectors Si and Sq, respectively, and denote the 

corresponding components of the noise by Mx1 vectors Ni 

and Nq. Then, the integrated output of the square-law device 

takes a form g iven by 
22

0 NSNSy qqii
     (1) 

The moment generating function (MGF) associated with 

the random variab le (RV) y0 is defined as 
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In the above expression, ω represents the variable corresponding to the transformed observation space, ƒy(.) denotes the 

probability density function (PDF) of the RV y0. The substitution of Eq.(1) in Eq .(2) y ields  
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If Ni and Nq are independent and identically distributed (IID) Gaussian random vectors, one may write  
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By substituting Eq.(4) into Eq.(3), one obtains 
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Complet ing the squares in Ni and Nq and integrating over Ni and Nq gives 
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If the signal component fluctuates, then the MGF of the square-law detector is a weighted average, accounting for the PDF 

of the in-phase and quadrature components of the signal. Hence, for a fluctuating target, the MGF of the detector output is [12]  
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Assuming that Si and Sq are IID with PDF ƒS(s), we have  
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2.1. Correlated χ
2
 Signal Model  

Most radar targets are complex objects and produce a wide variety of reflections. These targets often require different 

models to characterize the varied statistical nature of their responses. A radar target whose return varies up and down in 

amplitude as a function of time is known as fluctuating target. The fluctuation rate may vary from essentially independent 

return amplitudes from pulse-to-pulse to significant variation only  on a scan-to-scan basis. The χ
2
 family is one of the most 

radar cross section fluctuation models. The distribution of this χ
2
 with 2ҝ degrees of freedom has a PDF of the form[11] 
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whereσ is the average cross section over all target fluctuations and U(.) denotes the unit step function. When ҝ=1, the PDF 

of Eq.(9) reduces to the exponential or Rayleigh power distribution that applies to the Swerling cases I and II.  

It is of great importance to note that the above expression represents the PDF of the sum of the squares of 2ҝ real Gaussian 

random variables or the sum of the squared magnitudes of ҝ complex Gaussian random variab les. Therefore, if ҝ=1, then σ 

may  be generated as σ= x1
2
 + x2

2
, where xi ’s are IID Gaussian random variables, each with zero mean  andσ /2 variance. Thus, 

if α=σ /2, we can write the PDF of the magnitude of the in-phase component u (u=x1 ) as 
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To accommodate an  Mx1 vector o f correlated χ
2
 RV’s with two degrees of freedom, we introduce the PDF of the 

M-dimensional vector X1 
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In the above expression, Λ represents the correlation matrix of x11, x12, ……, x1M, and T denotes the vector transpose. The 

substitution of Eq.(11) into Eq.(8) yields  
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The symbol I represents the identity matrix. Carrying the above integration leads to 
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Expressing the determinant of Λ in terms of the nonnegative eigenvalues λ i’s, i=1, 2, …., M, Eq.(13) takes the form 
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ψ=2σ
2
 represents the noise power and A=2α/ψ denotes the average SNR. It  is of importance to note that the effective 

fluctuation statistics of the signal to be detected is completely determined by the eigenvalues of the matrix Λ. For example, if  

the signal to be detected has an effective Swerling II fluctuation statistics, then all eigenvalues of Λ are equal. Swerling I 

fluctuation model, on the other hand, results effectively when all eigenvalues except one are equal to zero. Eigenvalue 

distributions between these two limit ing cases correspond to fluctuation statistics that lie between SWII and SWI models. In 

other words, λ1=M, λ i=0 for 2 ≤ i ≤ M, for slow fluctuation (SWI), while λ i=1 for 1 ≤ i ≤ M, fo r fast fluctuation (SWII). 

Therefore, for these distinct models, Eq.(14) has a form given by 
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In view of Eq.(14), the solution for the partially correlated case requires computation of the eigenvalues of the correlation 

matrix Λ. It is assumed here that the signal has a stationary statistics and it can be represented by a first order Markov process. 

These assumptions result in a Toeplitz nonnegative definite matrix of the fo llowing general form: 
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Eqs.(14-16) are the basic formulas of our analysis in this manuscript. 

The PDF of the output of the ith
 test tap is given by the Laplace inverse of Eq.(14) after making some minor modificat ion s. 

If the ith test tap contains noise alone, we let A=0, that is the average noise power at the receiver input is ψ. If the ith range cell 

contains a return from the primary target, it rests as it is without any modifications, where A represents the streng th of the 

target return at the receiver input. On the other hand, if the ith test observation is corrupted by an interfering target return, A is 

replaced by I, where I denotes the interference-to-noise ratio (INR) at the receiver input. 
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3. Processor Performance Analysis 

The CML detector has been introduced to alleviate the problem of extraneous target returns and the degradation caused by 

them on the processor performance. This is achieved by excluding a specified number of the largest range -cell variates from 

the noise level estimate. To analyze this detector, we consider the situation where the reference channel contains R ext raneo us 

target returns, each with a power level ψ(1+I), and the remain ing N-R cells having thermal noise only  with power level ψ. The 

Lth ordered sample has a cumulative distribution function (CDF) given by[9] 
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The CDF of the reference cell that contains an extraneous target return can be obtained from 
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 denotes the Laplace inverse operator and 
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On the other hand, if the reference sample has thermal noise only, its CDF has the same form as that given by Eq.(18) after 

setting I tends to zero. Thus, 
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To evaluate the processor detection performance, it is necessary to calculate the Laplace transformation of Eq.(17), where 

it represents the backbone of the determination of the false alarm and detection probabilities. The ω-domain representation of 

Eq.(17) can be analytically calculated and final expression is given by[12] 
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where  
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Eq.(21) is the fundamental relation of our analysis. Let us now go to analyze the detector under investigation. The noise 

characteristics of this detector are estimated through the formula  
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where  
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are the order statistics of the samples y1, y2, …………., yN. ξ >0 denotes some constant required to achieve an unbiased 

minimum variance estimate (UMVE) fo r the noise power.  

The order statistics y(i)'s, i=1,….., N, are neither independent nor identically distributed RV's even if the orig inal samples 

yi's, i=1,……, N, are IID random variables. However, when the observations yi's are exponentially  distributed, these samples 

can be written in terms  of independent RV's qi's, i=1, ……., L. The relat ion between the two  sets of samples takes the form[7] 
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In terms of the MGF's of y(i)'s, we can compute the MGF's of qi's according to the following relation 
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On the other hand, the above formula can be written in terms of the Laplace transformat ion of the CDF of the order 

statistics y(i)'s as 
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As a function of qi's, the noise power level estimate Z(N, L), Eq.(23), becomes  
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Since the RV's qi's are statistically independent, the MGF of the noise level estimate Z(N,L) can be easily  calculated and 

the result has a mathematical form g iven by 
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Owing to the large processing time taken by  the OS technique in scoring the candidates of t he reference set, its practical 

applications are limited. Employing two simultaneously specialized processors, one for each subset of neighboring cells, it is 

possible to reduce by half the single set processing time without altering the estimation of the clutter statistics. As a result of 

this proposal, double-window processors are preferred from the practical application point of view. The reference set is 

divided into two subsets, of equally size, and the cells of each subset are independently sorting fo r its noise level to be 

estimated through a mathemat ical relation similar to that given in Eq.(23). The leading Zℓ and trailing Zt noise level estimates 

are combined through the mean operation to obtain the final noise level estimate Z f. Therefore, 
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           (30) 

For simplicity, we take N1=N2=N/2, and 1≤ Li ≤ Ni, i=1, 2. Because of the averaging of the local estimates of the noise 

power levels, the final noise level estimate has a MGF given by the product of the corresponding MGF's of the lead ing and 

trailing noise level estimates. Thus, 
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where  
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In this case, we assume that there are R1 and R2 reference cells amongst the candidates of the leading and trailing subsets 

that are contaminated by interfering target returns and N1-R1 & N2-R2 contain thermal noise only. Once the MGF of the final 

noise power level estimate is obtained, the processor detection performance can be easily evaluated. The detection probabilit y 

is given by[10] 
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In the above expression, T denotes a constant scale factor required to achieve the desired rate of false alarm and A is as 

previously defined in Eq.(14). The cell under test y0 has a PDF g iven by 
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Let us now go to present some of numerical results to test the validity of our derived formulas and to discuss the role that 

each parameter can p lay in the behavior of the detection scheme against different operating conditions.  

4. Performance Evaluation Results 

In this section, we apply the exact detection probability 

determined in the previous section to the performance 

evaluation of the ML-CML processor Some numerical 

results, expressed in terms of the variation of the thresolding 

constant with the false alarm probability, the receiver 

operating characteristics (ROC's), the detection probability 

as a function of the primary target SNR, the false alarm 

probability as a function of the INR of the spurious targets, 

and the required SNR to achieve a predefined operating point 

(Pfa, Pd), will be illustrated in this section. We will denote the 

double-window CML scheme in our results by ML-CML(Nℓ, 

Nu, ξ), where Nℓ and Nu represent the number of samples that 

are trimmed from the lower and the upper ends of the 

reference subset before adding the remainder ones to 

estimate the unknown no ise power level. It is of importance 

to note that the results displayed here are obtained for a 

possible practical application of similar parameter values for 

the two reference subsets as well as equal strengths of the 

primary and the secondary interfering target returns 

(SNR=INR). The size of the reference set is chosen to be 

N=24 and the design false alarm rate is assumed to be Pfa= 

10
-6

. In addition, two upper ordered cells are censored from 

the elements of the leading and trailing subsets (Nu=2) 

without any one excised from the lower ends (Nℓ=0). 

Therefore, the resulting procedure will be denoted as 

ML-CML(0,2,2) throughout this section. Figure (2) shows 

the variation of the constant scale factor T with the false 

alarm rate for d ifferent numbers of integrated pulses. It is 

shown that T decreases as either M or Pfa increases. For 

comparison, the figure incorporates the variation of the 

threshold (Topt) of the optimum detector under the same 

parameter values. It is noted that Topt increases as M 

increases and decreases as Pfa increases. For a constant rate 

of false alarm, the fixed threshold Topt must be increased as 

the number of integrated pulses increases since the received 

signal becomes stronger with increasing M. In the case of 

adaptive detection, on the other hand, the thresholding 

constant T decreases with M for the resultant mult iplication 

of it and the noise power estimate, which increases with M, 

to be held unchanged in order to keep the rate of false alarm 

constant.  

Let us now turn our attention to another type of 

characteristics which is known in the literature as ROC's. It 

represents the variation of the detection probability with the 

false alarm rate at fixed values of SNR of the target under test. 

Figure (3) shows this variation fo r SNR of 5, 10, and 15 dB 

when there are two fully correlated (ρs=1) or fully 

de-correlated (ρs=0) consecutive sweeps (M=2). The same 

results for the optimum detector are also included in this 

figure for the purpose of comparison. An indication 

(optimum, 1, 5) on a specified curve means that it is drawn 

for optimum detector when the consecutive sweeps are fully 

correlated and the strength of the primary target signal return 

is 5dB. For low SNR, we note that the processor performance 

for ρs=1 is higher than its performance fo r ρs=0 when the 

false alarm rate is low and this behavior is rapidly  altered as 

the false alarm rate increases. This behavior is common for 

the optimum and the adaptive processors. As the SNR 

increases, this behavior is not noted and the processor 

performance for ρs=0 exceeds its performance against ρs=1 

case irrespective to the required rate of false alarm. For low 

values of Pfa, there is a noticeable distinction between the 

performance of the optimum detector and that of the 

processor under consideration and their performances 

approach each other as the rate of false alarm increases. As a 

final remark, the difference between the two performances, 

at low rate of false alarm, decreases as the signal returned 

from the primary target becomes stronger (higher SNR).   

The third category of performances that measure the 

ability of the proposed scheme to detect a target in  nonideal 

operating conditions is the detection performance which 

displays the detection probability as a function the SNR of 

the target under test when the radar receiver integrates a 

number o f consecutive sweeps. Figs.(4-5) depict the 

detection performance of the processor under investigation 

when the operating environment is either homogeneous 

(R1=R2=0) or multi-target (R1=R2=2) for M=2 and 4, 

respectively. The candidates of these figures are parametric 

in the degree of correlation between the target returns and the 

number of ext raneous target returns in each reference subset. 

In other words, the label ρ=0.5, (2, 2) on a specified curve 

means that it is plotted for a 50% degree of correlat ion and in 

the presence of two interfering target returns amongst the 

contents of each reference subset (R1=2 & R2=2). From the 

results of these two figures, it is noted that the processor 
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performance improves as either the number of integrated 

pulses increases or the degree of correlation between the 

target returns decreases. In addition, the difference between 

the processor performance in the absence (homogeneous) 

and in the presence (multi-target) of outlying targets is not 

large, given that the number of these interferers is with in its 

allowable range (R ≤ Nu). Moreover, the two performances 

tend to be the same as the SNR becomes higher. It is of 

importance to note that the results presented in these two 

figures are calcu lated for a possible practical application of 

equal strengths as well as equal degrees of correlation for the 

primary and the secondary interfering targets (INR=SNR, 

ρi=ρs). Our attention is still concerned with multip le-target 

situation, where the non-homogeneous ROC's of the detector 

under investigation is displayed in Figure (6) when two cells 

amongst the samples of each reference subset are 

contaminated with spurious target returns (R1=R2=2). Since 

SWII and SWI fluctuating target models represent the 

boundary limits for the degree of correlation, we are 

interested in this figure with these two models for the 

primary and the secondary interfering targets, where SWII 

represents zero degree of correlat ion while SWI model 

denotes the case of 100% correlation. The curves of this 

family are labeled accord ing to the model of the primary 

target, the model of the outlying target, and the intensity of 

the returned signal. On the other hand, an indication (SWII, 

SWI, 10) on a curve means that its results are evaluated for 

the case where the primary target follows SWII in  its 

fluctuation, the ext raneous target's fluctuation is of SWI 

model, and for INR=SNR=10dB. Since we have two 

fluctuation models, there are four possible combinations: 

(SWII, SWII), (SWI, SWI), (SW II, SWI), and (SWI, SWII). 

For each combination, the signal strength is allowed to be 

varied from 5dB to 15dB with a step of 5dB. For low SNR, 

we show that the processor performance when the primary 

target fluctuation follows SWI is higher than its performance 

when the primary  target fluctuates in accordance with  SWII 

given that the false alarm rate is held constant at low value. 

For higher values of false alarm rate, the processor behavior 

is reversed; the primary  target fluctuation model of SWII 

gives higher performance than the case where it fluctuates 

following SWI model. In  each one of these cases, the 

processor performance when the secondary interfering target 

fluctuates in accordance with SWI is higher than its 

performance for the case where the fluctuation of the 

outlying target follows SWII model. As the signal strength 

becomes stronger, the processor performance attains its 

highest values for the (SWII, SWI) combination after which 

the (SWII, SWII) combination comes, the (SWI, SWI) 

combination, and the worst performance is obtained when 

the primary and the secondary interfering targets fluctuate in 

accordance with SWI and SWII models, respectively. To 

confirm this conclusion, Figure (7) shows the target 

multip licity detection performance of the ML-CML(0, 2, 2) 

scheme for different fluctuation models for the primary and 

the secondary extraneous targets when the radar receiver 

incorporates a video integrator amongst its basic elements 

where it integrates 2, 3, and 4 pulses. The curves of this 

figure are parametric in the number of integrated pulses, 

fluctuation model of the primary target, and fluctuation 

model of the outlying target. In other words, M=3, (SWI, 

SWII) on a g iven curve means that it is drawn when the 

primary target fluctuates following SWI model, the 

secondary target fluctuates according to SWII model and the 

data of processing are taken from three consecutive sweeps 

(M=3). The processor detection performance for the case 

where the fluctuation models of the primary and the 

secondary interfering targets are SWII and SWII, 

respectively, is higher than that for the case where these 

models are SW I and SW II, respectively. As M increases, 

there is an improvement in the processor performance in any 

case. As a reference, this figure contains the single sweep 

curve (M=1) to show to what extent the processor 

performance may  improve as the number of integrated pulses 

increases. To illustrate the effect of the number of interfering 

target returns on the processor performance, Figure (8) 

depicts the same detection performance of the scheme under 

consideration, as in Figure (7), e xcept that the number of 

outlying target returns is greater than their allowable range 

(Nu=2). Note that the full scale of this figure is 80% instead 

of 100% in the normal state. The candidates of this figure are 

labeled in the correlat ion coefficient between the primary 

target returns (ρ1), the correlation coefficient between the 

interfering target returns (ρ2), and the number of integrated 

pulses (M). ρi=0, i=1 & 2, means that SWII fluctuation 

model is proposed for the underlined target, while ρi=1, i=1 

& 2, indicates that the target under investigation fluctuates in 

accordance with SWI model. From the displayed results, it is 

noted that there is a noticeable degradation in the processor 

performance along with all the previous conclusions are also 

noticed in this figure.  

Let  us now turn our attention to the processor false alarm 

rate performance and the effect of the interfering targets on 

keeping it constant or decayed as the strength of the 

interference becomes stronger. Figure (9) shows this 

performance, in multip le-target situation, when there are two 

interfering target returns amongst the contents of each 

reference subset (R1=R2=2) and these targets fluctuate 

following SWI and SWII models. For low interference level, 

SWI fluctuation model tends to give false alarm rate 

performance which is higher than that obtained by SWII 

model and as the interference level becomes stronger, the 

two performances tend to be the same. Higher false alarm 

rate performance means that the false alarm probability 

approaches its design value which is 10
-6

 in the present case. 

As M increases, there is an improvement in the processor 

false alarm rate performance. For the purpose of comparison, 

the single sweep false alarm rate performance is also 

included in this figure. To show the effect of increasing the 

number of interfering targets on the false alarm rate o f the 

processor under test, we retrace the results of Figure (9) 

under the same operating conditions except that the number 

of outlying target returns is chosen to be out of its allowable 

range. Figure (10) illustrates the M-sweeps variation of the 
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actual false alarm rate with the strength of the interference 

level for R1=R2=3. In this case, the false alarm probability 

decreases continuously as the intensity of the interference 

level becomes h igher and the SWI (ρ=1) model still g ives the 

best false alarm rate performance. On the other hand, the rate 

of decreasing for SWII (ρ=0) model is higher than that for 

SWI model. In addition, the rate of decreasing when the 

extraneous target fluctuates following SWII increases as M 

increases, while this rate rest approximately unchanged 

when the fluctuation of the secondary interfering target 

follows SWI model. As M increases, the false alarm rate 

performance degrades for fluctuating targets of SWII model, 

while it remains approximately unchanged from the single 

sweep case (M=1) when the spurious targets fluctuate 

following SWI model. 

Finally, it is required to evaluate the necessary SNR to 

achieve a preassigned value for the detection probability 

given that the false alarm rate is held constant. Figure (11) 

displays these results for the SNR, required to verify an 

operating point of (Pfa=10
-6

, Pd=90%), for two and four 

integrated pulses, as a function of the correlat ion coefficient 

(ρ) between the target returns, when the radar receiver 

operates in either ideal or multip le-target environment. 

Identical values are assumed for the primary and the 

secondary outlying target returns from the signal strength 

and correlation coefficient points of view. For comparison, 

the results of the optimum detector along with the processor 

single pulse required SNR are also included in this figure. 

The required SNR increases smoothly as ρ increases and the 

rate of increasing becomes higher as ρ tends to 1. As M 

increases, the required SNR decreases and their values for 

homogeneous case (R1=R2=0) are always lower than their 

corresponding values for mult itarget (R1=R2=2) case. In 

addition, the required SNR values approach their 

corresponding values for the optimum detector as the 

number of integrated pulses increases.  

 

Figure (1).  Architecture of the censored mean-level detector with postdetection integration 
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Figure (2).  Thresholding constant (dB) versus false alarm probability of ML-CML(0,2,2) CFAR detector, parametric in M, for a reference window of 

size 24 cells 

 

Figure (3).  Homogeneous ROC of ML-CML(0,2,2) CFAR scheme, for fully correlated and fully decorrelated chi-square fluctuating targets, when N=24, 

and M=2 
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Figure (4).  Partially-correlated chi-square target detection performance of ML-CML(0,2,2) CFAR scheme, in homogeneous and multitarget situations, 

when N=24, M=2, Pfa=1.0E-6, and R1=R2=2 

 

Figure (5).  Partially-correlated chi-square target detection performance of ML-CML(0,2,2) CFAR scheme, in homogeneous and multitarget situations, 

when N=24, M=4, Pfa=1.0E-6, and R1=R2=2 
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Figure (6).  Multiple-target ROC of ML-CML(0,2,2) CFAR processor, for fully correlated and fully decorrelated chi-square fluctuating targets, when 

N=24, M=2, and R1=R2=2 

  

Figure (7).  Target-multiplicity detection performance of ML-CML(0,2,2) CFAR processor, for fully decorrelated and fully correlated targets, when 

N=24, Pfa=1.0E-6, and R1=R2=2 
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Figure (8).  Target multiplicity detection performance of ML-CML(0,2,2) processor, for fully correlated  and fully decorrelated chi-square fluctuating 

targets, when N=24, Pfa=1.0E-6, and R1=R2=3 

  

Figure (9).  Actual false alarm probability against interference-to-noise ratio of ML-CML(0,2,2) CFAR processor, for Swerling fluctuating targets, when 

N=24, design Pfa=1.0E-6, and R1=R2=2 
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Figure (10).  Actual probability of false alarm versus the strength of interfering targets of ML-CML(0,2,2) CFAR scheme, for fully correlated and fully 

decorrelated chi-square fluctuating targets, when N=24, design Pfa=1.0E-6, and R1=R2=3 

 
Figure (11).  Required SNR to achieve an operating point (1.0E-6, 0.9) for partially correlated chi-square target detection performance of 

ML-CML(0,2,2) processor when N=24, and R1=R2=2 

5. Conclusions 
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probability of the ML-CML scheme in the case where the 

radar receiver incorporates a video integrator amongst its 

basic elements and the CFAR circuit  processes data that are 

returned from part ially-correlated χ
2
 targets. The operating 

environment is treated as either free of outlying targets 

(homogeneous) or contains some of extraneous targets along 

with the primary  target of interest. The numerical results are 

obtained for a possible pract ical applicat ion that the signal 

strength as well as the degree of correlation between 

successive data for the primary and the secondary interfering 

targets are assumed to be the same. Special interest is 

focused to the boundaries of the correlation coefficient 

which correspond to SWII model for ρ=0 and to SWI model 

for ρ=1. As predicted, it was found that the processor 

homogeneous performance when the fluctuation of the 

primary target fo llows SWII model is higher than its 

performance when it fluctuates in accordance with SWI 

model. In mult iple -target situation, on the other hand, the 

processor performance in the presence of outlying 

fluctuating targets of SWI model exceeds its performance in 

the case where the spurious targets fluctuate following SWII 

model. The final conclusion that can be extracted from our 

presented data is that the processor performance can be 

improved by increasing the number of integrated pulses 

and/or decreasing the degree of correlation between the 

successive data.  
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