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Abstract  A new methodology for obtaining deflections of structures is presented in this paper. It is based on Principle of 
Quasi Work, which connects two topologically similar systems thereby leading to a unique concept of standard elements for 
every category of structural problems. Using a priory known equation of deformation/deflection of elastic axis of these 
elements, solution for equation of deformed/ deflected elastic line of other structural members of similar category having 
different loading and boundary conditions is presented here. Th is methodology is easy to use as deflection of a given structure 
is obtained mostly by simple multiplications and it also eliminates the use of internal force/bending moment expressions 
unlike conventional methods. Even though this methodology can be applied to any structure, its use is illustrated for one 
dimensional structural elements (viz. axial bars, torsion rods and beams) for the sake of conciseness and clarity. The concept 
of topologically similar system is exp lored for each category of elements as it lies at the heart of the principle of quasi work.  
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1. Introduction 
Successful attempts of transporting structural mechanics 

problems into other fields of science have been made by 
various authors. Structural mechanics problems were solved 
using graph theory  by[1, 2];  through elect rical networks 
by[3]; and resorting  to combinat ion of graph theory and 
elect ric networks by[4]. In all these cases , one needs 
knowledge o f other fields o f science in  add it ion  to  the 
knowledge o f structu ral mechan ics. To  overcome th is 
crippling disadvantage Principle of Quasi Work (PQW) in 
the realm of structural mechan ics was derived by[5] by 
importing Tellegen’s theorem as given in[6] thereby making 
knowledge of other fields of science for any user redundant. 
PQW  establishes connection  between two Topolog ically 
Simi lar  Sys tems , (TS S) , in  the f ield  o f s t ructu ral 
mechan ics.A ll the present ly availab le structural analysis 
p rocedures  e.g . fin ite  element  methods [7, 8, 9, 10]; 
variational princip les[11, 12] and energy methods[13, 14] 
meant for a single structure do not provide any connection 
between two structural systems. PQW thus fills existing void 
in the domain of structural mechanics. Using PQW, some 
useful theorems for discrete structural models were derived 
by[5, 15]. PQW  was advantageous ly  used  by[16] fo r 
ob tain ing  redundant  react ions  o f beams . A  qu ick and 
simplified method for obtain ing nodal deflect ions of an 
indeterminate truss using PQW was given by[17]. PQW has 
much wider applicability as all the existing energy principles  
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can be derived as special cases of PQW by restricting TSS to 
topologically identical systems i.e. when two systems are 
identical with each other in every respect.PQW utilizes 
known solution of a TSS to  solve other determinate/ 
indeterminate topologically similar problems. 

All the available methods for calculat ion of deflection are 
based on internal force (/ torque/ bending moment/ etc.) 
distributions. PQW gives a choice of either using internal 
force expressions or completely bypassing these. First case 
(of using these distributions) is a  direct  application of PQW 
(Wmn=Umn). In the latter case (of bypassing these 
distributions), solution is obtained by restricting TSS to 
topologically equivalent systems (TES). For TES Umn=Unm 
and hence, PQW can be used in the form of W mn=Wnm. 
Working with quasi work expressions is much easier 
compared to quasi strain energy expressions. Quasi work 
(Wmn) is calculated by multip lying applied loads from 
system ‘m’ with corresponding known displacements of 
system ‘n’ and no integrations are involved if only 
concentrated loads are acting on the given system.Even for 
distributed loads the integration is easy as the integrants (the 
expression for distributed load act ing on the given system, 
TESm, and the equation for the deflection curve of chosen 
system TESn) are predefined. PQW involves two TSS out of 
which one represents the given determinate/ indeterminate 
problem at  hand and other TSS with a priory known equation 
of its deformed/ deflected elastic line is chosen by the 
user.Hence, a judicious choice of TSS2 leads to a unique 
standard element for every category of problem. 

Deformat ion/ deflect ion equations of these standard 
elements, used for obtaining the deformation/ deflect ion of 
other given determinate/ indeterminate problems (of the 
same class) under different loading and boundary conditions, 
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remain same thereby paving way for development of a 
general purpose interactive computer program for obtaining 
the deflection of these structural members. 

In this paper, conditions which axial bars and torsion rods 
have to satisfy for topological similarity are looked into. 
PQW is validated for these elements. An attempt is made to 
define standard element (in each case) whose solution for 
deflection/ deformation forms the basis for obtaining 
deflections/ deformat ions of other given problems. Few 
illustrative examples are also included. 

2. Principle of Quasi Work 
Principle o f quasi work was first proved by Panditta[5] 

and subsequently stated by Panditta et.al.[15,16]. According 
to this principle quasi work, ‘W mn’, done by external forces 
of one system (say ‘m’) while go ing through the 
corresponding displacements of the other topologically 
similar system (say ‘n’) is equal to the quasi strain energy, 
‘Umn’, due to internal forces of former system (‘m’) while 
going through corresponding deformat ions of the latter 
system (‘n’). In mathematical terms it can be stated as: 

mn mnW U=                   (1) 

Where, Umn = Quasi strain energy = { } { }T
m nF δ ; Wmn = 

Quasi work = { } { } ;T
m nP d {P}m= External loads acting on 

TSSm;{d}n = Displacement in TSSn corresponding to{P}m; 
{F}m = Internal fo rces in TSSm; {δ}n = Deformat ion in TSSn 
corresponding to {F}m and {(exp .)}i = (expr.) is for TSSi. 

In this principle, word ‘corresponding’ needs clarification. 
For example, take two beams ‘AB’ and ‘CD’ having lengths 
‘L1’ and ‘L2’. In these two beams end ‘A’ corresponds to end 
‘C’ and end ‘B’ to end ‘D’. In such cases, one has to resort to 
mapping in the two structural domains. For example, if a 
transverse load is acting at 0.75L1 from end ‘A’ in beam ‘AB’ 
then its corresponding point in beam ‘CD’ will be 0.75L2 
from end ‘C’. 

2.1. Topological Similarity of Structural Elements 

In this section, condition(s) which axial bars and torsion 
rods should satisfy for being topologically similar will be 
arrived at. These conditions are deduced from calcu lations of 
quasi energy associated with the two structural elements. 
This also sets the conditions for the applicability of PQW as 
quasi energy is a part of PQW. 

2.1.1. Topological Similar Axial Bars 

Let two axial bars with parameters Lm, Em, Am and Ln, En, 
Anbe represented by TSSm and TSSn, respectively. Quasi 
energy, ‘Umn’ is written as follows:  

0

{ ( / ) } { ( ) }
n

m

L

mn m n m m m m n n n n
A

U L x L dA x dxσ ε= ∫ ∫ (2) 

Where, σ(x) = Normal stress as a function of ‘x’; ε(x) = 

Normal St rain as a function of ‘x’; A = Cross section area; 
L= Length of structural member; m, n = Subscripts 
representing different TSS and ‘x’is the coordinate along 
longitudinal axis. 

As length of the two bars is different, mapping of 
x–coordinate from TSSm to TSSn gives xm Ln/Lm and xn as 
corresponding points in these TSS. In  such a situation it is 
better to work in terms of non- dimensional parameter ξ = xm 
/ Lm= xn /  Ln. Eqn.(2) in non –  dimensional variable becomes:  
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(3) 

Where, E = Young’s modulus of elasticity. If mapping is 
done from TSSn to TSSmthen quasi energy is given by: 
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   (4) 

For deriving Eqn.(3) no restrictions on any geometric 
parameters of the two bars was required. Hence, two bars 
having different geometric parameters are topologically 
similar. It  paves way for the application of PQW. If 
topologically similar axial bars (TSAB) also have same 
distribution of the parameter AE (A mEm = AnEn) along their 
length then these axial elements will be designated as 
Topologically Equivalent Axial Bars (TEAB). For these 
elements quasi strain energy Umngiven by Eqn.(3), simplifies 
to: 

1

0

( ) ( )n
mn m n n n

L
U F L F L d

AE
ξ ξ ξ= ∫         (5) 

For TEAB, Eqns. (4 and 5) give Umn= Unm and along with 
Eqn.(1) offer six equations (viz. W mn = Umn = Unm = Wnm) for 
their analysis instead of usual two equations Wmn= Umn and 
Wnm = Unm. If the length of the TEAB is also equal then the 
Eqn.(5) is written as: 

0

( ) ( )L
m n

mn
F x F x

U dx
AE

= ∫             (6) 

Illustration – 1:Validation for Axial Bars 
Consider two axial bars with parameters A1, E1,L1 and 
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A2,E2,L2. Let  the ends of first member be fixed – fixed 
(Fig.1a) and that of second be fixed – free (Fig.1b). 

 
Figure 1.  Topologically Similar Bars 

Loading on first be a force ‘P1’ Newton acting at a 
distance of ‘a’ meters and that of the other be ‘P2’ Newton 
acting at a distance of ‘ζ’ meters measured from left end in 
both the cases. Let  RA and RB be the support reactions. First 
one will be designated by TSAB1 and other by TSAB2. 
Internal fo rce distribution, F(ξ), and axial deformation, u(ξ), 
in terms of non-dimensional parameter ‘ξ’ for TSAB1 and 
TSAB2 are g iven hereunder: 
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Where, < (exp.) > = 0 if (exp.) ≤ 0 otherwise it is equal to 
(exp.). Using Eqn.(3) 

12 1 1 2 2 2 2{ ( } { / }     
and

BU R P a P A Eζ ζ ζ= − + − < − > (9) 
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Referring displacements to TSAE1, Eqn.(10) can  be 
written as Eqn.(11) or Eqn.(12). 

12 1 1 2 2 2 2{ ( )} { / }BW R P a P A Eζ ζ ζ= − + − < − >   (11) 

12 1 1 2 2 2 2{ ( )} { / }BW R P a a P A Eζ ζ= − + − < − >   (12) 

From Eqns.(9,11) PQW stands validated.Similarly  one 
can show that U21= W21. 

2.1.2. Topological Similar Shafts 

Representing two shafts with circu lar cross section and 
having parameters Lm, Gm, Jm and Ln, Gn, Jn by TSSm and 
TSSn, the expression for Umn derived on similar lines as for 
axial elements is given below: 
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In non –dimensional fo rm, Umn is given by: 
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(14) 

Where, τ (x) = Shear stress as a function of ‘x’; γ(x)= 
Shear strain as a function of ‘x’; J = Polar moment of cross 
sectional area; G =Shear modulus of elasticity and T(x) is 
applied torque as a function of x. 

For meaningful evaluation of the integral over Am, it will 
be prudent to take two shafts of equal diameter. With this 
corresponding points in radial direction on the two shafts 
will be at the same radial d istance from the shaft centres (i.e. 
rm=rn) and Jm = Jn (= J). The second integral evaluates to Jm 
(=J).With this, expression for Umn in Eqn. (14) reduces to: 

1

0

( ) ( )n
mn m n n n

n

L
U T L T L d

G J
ξ ξ ξ= ∫        (15) 

If mapping is done from TSSn to TSSm, then Umn takes the 
form: 

1
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n

L
U T L T L d

G J
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Derivation of Eqn. (15) necessitates that the radius of two 
shafts should be equal. Hence, for shafts to be topologically 
similar their d iameter should be equal. For topologically 
equivalent rods (TER) with Gm = Gn = G Eqn. (15, 16) g ives 
(Wmn=) Umn= Unm (=Wnm). 

Illustration – 2: Validation for Shafts  

 
Figure 2.  Topologically Similar Rods 
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Consider a fixed - fixed torsion rod with circu lar section 
and having parameters J, G1, L1 and  an anticlockwise 
torque ‘T1’ Nm acting at a  distance of ‘a’ meters from left 
end‘A’ as shown in (Fig. 2a). Th is rod will be designated by 
TSS1. Topologically similar rod, TSS2, will be taken as a 
fixed - free torsion rod with circular section having 
parameters J, G2,L2 and  an anti - clockwise torque ‘T2’ N.m 
acting at a distance of ‘ζ’ meters from left end ‘C’ as shown 
in (Fig. 2b). 

The non – dimensional internal torque, T(x), and angle of 
twist, θ(x), d istributions in TSR1 and TSR2 are given by: 
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U12 and W12 are given by: 
12 2 1 2[ ( ] /BU T T T a G Jζ ζ ζ= − + − < − >   (18) 

12 2 1 2[ ( ) /BW T T T a G Jζ ζ ζ= − + − < −    (19) 
From Eqns.(18,19) PQW stands validated. Same is true 

for U21 and W21. 

2.1.3. Topological Similar Beams  

Condition for topologically similar beams has been 
derived by Panditta et.al.[16] and it requires that the two 
beams should have equal depth. Quasi strain energy, Umn, of 
two topologically similar beams (TSB) with parameters (L, 
Am, Em) and (L, An, En), referred to as TSBm and TSBn, is 
given by:  

0

1 { ( )} { ( )}
L

mn m m n n
n n

U M x M x dx
E I

= ∫     (20) 

For topologically equivalent beams (TEB) with EmIm = En 
In= EI, Eqn. (20) along with Eqn. (1) as usual yield six 
equations for their analysis.   

3. Standard Elements 
After validating PQW for one dimensional elements it can 

be observed that PQW relates two structural systems through 
quasi wok and quasi strain energy. Hence, it is possible to 
use known solution of appropriately predefined TSS2 to get 
solution of all other determinate/ indeterminate problems 
(TSS1) of the same class. In other words, one can utilize 
expression for internal force (for calcu lating Umn) and 
deformation/ deflections (for obtaining Wmn) of one unique 
TSS (of a class) and utilize it for obtaining solutions of other 
TSS (of the same class). This is of particular interest in 
structural engineering as one has to deal with indeterminate 
structures whose solution can now be obtained by the 
solution of a determinate structure (predefined TSS2) of the 
same class. Moreover, there is a possibility of utilizing 
exclusively quasi work expressions (which do not need 
internal fo rce distribution) by choosing two systems to be 

TES which necessitates thatthe two structural systems 
should have same stiffness parameter (AE/ GJ/ EI/ etc.). 
Here an attempt is made to define standard elements for axial 
bars, torsion rods and beam elements. These elements will be 
referred to as standard elements.  

Axial member shown in Fig. 1b will be used as a standard 
bar. It will be designated as TSAB2/ TEAB2. Cantilever shaft 
with circu lar section shown in Fig.2b will be used as a 
standard torsion rod. It will be designated as TSR2/ TER2.  

Standard beam for deflection (SBD), TSB2 / TEB2, is 
chosen as a simply supported beam ‘CD’ with parameters L, 
E2, I2 as shown in Fig.3. Load on the beam is taken as a 
concentrated load ‘P2’ Newton acting at a distance of ‘ζ ’ 
meters from left end ‘C’. Equation for its deflected neutral 
axis is given by: 

3
2 2

2 2
2 2

( ) {

( ) ( 2 )} / 6

v x P L x

L x x L LE I

ζ

ζ ζ ζ

= < − >

− − − +
 (21) 

 
Figure 3.  Standard Beam for Deflection (SBD): TSB2/ TEB2 

The beam, shown in Fig.(4), will be taken as standard 
beam for slope (SBS). It is defined as a simply supported 
beam ‘CD’ with an anticlockwise moment ‘M2’ acting at a 
distance ‘ζ’ from the left end. The beam parameters are taken 
as E,I, L. SBS will be designated as TSB2 / TEB2as the 
situation demands. This SBS can be used for getting slope of 
the deflected neutral axis of given beams. Equation of its 
deflected elastic curve is given by: 

 
Figure 4.  Standard Beam for Slope (SBS):TSB2/ TEB2 

2 2 2
2 2

2
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− < − >
    (22) 

4. Deflection Using PQW 
In this section five illustrations are included to illustrate 

the use of PQW for axial bar, torsion rod and beams. In all 
these illustrations two systems are chosen as TES of each 
other and having same length. By opting for TES it becomes 
easy as one can use quasi work expressions which make 
internal force/ torque/ bending moment expressions 
redundant. As these expressions are not needed, one need not 
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have the knowledge of writing these expressions thereby 
making the process of obtaining deflections easier and faster. 
Two illustrations one each for axial bar and shaft, even 
though trivial, are included to impart clarity in understanding 
of concepts involved. 

4.1. Application to Axial Bars 

In this section equation for deformation of fixed - fixed bar 
given in Fig.(1a) is obtained by using the equation of 
deformation of a built-in bar given in Fig(1b).As it is easy to 
obtain quasi work, these bars will be chosen as TEAB having 
same parameters L, A and E.  

Eqn.(12) with modified parameters yields: 
12 2 2 1 1{ / } {[ ( )]}BW P AE R P a aζ ζ= − + − < − >   (23) 

And 21 2 2 1 1{ } { ( )}W P u ζ=           (24) 
Using PQW in the form W21 = W12 yields: 

1 1 1 1{ ( )} {[ ( )] / }Bu R P a a AEζ ζ ζ= − + − < − >   (25) 
RB is calcu lated by using the boundary condition that u1(L) 

= 0 and comes out to be equal to P1a /L. Substituting this 
value of RB in the above equation, the expression for axial 
deformation of the given fixed – fixed axial bar becomes: 

1 1 1 1{ ( )} { [ (1 / ) ] / }u P a L a AEζ ζ ζ= − − < − >    (26) 
As ζ is an  arbit rary point in  TEAB2, it  can as well be 

replaced by ‘x’ and if curly brackets are also dropped then 
Eqn. (26) takes conventional form.  

4.2. Application to Rods  

In this section PQW will be applied to a fixed – fixed shaft, 
shown in Fig.5, to obtain its equation of twist by making use 
of the equation of twist of the standard rod shown in Fig.2b. 

The given shaft in Fig.5 carries a distributed torque of‘t’ N. 
m/m and has parameters G, J, L. Let TA and TB be the 
reaction torques in anticlockwise direction acting at left 
support ‘A’ and right support ‘B’, respectively. This shaft 
will be designated as TER1.  

 
Figure 5.  Fixed - Fixed Shaft: TER1 

Standard torsion rod shown in Fig.2b will be chosen to 
have same parameters G, J, L so that it is topologically 
equivalent to the given shaft and will be referred to as TER2. 
Equation for twist as a function of ‘x’ for TER2 is given by: 

2 2 2 2{ ( )} [ ] /x T x T x GJθ ζ= − < − >        (27) 
W12 is calculated as follows: 
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∫
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And 21 2 2 1 1{ } { ( )}W T θ ζ=             (29) 
Using PQW in the form W21 = W12 yields: 

1 1{ ( )} [ ( / 2 )] /BT t L GJθ ζ ζ ζ= + −        (30) 
TB is obtained to be equal to tL/2 by applying the 

boundary condition θ(L) = 0. Substituting this value in 
Eqn.(30), expression for twist of fixed- fixed shaft becomes: 

1 1{ ( )} ( ) / 2t L GJθ ζ ζ ζ= −           (31) 
As ζ is an arb itrary  point in TER2  it  is also an arbitrary  

point in the given problem (TER1) which has same length as 
that of TER2, hence, represents the same location as in 
(TER1). Therefore, if ζ is rep laced by ‘x’ and curly brackets 
are dropped, Eqn.(31) will take the conventional form. 

4.3. Application to Beams 

In this section PQW will be applied to beams. Three beam 
problems are chosen for this purpose. First and second 
problem is for obtaining the expression for deflection of a 
determinate and an indeterminate beam, respectively. Last 
one demonstrates the use of PQW for getting the expression 
for slope of a determinate beam. 

Illustration – 3: Deflect ion of Determinate Beam 
TEB1 represents the given problem which in this 

illustration is chosen as a simply supported beam ‘AB’ of 
length ‘L’ with an overhang of length ‘a’ to the left o f the 
support ‘A’ as shown in Fig.6. The loading on it is taken as 
an anticlockwise moment M1 acting at the free end and a 
uniform load of intensity w1 N/m between the supports. Let 
its parameters be E and I (second moment of area). It  is 
required to find the equation for the deflected neutral axis 
between the supports. SBD (Fig.3) is chosen as TEB2 having 
same parameters E, I and L. 

 
Figure 6.  Beam with overhang: TEB1 

As the equation for neutral axis between the supports is 
required, the end moment M1 is statically  transferred to 
support ‘A’. W12 is calculated as follows:  
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21 2 2 1 1{ } { ( )}W P v ζ=              (33) 
As the two beams were chosen to be TES of each other, 

deflection at any point ζ in  TEB1 is obtained by using PQW 
in the form W21 = W12 and comes out to be: 
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If M1 = w1 L2/12 then Eqn.(34) simplifies to: 
4 3 2 2 3

1 1 1{ ( )} (3 7 3 ) / 72v w L L L EIζ ζ ζ ζ ζ= − − + +  (35) 
Replacing ζ by x and dropping suffix ‘1’ as well as curly 

brackets in the above equation yields the equation for 
deflection in conventional fo rm which is same as given 
in[18] 

Illustration - 4: Deflection of Indeterminate Beam 
In this illustration equation for the deflected neutral axis of 

a beam AB which has a roller support at the left end ‘A’ and 
is built-in at support ‘B’ is obtained. Beam has parameters L, 
E, I and carries an anticlockwise moment ‘M’ at its mid point 
as shown in Fig.7 wherein RA, RB and MB are reactions from 
supports. This beam is designated as TEB1. SBD (Fig.3) is 
chosen as TEB2.  

Quasi work W12 is given by: 
2

12 2
2 2

21 2 1

[ {3 / 2

( )(3 / 4 2 )}
( ) ( )] / 6   and

( )
B

W P M L L

L L L
M L L EIL

W P v

ζ

ζ ζ ζ
ζ ζ ζ

ζ

= < − >

− − + −
− − +

=    

(36) 

Using W21 = W12, v1 (ξ) comes out to be equal to: 
2

1
2 2

( ) [ {3 / 2

( )(3 / 4 2 )}
( ) ( )] / 6B

v M L L

L L L
M L L EIL

ζ ζ

ζ ζ ζ
ζ ζ ζ

= < − >

− − + −
− − +

      (37) 

Using boundary condition that slope at ζ = L is zero, y ields 
value of MB as M/8. With this value of MB the equation for 
the deflection becomes: 

2
1

2 2

( ) [24 / 2

8( )(3 / 4 2 )
( ) ( )] / 48

v M L L

L L L
L L EIL

ζ ζ

ζ ζ ζ
ζ ζ ζ

= < − >

− − + −
− − +

      (38) 

This on simplification y ields: 
3 2

1( ) [9 / 3 24 / 2 ] / 48v M L L L EIζ ζ ζ ζ= − + < − > (39) 
Replacing ζ by x and substituting 2L for L y ields the same 

equation as given in[18] 
Illustration – 5:Slope of Determinate Beam 
Problem given in illustration - 3 is here taken up again for 

obtaining the equation of the slope of the neutral axis. TEB2 
is chosen as SBS (Fig.4) with equation for deflection given 
by Eqn.(22). Quasi work, W12, is calculated as follows: 

12 1 1 2 2 1 1 2
0

1 2 2 1 2 2
2 2

2 1
3 2 3

1

12 2 1

{ } { (0)} { } { ( )}

{ } { (0)} { } { ( )}

[12 (2 3 6 ) /

(3 18 12 )] / 72   and
( )

L

A B

W M v w v x dx

R v R v L

M M L L L

w L L EI
W M v

ζ ζ

ζ ζ
ζ

′= + −

+ +

= + −

− − +
′=

∫

   (40) 

Using W21 = W12, expression for slope is given by: 
2 2

1 1
3 2 3

1

( ) [12 (2 3 6 ) /

(3 18 12 )] / 72

v M L L L

w L L EI

ζ ζ ζ

ζ ζ

′ = + −

− − +
    (41) 

If M1 is taken to be equal to w1L2/12, then the above 
equation reduces to: 

3 2 2 3
1 1( ) (12 21 6 ) / 72v w L L L EIζ ζ ζ ζ′ = − − + +   (42) 

As expected above equation is the derivative of Eqn.(35) 

 
Figure 7.  Indeterminate Beam: TEB1 

5. Conclusions 
1). PQW can be applied to a set of any two axial bars.  
2). PQW is applicable to a pair of rods/ shafts so long as 

these have same rad ius of cross section. 
3). Axial, torsion and beam standard elements are defined. 

With the help of the equation of deformed/ deflected elastic 
line of these predefined standard elements and PQW  solution 
for deflect ion of other problems of the same class is obtained 
with ease. 

4). Obtain ing deflect ion/deformat ions at a point or 
equation of deflected/deformed elastic line of given 
problems using PQW is further simplified if the given 
problem and its corresponding standard element are chosen 
to be topologically equivalent. This is due to: 
ⅰ) The knowledge of internal force (/torque /bending 

moment) is not required. 
ⅱ) For distributed loads one definite integral is to be 

evaluated whose integrant is the product of two a priory 
known expressions (viz. distributed load of the given 
problem and the equation of deflected elastic line of its 
standard element).  
ⅲ) For point loads it is simpler and easier as even the 

integration is not required. For this kind o f loading,sum of 
multip licat ions of known loads of the given problem with 
known deflections/ deformat ions at the corresponding points 
in the chosen topologically similar system is all that is 
required. 

5). As solutions of standard elements (for deflection/ 
deformation of its elastic line) are used to solve any other 
problem of the same class with different  loads and different 
constraints, it is possible to develop an interactive graphic 
general purpose computer package for this purpose. 

6). The concepts of virtual force and complementary 
energy do not exist in PQW as both the systems are real. 
Hence, no additional effort is needed for learn ing. 

7). PQW  is used for solving indeterminate problems with 
the help of the solution of their determinate topologically 
similar system. 
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