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Abstract  Derivative theorems of Principle of Quasi Work, a powerful pseudo energy principle, are derived. These 
theorems, viz. Applied Load Theorem, Deflection Theorem and Unit Load Theorem are applicable to a pair of topologically 
similar structural systems. One more theorem referred to as Relative Deflection Theorem along with its two corollaries are 
also derived from this principle for facilitating truss analysis. Using these theorems, a new methodology for calculating nodal 
deflections of a truss from its internal member forces and vice versa is presented in this paper. This methodology is amazingly 
simple, easy, and fast. These theorems form the basis of present methodology. Thirteen nodal deflections of a four bay truss 
included in this paper were calculated by hand in less than fifteen minutes. 
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1. Introduction 
All the presently available structural analysis procedures 

e.g. finite element methods ([1 - 4]) variational principles ([5, 
6]) and energy methods([7, 8]), are meant for a single 
structure and do not provide any connection between two 
structural systems.The Principle of Quasi Work (PQW) 
derived by [6] establishes a connection between Topologi-
cally Similar Systems (TSS) in the realm of structural me-
chanics. PQW thus fills the existing void in the domain of 
structural mechanics. Theorems based on PQWwhich are 
useful for discrete structural modelshave been derived by [9, 
10].PQW was used advantageously by [9] and [11] for ob-
taining redundant reactions of beams. PQW has wide ap-
plicability as all the existing energy principles are derived as 
special cases of PQW by restricting TSS to Topologically 
Identical Systems (TIS), i.e. when two systems are identical 
with each other in every respect. 

In this paper, four theorems and two corollaries are de-
rived from PQW. Applied Load Theorem, Deflection 
Theorem and Unit Load Theorem are applicable to any two 
topologically similar structural systems. Applied Load 
Theorem is useful for obtaining loads acting on any given 
system by making use of the corresponding known deflec-
tions in its TSS. Similarly, Deflection Theorem and Unit 
Load Theorem are aptfor calculating deflections of a given 
structural system by using the known solution of its TSS. A 
given system can be determinate or indeterminate whereas 
its TSS is invariably determinate as its solution is used to 
solve the given problem. TSS of a given system canalso be  
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indeterminate as long as its solution is known. For a class of 
problem (e.g. beams,plates and shells) one TSS whose solu-
tion is known is sufficient to solve other problems in that 
class with much easecompared to solving it by classical 
methods. 

The last derived theorem, Relative Displacement Theorem 
(RDT), and its corollaries considerably simplify the calcu-
lation of nodal deflections from internal member forces of 
determinate or indeterminate trusses. Internal member forces 
can also be calculated form nodal deflections by RTD in a 
simplified way. Some illustrations are also included. In the 
following section a brief introduction to PQW is given. 

2. Principleof Quasi Work 
The Principle of quasi work was first derived by [6] and 

subsequently stated by [7] and [8]. According to this princi-
ple quasi work (Wmn) done by a self equilibrating system of 
external forces, {P}m, of a structural system (say ‘m’) while 
undergoing the corresponding compatible displacements, 
{d}n, of the other topologically similar system (say ‘n’) is 
equal to the quasi strain energy(Umn) due to internal forces, 
{F}m, of the former system m while going through corre-
sponding deformations, {δ}n, of the latter system n. In 
mathematical terms this can be stated as: 

{ } { } { } { }T T
m n m nP d F δ=             (1) 

OR        mn mnW U=            (2) 
Where, 
Umn = Quasi strain energy= { } { }T

m nF δ ;  
Wmn =  Quasi work= { } { }T

m nP d ; 
{F}m = Internal member forces of the truss represented by 

TSSm; 
{P}m=  External nodal loads on the truss represented by 

TSSm; 
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{d}n =  Displacement in TSSn corresponding to{P}m; 
{δ}n =  Deformation of the member in TSSn corre-

sponding to {F}m in TSSm; 
{*}T = Transpose of {*}; 
m, n = Subscripts representing different TSS. (m, n = 1, 

2….,  m ≠ n). 
This principle establishes a link between two systems (m 

and n) which should satisfy the following three conditions: 
1. Thesystems should be topologically similar. TSS, as 

explained by [9], have the same number nodes and similar 
nodal interconnectivity. It is self evident when discrete 
structural models or even trusses or frames are involved, as 
in these cases nodes are well defined and hence the nodal 
interconnectivity is also obvious. In other cases of contin-
uum structural elements it is not as obvious. All continuum 
structural elements can be considered as having infinite 
nodes (atoms or molecules) with well defined interconnec-
tivity (forces between these). With this extension of defini-
tion of TSS, PQW can be applied to continuum elements like 
axial bars, torsion rods, beams, plates and other elements as 
well as to full fledged structures. Interestingly, what con-
nects two nodes does not matter. In other words constitutive 
relations and material properties of the elements connecting 
different nodes have no place in the concept of TSS. 

Detailed illustrations of TSS for discrete structural models, 
trusses and beams are given in [8 - 10]. 

2. Displacements and deformations of a TSS should be 
compatible within the system. 

3. External forces acting on a TSS should be self equili-
brating. Hence, all the reactions originating from the con-
straints form part of the external loads. 

While applying this principle, attention has to be paid to 
the word ‘corresponding’ in the statement of PQW. For 
example take two axial bars (truss members) ‘AB’ and ‘CD’ 
of lengths ‘L1’ and ‘L2’. As both the axial bars have infinite 
nodes, in these two axial bars end ‘A’ corresponds to end ‘C’ 
and end ‘B’ to end ‘D’. In such cases, one has to resort to 
mapping in the two domains. For example, a point  0.64L1 
from end ‘A’ in axial bar ‘AB’ will have its corresponding 
point at 0.64L2 from end ‘C’ in axial bar ‘CD’. 

3.Derivative Theorems of PQW 
From PQW, theorems which are useful for calculating 

loads and deflections in topologically similar structural sys-
tems are derived hereunder. In PQW, the problem at hand 
represents one of the systems and its topologically similar 
system is exclusively the choice of the analyst. In these 
theorems, loads include moments and deflections include 
rotations; i.e., the terms ‘loads’ and ‘deflections’ are used in 
a generalized sense. 

3.1. Load Theorem for Topologically Similar Structures 

This theorem relates two TSS and can be used to find the 
load acting at a point in a system with the help of deflection 
at its corresponding point in another TSS. 

STATEMENT: “In a pair of Topologically Similar Sys-
tems (m and n); gradient of Quasi Strain Energy / Quasi 
Work with respect to deflection at any  point in one of the 
systems (say n) is equal to load acting at the corresponding 
point in the other system (m)and is in the direction of the 
displacement.” 

In mathematical form, this is stated as: 

1, 2, ....,mn mn
jm

jn jn

U W
P j N

d d
∂ ∂

= = =
∂ ∂

   (3) 

PROOF:  From the definition of PQW we have: 
{ } { }T

mn mn m nU W P d= =            (4) 
The gradient of Umn (Eqn.4) with respect to displacement 

djn yields Eqn.(3). 

3.2. Deflection Theorem for Topologically Similar 
Structures 

This theorem relates two TSS and is used to determine 
deflection at any desired point in one system with the help of 
load acting at the corresponding point in second system.  

STATEMENT:“In a pair of Topologically similar sys-
tems ( m and n); gradient of Quasi Strain Energy / Quasi 
Work with respect to a  point load acting in one of the sys-
tems (say m)  is equal to the deflection in the direction of the 
point load at the corresponding point in the other system 
(n).” 

1, 2,....,mn mn
jn

jm jm

U W
d j N

P P
∂ ∂

= = =
∂ ∂

   (5) 

PROOF: The gradient of Umn (Eqn.4) with respect to 
force Pjm yields Eqn. (5). 

Eqns. (3 and 5) have forms similar to the familiar Cas-
tigliano’s theorems except that these govern a pair of two 
topologically similar systems and the concept of compli-
mentary energy does not exist in PQW. It shall be realized 
that when the pair of systems are restricted to be TIS (i.e., 
these are clones of each other), these equations produce the 
same results as those due to Castigliano’s theorems; thereby, 
establishing the fact that the present theorems are more 
general forms of the statement of these classical theorems. 

When in any two TSS structural stiffness (e.g., AE/ GJ/ EI) 
is the samethen these systems are designated by Topologi-
cally Equivalent Systems, (TES), and for these systems, 
Eqn.(5) becomes: 

1, ...,mn mn nm nm
jn

jm jm jm jm

W U U W
d j N

P P P P
∂ ∂ ∂ ∂

= = = = =
∂ ∂ ∂ ∂

 (6) 

3.3. Unit Load Theorem for TSS 

Unit load theorem is used to obtain deflections in one 
system by applying a unit load in the other TSS. 

STATEMENT: “In a pair of Topologically similar sys-
tems (m and n); Quasi Strain Energy / Quasi Work with 
respect to a unit load in one of the systems (say m)  is equal 
to the deflection in the direction of the unit load at the cor-
responding point in the other system (n).” 

In mathematical form, it is stated as: 
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mn mn jnU W d= =             (7) 

Where,  and mn mnU W  are Umn and Wmn for a unit load 
applied in TSSm. 

PROOF: If in TSSm only one load acts at the location ‘j’ 
and if this load is equal to unity then { }T

mP  = Pjm (= 1). In 
such a case, PQW takes the following form 

{ } { }T
mn mn m n jm jn jnU W P d P d d= = = =    (8) 

This completes the proof. For TES, Eqn.(7) takes the 
form 

mn mn nm nm jnW U U W d= = = =         (9) 

4. Relative Deflection Theorem for 
Trusses 

A theorem for calculating relative deflection of two nodes 
with respect to each other connected by a truss member is 
stated and proved. This theorem significantly simplifies the 
calculations needed for obtaining nodal deflections and 
member forces of any determinate or indeterminate truss.  

STATEMENT: “In a given truss the relative displacement 
‘di/j’ of any two nodes ‘i’ and ‘j’ is equal to the deformation 
‘δk’  of the truss member ‘k’ connecting these two nodes and 
is along the axis of the truss member.” 

In mathematical form it can be written as: 
di/j = di – dj = δk (= Fk Lk / AkEk)      (10) 

PROOF: Take a truss having ‘N’ nodes with ‘M’ axial 
members. For any given self equilibrating loading, let Fn be 
the internal force in these truss members. This given truss is 
denoted by TST1. A topologically similar truss, TST2, is 
derived from the given truss by assigning zero stiffness to all 
truss members except one member ‘k’ which    connects 
nodes ‘i’ and ‘j’. Let this member carry a self equilibrating 
tensile load ‘P2’. Load acting at node ‘i’ will be taken as 
positive and hence load at node ‘j’ will be negative. The 
force {Fk}2 in this member is equal to P2. 

Quasi work  W21 = {P2}2 {di}1 - {P2}2 {dj}1 
= {P2}2 ({di}1 - {dj}1)         (11) 

Quasi strain energy U12 = {P2}2{δk}1     (12) 
PQW (W21 = U21) yields Eqn.(10) after dropping curly 

brackets along with suffix ‘1’. 

4.1. Corollary - 1: 

“The relative displacement of the last node with respect to 
the first node in collinearly connected ‘n’ truss members in 
series is equal to the sum of the individual deformation of 
these ‘n’ truss members and is along their axes.”  

In mathematical form it can be stated as: 

( 1)/1 ( 1) 1
1 1

n n
j j

n n j
j jj j

F L
d d d

A E
δ+ +

= =
= − = =∑ ∑   (13) 

PROOF:  Relative displacement between nodes of dif-
ferent elements is given by: 

d(n+1)/n = dn+1 – dn = δn = FnLn /An En    (14) 

dn/(n-1) = dn – dn-1 = δn-1= Fn-1Ln-1/An-1En-1     (15) 

d3/2 = d3 – d2 = δ2 = F2L2/A2E2       (16) 

d2/1 = d2 – d1 = δ1 = F1L1/A1E1       (17) 

As these are connected in series with their axes collinear, 
the sum of all these equation yields Eqn.(13).  

4.2. Corollary - 2: 

“In collinearly connected ‘n’ truss members of a truss 
whose first and last nodes are constrained, the deformation 
(and thus internal force) of at least one truss member is 
opposite in nature to the deformation of other ‘n-1’ mem-
bers.” 

PROOF: From corollary - 1, displacement of the last 
node with respect to the first node is zero as both these nodes 
are constrained. Hence, 

( 1)/1 ( 1) 1
1 1

0
n n

j j
n n j

j jj j

F L
d d d

A E
δ+ +

= =
= − = = =∑ ∑   (18) 

The last two sums in Eqn.(18) can not be zero unless at 
least one member deformation in the first sum and at least 
one member force in the second sum is of opposite sign. 

Relative displacement theorem and its corollaries simplify 
the procedure for calculating nodal deflections and member 
forces in any given truss. To illustrate the use of the given 
theorem and its corollary three illustrations shown in Figs. 
1-3 follow. 

5. Nodal Deflections of Trusses 
In this section, three examples are chosen to illustrate the 

procedure of obtaining nodal deflections of trusses. These 
illustrations are depicted in Fig.1 to Fig.3. Fig.1 shows a 
three bay truss with one internal and one external indeter-
minacy. Fig.2 depicts a four bay truss with two degree in-
ternal indeterminacy and one-degree of external indetermi-
nacy. Fig.3 shows a two storey truss with two-degree internal 
indeterminacy. In what follows, nodal deflections (u and v) 
of the given truss (TSS1) are represented by dropping suffix 
‘1’. 

Fig. 1: Three bay truss 
Fig.1a depicts a three bay truss A1 B1...F1 having one in-

ternal and one external degree of indeterminacy is solved for 
nodal deflections. Young’s modulus of elasticity,‘E’, for all 
members is 205 kN/mm2.  This given truss isdesignated by 
TST1. Member forces are obtained by any convenient con-
ventional method after which nodal deflections are obtained 
by using RDT and its corollaries in the following manner. 
Let 

u* = Horizontal deflection of truss joint ‘*’ (* represents: 
A, B, C, .....). 

v*= Vertical deflection of truss joint ‘*’ (* represents: A, B, 
C, .....). 

From the given support conditions ua = va = vc = vd = 0. 
Now utilizing RTD and its corollaries, horizontal deflection 
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of nodes ‘B1’, ‘C1’, ‘D1’ and vertical deflection of node ‘F1’ 
are calculated as follows: 

ub – ua = δab = 0.2179 mm (from Table1, Column 6) which 
yields ub  =  0.2179 mm. Similarly, uc = δab + δbc = 0.3912 
mm, ud = uc + δcd = 0.4757mm and vf = δcf = -0.2335 mm.  

In order to calculate other nodal deflections (i.e.,vb, ue, ve, 
and uf) by utilizing RDT, vertical deflection of node ‘E’ or 
‘B’and horizontal deflection of node ‘E’ or ‘F’ should be 
known. Here let us choose to calculate deflections (u, v) of 
node ‘E’ by using deflection theorem for which TST2 has to 
be defined. 

Fig.1b shows TST2which is derived from the given truss 
by assigning zero stiffness (AE = 0) to all truss members 
connected to nodes D1 and F1. Thus TST2 is a determinate 
truss A2B2C2E2 having only five members. Loads on TST2 
are applied at those nodes whose deflection is to be calcu-
lated. Hence, at node ‘E2’ a horizontal load P1kN and aver-
tical load P2kN are applied as the deflection in these direction 
is to be calculated. Internal forces in truss members of TST2 
are given in column 7 of Table 1. Column 8 of the table gives 
contribution of truss members to U21 and the sum of this 
column given in the last row is equal to U21. By using the 
deflection theorem the deflections of node ‘E1’ are ue = ∂ 
U21/ ∂ P1 = 0.3349 mm and ve = ∂ U21/ ∂ P2 = - 0.2474 mm.  

Other two nodal deflections (vb and uf) are once again 
obtained by relative deflection theorem. ve - vb = δeb = - 
0.0661 which yields vb = - 0.1813 mm. Similarly, uf = 0.4252 
mm. All these nodal deflections (in mm) are summarized 
below: 

ua = 0, va = 0;  ub = 0.218, vb = - 0.181; uc = 0.391, vc = 
0;ud =0.476, vd = 0; ue = 0.335, ve = - 0.247 and uf = 0.425, vf 
= -0.234. These values are the same as obtained by conven-
tional methods.  

 
Figure 1.  Three bay Truss 

Thus, once member forces of a truss are known, the pre-
sent method makes it possible to calculate all the nodal de-
flections easily and quickly without any need of a computer. 
In fact, all the above nodal deflections were obtained in 
about ten minutes by hand calculation with the help of 
abusiness pocket calculator.  

Table 1.  Calculations for theThree Bay Truss Shown in Fig.1a 

Given Truss (Fig. 1a)::  TST1 Chosen Truss : (Fig.1b) :: TST2 

MEMBER Aj  
cm2 

Lj 
cm 

Internal Force 
{Fj}1:: kN 

Deformation 
{δj}1={FjLj/ AjE}1 

Internal Force: 
{Fj}2kN 

Individual contribution to U21 ::  
αj = {δj}1 {Fj}2 No.‘j’ Nodes 

1 AnBn 20 180 49.6299 0.2179 0.5 P1- 0.375 P2 0.1089P1 - 0.0817P2 

2 BnCn 20 180 39.4628 0.1733 0.5 P1 - 0.375 P2 0.0866P1 - 0.0650 P2 

6 CnDn 20 180 19.2598 0.0845 0 0 

3 En Fn 20 180 20.5731 0.0903 0 0 

4 BnEn 24 240 -13.5561 -0.0661 0 0 

5 CnFn 24 240 -47.8764 -0.2335 0 0 

7 An En 30 300 61.6855 0.0030 5P1/6 + 0.625 P2 0.0025 P1 + 0.0019 P2 

8 BnFn 30 300 19.9451 0.0827 0 0 

9 DnFn 30 300 -32.0996 -0.1566 0 0 

10 CnEn 30 300 -33.6717 -0.1643 -5P1/6+0.625P2 0.1369P1 - 0.1026 P2 

U21 = SUM of αj  (for j = 1...10)  = 0.3349P1- 0 .2474P2 
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Fig2: Four bay truss  

 
Figure 2.  Four Bay Truss 

Fig.2a depicts a four bay truss ‘A1B1...H1’ with two- de-
gree internal and one- degree external indeterminacyis taken 
for illustrating the use of PQW and relative deflection theo-

rem. E for all members is E = 205kN/mm2.From the given 
support conditions ua = va = vd = ve = 0. Horizontal deflection 
of nodes ‘B1’, ‘C1’, ‘D1’, ‘E1’ and vertical deflection of node 
‘H1’ are obtained as follows.From relative deflection theo-
rem, ub – ua = δab = 0.2344 (column 6 of Table 2) which 
yields ub = 0.2344 mm. Utilizing corollary of relative de-
flection theorem, uc – ua = δab + δbc = 0.4193 mm, which 
gives uc = 0.4193 mm. Similarly, ud = 0.5046 mm, ue = 
0.4859 mm and vh = -0.1388 mm. For calculating other de-
flections in the above manner, horizontal deflection of any-
one among ‘F1’,‘G1’ and ‘H1’ nodes and vertical deflectionof 
one among ‘B1’,‘C1’,‘F1’, and ‘G1’ must be known. Let us 
choose to calculate uh and vc. These will be obtained by using 
PQW for which TST2 along with loading and supports are 
chosen as shown in Fig. 2. 

All members connected to nodes A2, B2 and G2 are as-
signed zero stiffness and the roller support at E1 in TST1 is 
replaced by a pinned support. Internal member forces in 
TST2 are given in column7 of Table 2. Last column ofTable2 
gives contribution of truss members to U21 and the sum of 
this column (in the last row) gives U21. 

By using deflection theorem vc = ∂ U21/ ∂ P2 = - 0.6038 
mm. Node ‘E’ has a horizontal reaction equal to –P1, hence∂ 
U21/ ∂ P1 = uh - ue = -0.1917 mm which yields uh = 0.2942 
mm. Now relative displacement theorem yields ug = 0.2493, 
uf = 0.3579 mm and vg = -0.5494 mm. 

Table 2.  Nodal Deflection Calculations for the Four Bay Truss Shown in Fig.2a 

Given Truss (Fig. 2a)::  TST1 Chosen Truss :: (Fig.2b) :: TST2 

MEMBER Aj 
cm2 

Lj 
cm 

Internal Force {Fj}1: 
kN 

Deformation 
{δj}1 = {FjLj / AjE}1 

Internal Force: 
{Fj}2kN 

Individual contribution to 
U21 ::  αj = {δj}1 {Fj}2 No.‘j’ Nodes 

1 AnBn 50 100 240.2813 0.2344 0 0 

2 BnCn 50 100 199.5042 0.1849 0 0 

3 CnDn 50 100 87.4107 0.0853 P2 0.0853 P2 

4 Dn En 50 100 -19.158 -0.0189 P2 -0.0187 P2 

5 FnGn 50 100 -111.3385 -0.1086 0 0 

6 GnHn 50 100 46.0073 0.0449 0 0 

7 BnFn 50 100 69.2229 0.0675 0 0 

8 CnGn 50 100 55.7916 0.0544 0 0 

9 DnHn 50 100 -142.3093 -0.1388 P1+ 2 P2 -0.1388P1 - 0.2777 P2 

10 AnFn 50 141.42 -127.6762 -0.1762 0 0 

11 En  Hn 50 141.42 27.0934 0.0374 -1.4142 ( P1+P2) - 0.0529P1 - 0.0529P2 

12 BnGn 50 141.42 71.8097 0.0991 0 0 

13 DnGn 50 141.42 -150.7109 -0.2079 0 0 

14 CnFn 50 141.42 -29.7802 -0.0411 0 0 

15 CnHn 50 141.42 174.1621 0.2403 -1.4142 P2 -0.3398P1 

U21 = SUM of αj  (for j = 1...10)  = - 0.1917P1-  0.6038P2 
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The last two unknown deflections, vf and vb, are calculated 
either using PQW (for which another TSS which includes 
node ‘F’ or ‘B’ is to be chosen) or by observing that ufandthe 
displacement of node ‘F’ along AF (δaf) are already known. 
From these data one can obtain vf as follows. Let u1f and v1f 
be the displacements of node ‘F’ along and perpendicularto 
the axis of member ‘AF’.In that case, uf = u1f  Cos 450 - v1f  
Sin 450  and  vf = u1f  Sin 450 + v1f  Cos 450. These two 
equations with u1f = δaf=-0.1762 and uf = 0.3579yield vf = 
-0.6071 mm and v1f = -0.6823.Again, using the relative dis-
placement theorem, vf – vb = δbf which gives vb = -0.6746 
mm. All these nodal deflections (in mm) are summarized 
below: 

ua = 0, va = 0; ub = 0.234, vb = -0.675; uc = 0.419, vc = - 
0.604; ud = 0.505, vd = 0;  ue = 0.486, ve = 0; uf = 0.358, vf = 
-0.607; ug = 0.249, vg = -0.549 and uh = 0.294, vh = -0.139. 
These values are the same as obtained by conventional 
methods. 

Fig.3: Two storey truss 
In this illustration, Fig. 3a, a two storey truss ‘A1B1...F1’ 

having two degree internal indeterminacy is solved for nodal 
deflections. It is pinned at joint ‘A1’ and has a roller support 
at joint ‘B1’. 

 
Figure 3.  Two Storey Truss 

Table 3.  Nodal Deflection Calculations for theTwo Storey Truss Shown in Fig.3a 

Given Truss (Fig. 3a)::  TST1 Chosen Truss :: (Fig.3b) :: TST2 

MEMBER Aj 
cm2 

Lj 
cm 

Internal Force 
{Fj}1::kN 

Deformation 
{δj}1 = {FjLj / AjE}1 

Internal Force: 
{Fj}2kN 

Individual contribution to U21 : 
αj = {δj}1 {Fj}2 No.‘j’ Nodes 

1 AnBn 10 180 41.686 0.3752 0 0 
2 CnDn 10 180 11.877 0.107 - P2 -0.10689 P2 
6 En Fn 10 180 6.1911 0.0557 0 0 
3 An Cn 20 240 27.582 0.1655 1.3333 P1 0.22066P1 
4 CnEn 20 240 -19.745 -0.1185 1.3333 P1 -0.158P1 
5 BnDn 20 240 -128.42 -0.7705 -2.667 P1 -1.333 P2 2.05472P1+1.02736P2 
7 DnFn 20 240 -63.745 -0.3825 0 0 
8 AnDn 30 300 30.523 0.1526 1.667P1 + 1.667P2 0.25436P1+0.254358P2 
9 DnEn 30 300 -50.318 -0.2516 -1.667 P1 0.41932P1 

10 BnCn 30 300 -69.477 -0.3474 0 0 
11 CnFn 30 300 -10.319 -0.0516 0 0 

U21 = SUM of αj  (for j = 1...10)  =  2.79109P1 + 1.174825P2 

Table4.  Member Force calculations for truss shown in Fig.3a 

Deflection of the Nodes of the given Truss 
Nodes A1 B1 C1 D1 E1  F1 

Hor. Def. ui 0.0 0.37517 1.1748 1.2817 2.7911 2.8468 
Vert. Def. vi 0.0 0.0 0.16549 -0.77052 0.04702 -1.1530 

Member Data and Internal Force Calculations for Truss Members 

No. 'j' Nodes Length (Lj)   
mm 

Area (Aj)  
mm2 

Deformation Fj =  A E δj / L(kN) 
By Deflection Theorem δj (mm) 

1 A1 B1 1800 1000 ub - ua 0.3752 41.686 
2 C1 D1 1800 1000 ud - uc 0.1067 11.877 
3 E1 F1 1800 1000 uf - ue 0.0557 6.1911 
4 A1 C1 2400 2000 vc - va 0.1655 27.582 
5 C1 E1 2400 2000 ve - vc -0.1185 -19.745 
6 B1 D1 2400 2000 vd - vb -0.7705 -128.42 
7 D1 F1 2400 2000 vf- vd -0.3825 -63.745 
8 A1 D1 3000 3000 3/5 ud + 4/5 vd 0.1526 30.523 
9 D1 E1 3000 3000 (-3(ue - ud) + 4*(ve -vd) ) / 5 -0.2516 -50.318 

10 B1 C1 3000 3000 (-3(uc- ub) + 4*(vc - vb) ) / 5 -0.3474 -69.477 
11 C1 F1 3000 3000 ( 3(uf - uc) + 4*(vf - vc) ) / 5 -0.0516 -10.319 
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E for all members is E = 200kN/mm2. From support con-
ditions ua = va = vb = 0. By using relative displacement 
theorem and its corollary we have: 

vc = δac =0.165492 mm; ve = δac + δce = 0.047022 mm; vd = 
δbd = -0.77052 mm; vf = vd + δdf = -1.15299 mm and ub = 
0.375174 mm. 

In order to calculate horizontal deflection of nodes ‘C1’, 
‘D1’, ‘E1’ and ‘F1’ by using relative displacement theorem, 
we need to know the horizontal displacements of one node 
each from the pair ‘C’, ‘D’ and ‘E’, ‘F’. Let us chose to 
calculate the deflection of nodes ‘C’ and ‘E’. This can be 
easily calculated by resorting to PQW for which TST2 is to 
be chosen which should include the nodes ‘C’ and ‘E’ and is 
a stable truss under the chosen loading conditions. Fig. 3b 
showsone such TST2. 

Loads ‘P1’ and ‘P2’ are applied at the nodes and in the 
direction in which the deflection is to be calculated. Member 
forces in TST2 are given in column 7 of Table 3. In column 8 
are tabulated the contribution from individual members to 
U21 in terms of P1 and P2. The last row gives the value of U21, 
which is the sum of all these individual contributions. The 
partial derivative of U21 with respect to P1 and P2 yields the 
values of ue = 2.79109 mm and uc = 1.174825 mm, respec-
tively. Now by using RDT one can easily calculate ud = 
1.281718 mm and uf = 2.8468099 mm. Deflection of dif-
ferent nodes in mm is summarized in second and third row of 
Table 4 and these values are same as obtained by conven-
tional methods. 

Thus one can observe that obtaining displacement of joints 
once the member forces are known is very easy compared to 
any conventional method. 

6. Member Forces of Trusses 
In this section member forces will be calculated from the 

given nodal deflections. The procedure adopted is simple 
and fast. All the calculations can easily be carried out  using 
a pocket calculator. All this is possible because of the rela-
tive deflection theorem. 

For illustrating the procedure the example in Fig.3 is again 
used. Here, starting point is the nodal displacements given in 
2nd and 3rd row of Table 4. From these deflections internal 
forces in the members are calculated. In column 5 of Table 4 
are given relations for member deformations got from RTD 
and column 6 gives their numerical values. In the last column 
member forces are tabulated, which are the same as given in 
Table 3 column 5. 

7. Conclusions  
1. PQW is successfully applied to a set of any two axial 

bars (Truss members). 
2. Three theorems are derived from PQW. Deflection 

theorem and unit load theorem are useful for obtaining de-

flection in topologically similar structures. Their use has 
been illustrated for trusses. 

3. Relative deflection theorem and its corollaries are de-
rived from PQW for obtaining nodal deflections of trusses. 
These theorems greatly simplify the procedure for obtaining 
nodal deflection from given member forces. 

4. In case of trusses, topologically similar trusses for a 
given problem can be chosen in such a way so as to minimise 
effort needed to solve the given problem. The chosen truss is 
derived from the given truss by assigned zero stiffness (AE) 
to some of the truss members in such a way so that the de-
rived truss is determinate and remains stable under the cho-
sen loading. 

5. The concepts of virtual force and complementary en-
ergy do not exist in PQW as both the systems are real. Hence, 
no additional effort is needed for learning this method. 
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