
Advances in Computing 2012, 2(2): 9-15
DOI: 10.5923/j.ac.20120202.02

Microarchitecture Analysis of Profile 1 eSTREAM
Ciphers on Intel Core2 Duo

Naiyi Hu, Christopher J. Martinez*

Department of Electrical and Computer Engineering,University of New Haven

Abstract The workloads in a modern CPU are becoming more diversified but a common aspect is beginning to form
around the need for cryptographic algorithms.There are a number of different cryptographic algorithms for hashing, block
ciphers and stream ciphers.Block ciphers have recently been linked to the DES and AES standards and are the most widely
used algorithms.Stream ciphers have not been dominated by a single standard.The EU ECRYPT network has developed a set
of stream cipher as part of their eSTREAM portfolio. This paper examines the eSTREAM portfolio and analysis the mi-
croarchitecture performance on the Intel Core2 Duo.Using hardware performance counters analysis is done in the areas of
CPI, cache, branch prediction, and instruction-level parallelism (ILP).Our results show that the Salsa20 algorithm has the best
CPI, sosemanuk is able to achieve more ILP, and branch prediction is highly accurate for HC-120, Rabbit and Salsa20. The
results show the correlation between CPI with L1 cache, L2 cache, branch prediction, and ILP.

Keywords Performance Evaluation, Hardware Counters, Workload Characterization, eSTREAM

1. Introduction
Cryptography encryption algorithms can be divided into

block ciphers and stream ciphers.The block ciphers have
always been more mature in cryptanalysis and develop-
ment.One of the main driving forces into the development of
block ciphers have been competitions to form standards.The
most popular competition was done by the NIST to create the
advanced encryption standard (AES)[1].The success of AES
encouraged the EU ECRYPT network to create a competi-
tion for streaming ciphers entitled eSTREAM[2,3].The
program began in November 2004 and ended in April
2008.The finalist of the eSTREAM was divided into two
categories Profile 1 for software applications and Profile 2
for hardware applications[2, 3].

The eSTREAM project did not select only one finalist to
be the best cipher algorithm but presented four software
focus algorithms that meet the high requirements for
crypto-integrity and high speed processing. The performance
benchmark was that the eSTREAM algorithms have per-
formance that significantly outruns the AES in a stream
cipher mode. Each eSTREAM cipher is aimed to have high
encryption stream that can encrypt large amounts of data
with only a single initialization. Since 2008 the cipher algo-
rithms have not undergone any additional research on the
software performance of the eSTREAM finalist.All the

* Corresponding author:
cmartinez@newhaven.edu (Christopher J. Martinez)
Published online at http://journal.sapub.org/ac
Copyright © 2012 Scientific & Academic Publishing. All Rights Reserved

algorithms did have performance studies done during the
competition period. All the candidates were tested on a
Pentium 4 computer or older CPU generation. CPU mi-
croarchitecture has rapidly developed since the Pentium 4
and have seen a number of new generations of CPUs.

B. Bernstein[4] presented a paper that asked the question
which eSTREAM cipher provides the best software
speed.The paper explored the processing speed of the algo-
rithms on a wide set of CPUs. The paper used Intel Core2,
IBM Cell, Athlon 64 X2, Pentium M, Pentium 4, PowerPC
G5, PowerPC G4 and UltraSPARC III.[4] only gives per-
formance in terms of cycle counts per encrypted byte. The
results show which algorithm is the fastest but does not give
any insight into why one CPU performs better than other
CPUs. The purpose of this project is to explore the mi-
croarchitecture utilization on a modern CPU.Using the
Core2 Duo, we are able to give all the details on how each
component of the CPU (branch predictor, cache, etc) is used
in the operation of the cipher.

This paper presents a detailed performance analysis ofthe
four stream ciphers from the eSTREAM PortfolioProfile 1.
The test was conductedon aIntel Core2 Duo CPU computer.
By analyzing the raw performance data, which were col-
lected with theIntel VTune Amplifier XE 2011, important
information on cache, branch prediction and exploited in-
struction-level parallelism (ILP)were obtained.The informa-
tion presented in this paper can be used to optimize software
stream ciphers implementation and to give guidance to re-
searchers working on future stream ciphers to know how to
best use the features found in the Intel CPU.Similar studies
have done on other cryptography algorithms that examined

10 Naiyi Hu et al.: Microarchitecture Analysis of Profile 1 eSTREAM Ciphers on Intel Core2 Duo

the hardware counters on AES, DES, Blowfish, etc.
in[12-15]. The work on eSTREAM is important since the
other papers have not investigated streaming algorithms.

The rest of the paper is organized as follows. In section 2,
we give a brief explanationon the background of each cipher.
Theconfiguration of the testing environment isdescribed in
section 3. Section 4 analyzes the data collected from all
workloads. And section 5 gives the conclusion.

2. Background on eSTREAM Cipher
The stream ciphers used in this paper were chosen from

the eSTREAMPortfolio Profile 1. They are HC-128, Rabbit,
Salsa20 and SOSEMANUK. All the four ciphers aresyn-
chronous stream ciphers, and each cipher is implemented
with two functions: an internal functionto generatethe key-
stream and an output function that encrypts the plaintext by
combining it with the keystream using exclusive-or opera-
tion (XOR), as shown in Fig. 1.The decryption for the four
ciphers is the same as encryption.

Figure 1. Stream cipher encryption (or decryption)

2.1. HC-128

HC-128 is a stream cipher designed for 128-bit security
that is a variant of HC-256, proposed by Hong-
junWu[5].HC-128 is considered the best algorithm that
meets the intended goals of the eSTREAMpro-
gram[2].HC-128 uses two S-boxesin its keystream genera-
tion algorithm. Each S-box has 512 32-bit elements andis
updated every 1024 steps. At each step, one element of the
S-boxes is updated and one 32-bit output is generated. Since
HC-128 is table-driven which leads to more time in order to
initialize the cipher.Fig. 2 shows an overview of HC-128.
S-box P is in use when i(mod 1024) is less than 512; S-box Q
is in use when i(mod 1024) is greater than 512.

Figure 2. HC-128 stream cipher

2.2.Rabbit

The stream cipher Rabbit was designed by Martin Boes-
gaard, MetteVesterager, Thomas Christensen and Erik
Zenner[6]. It uses a key of 128-bit length like HC-128.

Rabbit does not have an S-box. Instead, it has an internal
state that consists of eight 32-bit state variables, eight 32-bit
counters and one counter carry bit.The eight counters are
updated every time before iterating to the internal system,
defined as the diagram in Fig. 3.Cj,i denotes the counter
variable j at iteration i, and Coi denotes the carry bit. The aj
are eight constants.

Figure 3. The counter of the Rabbit stream cipher

The eight state variables are updated in the iteration by
eight couplednon-linear functions. All state variables only
depend on their corresponding counters and the previous
state variables, so they can be updated simultaneously.With
each iteration, Rabbit generates a block of keystream of
128-bit using the internal state variables. Fig. 4 shows an
overview of Rabbit.

Figure 4. Rabbit stream cipher

Figure 5. The LFSR of SOSEMANUK cipher

2.3. SOSEMANUK

The stream cipher SOSEMANUK was designed by C.
Berbain and et. al.[7].SOSEMANUK uses an LFSR of ten
32-bit elements and a finite state machine (FSM) to hold its
internal state.The design of the LFSR is influenced by the
stream cipher SNOW 2.0[8]. See Fig. 5 for the diagram of
theLFSR. For any time t ≥ 1, st to st+9 denotes the ten ele-
ments in the LFSR. At every step, a new value, denoted as
st+10, is computed with the following equation:

st+10 =st+9⊕ɑ-1st+3⊕ɑst

and the LFSR is shifted. The multiplication and division
operation in the LFSR corresponds to a shift operation fol-

Plaintext (or Ciphertext)

Keystream

Ciphertext (or Plaintext)

j = i mod 512

S-box P S-box Q
Feedback

Sj-3 mod 512

Sj-10 mod 512

Sj-511 mod 512

Sj

Sj

Output
Output

+

c0,ia0

Cin

c0,i+1

Cout
+

c1,ia1

Cin

c1,i+1

Cout
+

c7,ia7

Cin

c7,i+1

Cout
……

Coi+1

Coi

counters

state variables

carry Increment

update

Output
Output

st+9 st+5 st+3 st

ɑɑ-1

 Advances in Computing 2012, 2(2): 9-15 11

lowed by an XOR operation with a 32-bit mask.
The finite state machine consists of two 32-bit registers.

At each step, it takes three elements (st+1, st+8, st+9) from the
LFST to produce a 32-bit output, denoted as ft, and update
the two registers.For every four output values from the FSM,
denoted as ft, ft+1,ft+2 andft+3, an S-box application is applied
to produce a four 32-bit output, denoted as zt, zt+1,zt+2, zt+2.
The output transformationis derived from Serpent1[9].
SOSEMANUK generates a 128-bit block of keystream by
combining the output zt, zt+1,zt+2,zt+2 with the first four ele-
ments in the LFSR using XOR operation. Fig. 6 shows an
overview of the SOSEMANUK stream cipher.

Figure 6. SOSEMANUK stream cipher

2.4. Salsa20

Salsa20 was designed by Daniel J. Bernstein[c10]. The
core of Salsa20 cipher is a hash function. Unlike the three
ciphers introduced about above, Salsa20 does not use the
portion of the previous states to update its internal state.
Instead, a 64-bit counter is used to create sequential blocks of
keystream. Salsa20 takes a 128-bit (or 256-bit) secret key, a
64-bit nonce and the 64-bitcounter to generate a 64-byte
block of keystream at each step and increase the counter by 1
after that.Fig. 7 shows the overview of Salsa20. Because
each state does not depend on the previous ones, this greatly
increases the parallelism in Salsa20.Modern computer ar-
chitecture can exploit such parallelism to improve the per-
formance. In order to eliminate the correlation between the
output and the key, the hash function uses a lot of rotation
operations.

Figure 7. Salsa20 stream cipher

3.Testing Environment
The test is performed on anIntel Core2 Duo CPU com-

puter system. The detailed characteristics of the testing en-

vironment are described inTable 1. The Intel Core2 Duo is a
32-bit superscalar CPU that contains 2 logical CPU cores, an
L1 cache that is split for instructions and memory, and L2
cache.The CPU can handle instructions 5 wide for decoding,
4 wide for renaming, 5 wide for retiring, 6 instructions per
cycle, and 32 micro-ops scheduler[11].

Table 1. Testing platform configuration

Processor Intel Core2 Duo CPU E7500
Clock Fre-

quency 2.93GHz

Number of
cores 2

Instructions
sets

MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1,
EM64T, VT-x

L1 Data cache 2 x 32 KBytes, 8-way set associative,
64-byte line size

L1 Instruction
cache

2 x 32 KBytes, 8-way set associative,
64-byte line size

L2 cache 3072 KBytes, 12-way set associative,
64-byte line size

Memory Type DDR2
Memory Size 2048 MBytes
Memory Fre-

quency 399.0 MHz (2:3)

Operating
System

Microsoft Windows XP ProfessionalVer-
sion 2002SP3

The four stream ciphers were compiled withMicrosoft
C/C++ compiler version 15 using optimization level O2
(maximum speed).Each cipher took a 128-bit secret key and
was fed with a message of 600 Mbytes. The bench mark only
contained the encryption process of the ciphers. The key and
IV setup benchmark were not run.

Table 2. Testing platform configuration

Name of the Counter Definition

BR_INST_RETIRED.ANY Retired branch in-
structions.

BR_INST_RETIRED.MISPRED
Retired mispredicted
branch instructions

(precise event)

CPU_CLK_UNHALTED.CORE Core cycles when
core is not halted.

INST_RETIRED.ANY Instructions retired.

L1D_REPL Cache lines allocated
in the L1 data cache.

L1I_MISSES Instruction Fetch
Unit misses.

L2_LINES_IN.BOTH_CORES.ANY L2 cache misses.

RESOURCE_STALLS.BR_MISS_CLEAR
Cycles stalled due to

branch mispredic-
tion.

RS_UOPS_DISPATCHED
Micro-ops dis-

patched for execu-
tion.

UOPS_RETIRED.ANY Micro-ops retired.

UOPS_RETIRED.FUSED Fused micro-ops
retired.

We used IntelVTune Amplifier XE2011 to collect per-
formance data in the test.The VTuneAmplifier XE collects
performance data using event-driven sampling technique.It

st+9 st+8 st+5 st+3 st+1 st

ɑɑ-1

FSM

R1 S-boxR2 ft x 4 Output

key

nonce

counter

Increment

Hash
Output

12 Naiyi Hu et al.: Microarchitecture Analysis of Profile 1 eSTREAM Ciphers on Intel Core2 Duo

can work with very low overhead and impacts little on the
programs being tested.Each program was run several times
and we used the average value to improve the accuracy of the
collected data.Table 2 lists all the Intel Core2 Duo CPU-
performance counters that are used in this paper.

Using the performance measurements in Table 2 the fol-
lowing equations were used to calculate performance meas-
urements for branching, cache and instruction parallelism.

L1 data cache hit rate
𝐿𝐿1𝐷𝐷 𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒 ℎ𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =

1 −
𝐿𝐿1𝐷𝐷_𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼_𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅.𝐴𝐴𝐴𝐴𝐴𝐴

L2 cache hit rate
𝐿𝐿2 𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒 ℎ𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

= 1 −

𝐿𝐿2𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑆𝑆𝐼𝐼𝐼𝐼 . 𝐵𝐵𝐵𝐵𝐵𝐵𝐻𝐻
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶.𝐴𝐴𝐴𝐴𝐴𝐴

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼_𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅. 𝐴𝐴𝐴𝐴𝐴𝐴

Branch ratio
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ 𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

=
𝐵𝐵𝐵𝐵_𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼_𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅. 𝐴𝐴𝑁𝑁𝑁𝑁
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼_𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅.𝐴𝐴𝐴𝐴𝐴𝐴

Prediction rate
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

= 1 −

𝐵𝐵𝑅𝑅𝐼𝐼𝐼𝐼𝐼𝐼𝑇𝑇
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅.𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

𝐵𝐵𝑅𝑅𝐼𝐼𝐼𝐼𝐼𝐼𝑇𝑇
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅. 𝐴𝐴𝐴𝐴𝐴𝐴

Misprediction ratio
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

=
𝐵𝐵𝐵𝐵_𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼_𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅.𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼_𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅. 𝐴𝐴𝐴𝐴𝐴𝐴

Cycle stall ratio
due to misprediction

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑑𝑑𝑑𝑑𝑑𝑑 𝑡𝑡𝑡𝑡 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

=

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 .
𝐵𝐵𝐵𝐵_𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

𝐶𝐶𝐶𝐶𝐶𝐶_𝐶𝐶𝐶𝐶𝐶𝐶_𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈.𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

Wasted work due to mis-
prediction

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤

=
𝑅𝑅𝑅𝑅_𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈_𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

𝑈𝑈𝑈𝑈𝑈𝑈𝑆𝑆𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 . 𝐴𝐴𝐴𝐴𝐴𝐴
+𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈_𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅. 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

− 1

Instruction-level
parallelism (ILP)

𝐼𝐼𝐼𝐼𝐼𝐼 =

𝑅𝑅𝑆𝑆𝑈𝑈𝑈𝑈𝑈𝑈𝑆𝑆
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝐶𝐶𝐶𝐶𝑈𝑈𝐶𝐶𝐶𝐶𝐾𝐾

𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈.𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

4. Performance Results and Analysis
Each of the eSTREAM algorithms were examined to see

the performance of the microarchitecture on the instructions
executed, CPI, cache, ILP, and branching.The performance
measurements give details on how the cipher algorithm is
executing and can lead to optimization in performance.

4.1. Overview of the Performance Result

The overall performance of the cipher algorithm can be
viewed by the clock cycles per instruction (CPI).The CPI is
not the best or only measurement that can be used but it is the
one single measurement that can give a complete overview
of CPU performance.To find the CPI measurement the
number of retired instructions are needed for each cipher
algorithm. The retired instructions refer to those instructions
that are executed completely and update the machine state.
This does not include instructions that are partially executed
and discarded due to branch misprediction (see section 4.3).
Fig. 8 shows the number of retired instructions of the four
stream ciphers.This value reflects the complexity of the
stream cipher in some extend. It was observed thatSalsa20
ran the most number of instructions of the four ciphers.This
wasbecause that Salsa20 used a huge hash function which
involved lots of rotation operations.HC-128 ran with the
least number of instructions, because it used two large

S-boxes instead of complicated operations to achieve the
security requirement. Every instruction that is executed is
composed of a number of micro-operations (micro-ops).The
micro-ops allow for additional out-of-order execution. The
total number of micro-ops that can be executed is shown in
Fig. 9.

Figure 8. Number of retired instructions of the workloads

Figure 9. Number of retired micro-ops of the workloads

The average CPI is one of the most important metrics that
reflect overall software performance. Fig. 10 shows the CPI
values of the workloads.It was observed that all the four
ciphers havea CPI from 0.4 to 0.7, with Salsa20 yielding the
lowest CPI value of 0.445 and HC-128 yielding the highest
CPI value of 0.673. This disparity could be attributed to their
cache performance, branch misprediction rate and exploited
program parallelism. These factors will be discussed in detail
in the following of section 4.

Figure10. CPI values of the workloads

The CPI values are the indication of how effective the
CPU hardware is running and does not factor in the execu-
tion time. The execution time of the algorithms was as fol-
lows: HC-128 required 5.04s, Rabbit required 8.568s, Sal-
sa20 required 9.872s and Sosemanuk required 7.518s. The
execution time is a result of the cipher algorithm not the
microarchitecture of the CPU [2]. The results in the follow-
ing section can provide insight on to how the execution time
could be reduced by better utilizing the microarchitecture.

3.8E+9

1.3E+10

2.2E+10

1.2E+10

0.0E+0
5.0E+9

1.0E+10
1.5E+10
2.0E+10
2.5E+10

2.6E+9

7.8E+9
9.8E+9

6.4E+9

0.E+0
2.E+9
4.E+9
6.E+9
8.E+9

1.E+10
1.E+10

0.673 0.599
0.445 0.527

0
0.2
0.4
0.6
0.8

 Advances in Computing 2012, 2(2): 9-15 13

4.2. Cache Performance

A contributor to poor CPI performance is related to the
cache performance. A miss in cache can result in long la-
tency operations in the pipeline. Especially when there are
other operations depending on the results of such operations,
significant stalls could occur. Table 3 shows the cache
hit-rate of the four ciphers. It was observed that there wer-
every few misses in L1 instruction (L1I) cache for all
workloads. This was because the code sizes of the four ci-
pherswere allrelatively small (less than 32k bytes) and could
fit into the L1I cache. When calculating the hit-rate the
compulsory misses were few resulting in not being able to
accurately calculate any miss-rate with precession with the
sampling done by VTune.The hit-rate was shown as 100%
for this reason. It was also observed that both cache hit rates
were very good for all the four ciphers. The cache hit rate for
HC-128 wasrelatively low, but could still be considered
good. This indicated that the four stream cipher all had a
small working set and they all benefitedgreatly from caches.
Hence, the cache hit rate was not the main reason that caused
the disparity in CPI values.

The hit rate for the L1 data cache and L2 cache were very
similar across all four ciphers. The main reason was that each
cipher used the same data set. Since the stream operation
required each set of data to be access in the same order the
only reason for additional data misses are in the internal
variables of the algorithm. To further reduce the data miss
rate the programmer must examine how to better align in-
ternal variables to fit in the same blocks of cache.

Table 3. L1 and L2 cache hit rate

Stream Cipher L1I hit rate L1D hit rate L2 hit rate
HC-128 100 99.45 99.43
Rabbit 100 99.84 99.82
Salsa20 100 99.91 99.89

SOSEMANUK 100 99.82 99.81

4.3. Branch Misprediction

Branch prediction could significantly lower the run time
performance of software.Table 4 shows the prediction rate
for the four ciphers.VTune Amplifier failed to detect any
branch mispredictions for Rabbit and Salsa20, so it was
considered a hundred percent correct prediction for them. It
was observed that the SOSEMANUK stream cipher had the
highest branch ratio and the highest misprediction ratio.

Table 4. Branch misprediction rate of the workloads

Stream Cipher Branch ratio Prediction rate Mispred ratio
HC-128 1.10 0.990 0.0105
Rabbit 0.98 100.0 0
Salsa20 1.67 100.0 0

SOSEMANUK 7.57 89.85 0.7688

The penalty of misprediction can be decomposed into two
parts: cycle stalls and wasted work.The stall happens from
the time when misprediction is detected till the branch and all
older micro-ops are retired.Fig. 11shows the cycle stalls ratio
due to misprediction.

Figure 11. Cycle stalls ratio due to branch misprediction

The wasted work refers to those cycles wasted in execut-
ing a wrong branch path.Fig. 12 shows an estimate for the
waste work.The wasted work ratio for SOSEMANUK was
as high as 18% due to its high misprediction, while the other
three ciphers were considered havingno wasted work.

Figure 12.Wasted work due to branch misprediction

The data indicates that even low misprediction rate can
cause great penalty. SOSEMANUK had a cycle stall ratio of
3% and did approximate 18% wasted work due to 0.8%
branch misprediction. HC-128 had a cycle stall ratio of 2%
due to 0.01% branch misprediction.

4.4. Instruction-level parallelism (ILP)

The software performance can be greatly improved on a
superscalar CPU by exploiting the parallelism within it. In
this study, the ILP is defined as the average number of mi-
cro-op being dispatched for execution per cycle.

The processor used in this study has 6 dispatch ports [10],
so theoretically it can reach an ILP of 6. However, in prac-
tical, the amount of exploited parallelism depends greatly on
the structure of the software. Data dependency could sig-
nificantly limit the ILP. For the ILP we defined above, con-
trol dependency does not lower the ILP, but the work done in
thewrong path will be counted as wasted work if the branch
is mispredicted. Fig. 13 shows the ILP calculated for the four
stream ciphers in this study.

Figure 13. The exploited ILP in the workloads

0.02

0.00 0.00

0.03

0

0.01

0.02

0.03

0.04

0.00% 0.00% 0.00%

18.00%

0
0.05

0.1
0.15

0.2

2.05 2.26
2.90 2.95

0
0.5

1
1.5

2
2.5

3
3.5

14 Naiyi Hu et al.: Microarchitecture Analysis of Profile 1 eSTREAM Ciphers on Intel Core2 Duo

It was observed that the exploited ILP in Salsa20 and
SOSEMANUK was higher. This indicates that less data
dependencies were involved in those two ciphers. In fact, the
high parallelism in Salsa20 is obvious. The Salsa20 cipher
uses integer counter mode (see section 2.4) to generate key-
stream instead of using output feedback mode (OFB). So
each internal stage does not depend on previous stages and
can be computed independently. The other three ciphers all
use OFB mode.

4.5.Analysis of the Correlation with CPI

By looking at each factor separately, we cannot conclude
their correlation with the CPI. In this section, we put them
together to find out the correlation coefficient (see Table
5).The table shows that there is a high correlation between
CPI and ILP.This is due to the fact that more parallelism
should allow more instructions to be completed each cycle.In
the eSTREAM ciphers the branch prediction rate has no
strong correlation with the CPI.Only one algorithm SO-
SEMANUK had a large amount of wasted work due to
branching in the wrong direction.Both the L1 and L2 cache
has the same impact on CPI.

Table 5. Correlation between CPI and other metrics

Stream Cipher
L1D
hit
rate

L2
hit
rate

Mispred
ratio ILP CPI

HC-128 99.45 99.43 0.0105 2.05 0.673
Rabbit 99.84 99.82 0 2.26 0.599
Salsa20 99.91 99.89 0 2.90 0.445

SOSEMANUK 99.82 99.81 0.7688 2.95 0.527
CorrelationCoefficient

against CPI -0.84 -0.84 -0.22 -0.91

It was observed that SOSEMANUK and Salsa20 were
similar in cache hit rate and ILP. However, they had a dif-
ference of as large as 0.082 in CPI and it was most likely
attributed to the disparity (0.8%) in branch misprediction
rate. This again proved the conclusion we had in section 4.3:
even little branch misprediction can cause great penalty. So
we can conclude thatthe misprediction rate in SOSE-
MANUK lead to the increase in CPI.

The amount of exploited ILP also showed high negative
correlation with CPI. It was observed that the exploited ILP
in Salsa20 and SOSEMANUK reached as high as 2.90. This
could be the major reason why they yielded a lower CPI of
the four ciphers. Similarly, HC-128 and Rabbit yielded a
higher CPI due to their low exploited parallelism.

The cache hit rate for the four ciphers are close enough to
not make noticeable disparity in their CPI.

5. Conclusions
In this paper, we analyzed a set of stream ciphers from the

eSTREAM project on an Intel Core2 Duo CPU computer.
All stream ciphers have a small working set so they all have a
similar high cache hit rate. Effectively exploiting the capa-
bility of parallel execution in modern computer systemsis

one of the key factors for low CPI. However, even a very
small number of branch mispredictions can create a large
amount of wasted work, and hence significantly undermine
the overall performance of stream ciphers. This suggests
stream cipher designers need to reduce the number of
branches in cipher algorithm and utilize the new features of
parallel execution of the computer architecture to achieve
better performance.

REFERENCES
[1] AES, the Advance Encryption Standard, NIST, FIPS-197.

[2] S. Babbage, et.al., “The eSTREAM Portfolio,” eSTREAM
ECRYPT Stream Cipher Project, Final Report 2008/, 2008,
http://www.ecrypt.eu.org/stream.

[3] A. Billet, New Stream Cipher Designs: The eSTREAM Fi-
nalists, Lecture Notes in Computer Science, Vol 4986,
Springer, 2008.

[4] Daniel J. Bernstein, “Which phase-3 eSTERAM ciphers
provide the best software speeds?”,eSTREAM ECRYPT
Stream Cipher Project, Report 2008/013, 2008, http://www.e
crypt.eu.org/stream.

[5] H.Wu, A New Stream Cipher HC-256. In B. Roy and W.
Meier, editors, Proceedings of FSE 2004, Lecture Notes in
Computer Science, Volume 3017, pages 226-244, Spring
2004.

[6] M. Boesgaard, M. Vesterager, T. Pedersen and O. Scavenius.
Rabbit: A new High-Performance Stream Cipher. In T. Uo-
hansson, editor, Proceedings of FSE 2003.

[7] C. Berbainet. al., “SOSEMANUK, a fast software-oriented
stream cipher,” eSTREAM, the ECRYPT Stream Cipher
Project, Report 2005/027, 2005.

[8] P.Ekdahl and T. Johansson.,“A new version of the stream
cipher SNOW”, in Selected Areas in Cryptography – SAC
2002, volume 2295 of Lecture Notes in Computer Science,
pages 47-61. Springer-Verlag, 2002

[9] E.Biham, R. Anderson, and L. Knudsen. SERPENT, “A new
block cipher proposal”, in Fast Software Encryption –
FSE’98, volume 1372 of Lecture Notes in Computer Science,
pages 222-238. Springer-Verlag, 1998.

[10] Daniel J. Bernstein, “The Salso20 family of stream ciphers,”
New stream cipher designs: the eStream finalists, edited by M.
Robshaw and O. Billet, Lecture Notes in Computer Science,
vol. 4986, pg. 84-97, Springer, 2008.

[11] Jack Doweck, “Inside Intel Core Microarchitecture,” Pro-
ceedings of Hot Chips 18 A Symposium on High Perfor-
mance Chips, 2006.

[12] Jason Poovey, Thomas Conte, Markus Levy, and Shay
Gai-On, “A Benchmark Characterization of the EEMBC
Benchmark Suite,” IEEE Micro, p. 18 – 29, Sept 2009.

[13] K. Hoste and L. Eeeckhout, “Comparing Benchmarks using
Key Microarchitecture-Independent Characteristics,” IEEE
Workload Characterization Symposium, 2006.

[14] Aniruddha Desai and Jugdutt Singh, “Architecture Indepen-

 Advances in Computing 2012, 2(2): 9-15 15

dent Characterization of Embedded Java Workloads,” IEEE
Computer Architecture Letters, 2009.

[15] A. Fiskiran and R. Lee, “Performance Impact of Addressing
Modes on Encryption Algorithms,” International Conference
on Computer Design, 2001.

	1. Introduction
	2. Background on eSTREAM Cipher
	2.1. HC-128
	2.2.Rabbit
	2.3. SOSEMANUK
	2.4. Salsa20

	3.Testing Environment
	4. Performance Results and Analysis
	4.1. Overview of the Performance Result
	4.2. Cache Performance
	4.3. Branch Misprediction
	4.4. Instruction-level parallelism (ILP)
	4.5.Analysis of the Correlation with CPI

	5. Conclusions

