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Abstract  The workloads in a modern CPU are becoming more diversified but a common aspect is beginning to form 
around the need for cryptographic algorithms.There are a number of different cryptographic algorithms for hashing, block 
ciphers and stream ciphers.Block ciphers have recently been linked to the DES and AES standards and are the most widely 
used algorithms.Stream ciphers have not been dominated by a single standard.The EU ECRYPT network has developed a set 
of stream cipher as part of their eSTREAM portfolio. This paper examines the eSTREAM portfolio and analysis the mi-
croarchitecture performance on the Intel Core2 Duo.Using hardware performance counters analysis is done in the areas of 
CPI, cache, branch prediction, and instruction-level parallelism (ILP).Our results show that the Salsa20 algorithm has the best 
CPI, sosemanuk is able to achieve more ILP, and branch prediction is highly accurate for HC-120, Rabbit and Salsa20. The 
results show the correlation between CPI with L1 cache, L2 cache, branch prediction, and ILP. 
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1. Introduction 
Cryptography encryption algorithms can be divided into 

block ciphers and stream ciphers.The block ciphers have 
always been more mature in cryptanalysis and develop-
ment.One of the main driving forces into the development of 
block ciphers have been competitions to form standards.The 
most popular competition was done by the NIST to create the 
advanced encryption standard (AES)[1].The success of AES 
encouraged the EU ECRYPT network to create a competi-
tion for streaming ciphers entitled eSTREAM[2,3].The 
program began in November 2004 and ended in April 
2008.The finalist of the eSTREAM was divided into two 
categories Profile 1 for software applications and Profile 2 
for hardware applications[2, 3]. 

The eSTREAM project did not select only one finalist to 
be the best cipher algorithm but presented four software 
focus algorithms that meet the high requirements for 
crypto-integrity and high speed processing. The performance 
benchmark was that the eSTREAM algorithms have per-
formance that significantly outruns the AES in a stream 
cipher mode. Each eSTREAM cipher is aimed to have high 
encryption stream that can encrypt large amounts of data 
with only a single initialization. Since 2008 the cipher algo-
rithms have not undergone any additional research on the 
software performance of the eSTREAM finalist.All the 
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algorithms did have performance studies done during the 
competition period. All the candidates were tested on a 
Pentium 4 computer or older CPU generation. CPU mi-
croarchitecture has rapidly developed since the Pentium 4 
and have seen a number of new generations of CPUs. 

B. Bernstein[4] presented a paper that asked the question 
which eSTREAM cipher provides the best software 
speed.The paper explored the processing speed of the algo-
rithms on a wide set of CPUs. The paper used Intel Core2, 
IBM Cell, Athlon 64 X2, Pentium M, Pentium 4, PowerPC 
G5, PowerPC G4 and UltraSPARC III.[4] only gives per-
formance in terms of cycle counts per encrypted byte. The 
results show which algorithm is the fastest but does not give 
any insight into why one CPU performs better than other 
CPUs. The purpose of this project is to explore the mi-
croarchitecture utilization on a modern CPU.Using the 
Core2 Duo, we are able to give all the details on how each 
component of the CPU (branch predictor, cache, etc) is used 
in the operation of the cipher. 

This paper presents a detailed performance analysis ofthe 
four stream ciphers from the eSTREAM PortfolioProfile 1. 
The test was conductedon aIntel Core2 Duo CPU computer. 
By analyzing the raw performance data, which were col-
lected with theIntel VTune Amplifier XE 2011, important 
information on cache, branch prediction and exploited in-
struction-level parallelism (ILP)were obtained.The informa-
tion presented in this paper can be used to optimize software 
stream ciphers implementation and to give guidance to re-
searchers working on future stream ciphers to know how to 
best use the features found in the Intel CPU.Similar studies 
have done on other cryptography algorithms that examined 
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the hardware counters on AES, DES, Blowfish, etc. 
in[12-15]. The work on eSTREAM is important since the 
other papers have not investigated streaming algorithms. 

The rest of the paper is organized as follows. In section 2, 
we give a brief explanationon the background of each cipher. 
Theconfiguration of the testing environment isdescribed in 
section 3. Section 4 analyzes the data collected from all 
workloads. And section 5 gives the conclusion. 

2. Background on eSTREAM Cipher 
The stream ciphers used in this paper were chosen from 

the eSTREAMPortfolio Profile 1. They are HC-128, Rabbit, 
Salsa20 and SOSEMANUK. All the four ciphers aresyn-
chronous stream ciphers, and each cipher is implemented 
with two functions: an internal functionto generatethe key-
stream and an output function that encrypts the plaintext by 
combining it with the keystream using exclusive-or opera-
tion (XOR), as shown in Fig. 1.The decryption for the four 
ciphers is the same as encryption. 

 
Figure 1.  Stream cipher encryption (or decryption) 

2.1. HC-128 

HC-128 is a stream cipher designed for 128-bit security 
that is a variant of HC-256, proposed by Hong-
junWu[5].HC-128 is considered the best algorithm that 
meets the intended goals of the eSTREAMpro-
gram[2].HC-128 uses two S-boxesin its keystream genera-
tion algorithm. Each S-box has 512 32-bit elements andis 
updated every 1024 steps. At each step, one element of the 
S-boxes is updated and one 32-bit output is generated. Since 
HC-128 is table-driven which leads to more time in order to 
initialize the cipher.Fig. 2 shows an overview of HC-128. 
S-box P is in use when i(mod 1024) is less than 512; S-box Q 
is in use when i(mod 1024) is greater than 512. 

 
Figure 2.  HC-128 stream cipher 

2.2.Rabbit 

The stream cipher Rabbit was designed by Martin Boes-
gaard, MetteVesterager, Thomas Christensen and Erik 
Zenner[6]. It uses a key of 128-bit length like HC-128. 

Rabbit does not have an S-box. Instead, it has an internal 
state that consists of eight 32-bit state variables, eight 32-bit 
counters and one counter carry bit.The eight counters are 
updated every time before iterating to the internal system, 
defined as the diagram in Fig. 3.Cj,i denotes the counter 
variable j at iteration i, and Coi denotes the carry bit. The aj 
are eight constants. 

 
Figure 3.  The counter of the Rabbit stream cipher 

The eight state variables are updated in the iteration by 
eight couplednon-linear functions. All state variables only 
depend on their corresponding counters and the previous 
state variables, so they can be updated simultaneously.With 
each iteration, Rabbit generates a block of keystream of 
128-bit using the internal state variables. Fig. 4 shows an 
overview of Rabbit. 

 
Figure 4.  Rabbit stream cipher 

 
Figure 5.  The LFSR of SOSEMANUK cipher 

2.3. SOSEMANUK 

The stream cipher SOSEMANUK was designed by C. 
Berbain and et. al.[7].SOSEMANUK uses an LFSR of ten 
32-bit elements and a finite state machine (FSM) to hold its 
internal state.The design of the LFSR is influenced by the 
stream cipher SNOW 2.0[8]. See Fig. 5 for the diagram of 
theLFSR. For any time t ≥ 1, st to st+9 denotes the ten ele-
ments in the LFSR. At every step, a new value, denoted as 
st+10, is computed with the following equation: 

st+10 =st+9⊕ɑ-1st+3⊕ɑst 

and the LFSR is shifted. The multiplication and division 
operation in the LFSR corresponds to a shift operation fol-
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lowed by an XOR operation with a 32-bit mask. 
The finite state machine consists of two 32-bit registers. 

At each step, it takes three elements (st+1, st+8, st+9) from the 
LFST to produce a 32-bit output, denoted as ft, and update 
the two registers.For every four output values from the FSM, 
denoted as ft, ft+1,ft+2 andft+3, an S-box application is applied 
to produce a four 32-bit output, denoted as zt, zt+1,zt+2, zt+2. 
The output transformationis derived from Serpent1[9]. 
SOSEMANUK generates a 128-bit block of keystream by 
combining the output zt, zt+1,zt+2,zt+2 with the first four ele-
ments in the LFSR using XOR operation. Fig. 6 shows an 
overview of the SOSEMANUK stream cipher. 

 
Figure 6.  SOSEMANUK stream cipher 

2.4. Salsa20 

Salsa20 was designed by Daniel J. Bernstein[c10]. The 
core of Salsa20 cipher is a hash function. Unlike the three 
ciphers introduced about above, Salsa20 does not use the 
portion of the previous states to update its internal state. 
Instead, a 64-bit counter is used to create sequential blocks of 
keystream. Salsa20 takes a 128-bit (or 256-bit) secret key, a 
64-bit nonce and the 64-bitcounter to generate a 64-byte 
block of keystream at each step and increase the counter by 1 
after that.Fig. 7 shows the overview of Salsa20. Because 
each state does not depend on the previous ones, this greatly 
increases the parallelism in Salsa20.Modern computer ar-
chitecture can exploit such parallelism to improve the per-
formance. In order to eliminate the correlation between the 
output and the key, the hash function uses a lot of rotation 
operations. 

 
Figure 7.  Salsa20 stream cipher 

3.Testing Environment 
The test is performed on anIntel Core2 Duo CPU com-

puter system. The detailed characteristics of the testing en-

vironment are described inTable 1. The Intel Core2 Duo is a 
32-bit superscalar CPU that contains 2 logical CPU cores, an 
L1 cache that is split for instructions and memory, and L2 
cache.The CPU can handle instructions 5 wide for decoding, 
4 wide for renaming, 5 wide for retiring, 6 instructions per 
cycle, and 32 micro-ops scheduler[11]. 

Table 1.  Testing platform configuration 

Processor Intel Core2 Duo CPU E7500 
Clock Fre-

quency 2.93GHz 

Number of 
cores 2 

Instructions 
sets 

MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, 
EM64T, VT-x 

L1 Data cache 2 x 32 KBytes, 8-way set associative, 
64-byte line size 

L1 Instruction 
cache 

2 x 32 KBytes, 8-way set associative, 
64-byte line size 

L2 cache 3072 KBytes, 12-way set associative, 
64-byte line size 

Memory Type DDR2 
Memory Size 2048 MBytes 
Memory Fre-

quency 399.0 MHz (2:3) 

Operating 
System 

Microsoft Windows XP ProfessionalVer-
sion 2002SP3 

The four stream ciphers were compiled withMicrosoft 
C/C++ compiler version 15 using optimization level O2 
(maximum speed).Each cipher took a 128-bit secret key and 
was fed with a message of 600 Mbytes. The bench mark only 
contained the encryption process of the ciphers. The key and 
IV setup benchmark were not run. 

Table 2.  Testing platform configuration 

Name of the Counter Definition 

BR_INST_RETIRED.ANY Retired branch in-
structions. 

BR_INST_RETIRED.MISPRED 
Retired mispredicted 
branch instructions 

(precise event) 

CPU_CLK_UNHALTED.CORE Core cycles when 
core is not halted. 

INST_RETIRED.ANY Instructions retired. 

L1D_REPL Cache lines allocated 
in the L1 data cache. 

L1I_MISSES Instruction Fetch 
Unit misses. 

L2_LINES_IN.BOTH_CORES.ANY L2 cache misses. 

RESOURCE_STALLS.BR_MISS_CLEAR 
Cycles stalled due to 

branch mispredic-
tion. 

RS_UOPS_DISPATCHED 
Micro-ops dis-

patched for execu-
tion. 

UOPS_RETIRED.ANY Micro-ops retired. 

UOPS_RETIRED.FUSED Fused micro-ops 
retired. 

We used IntelVTune Amplifier XE2011 to collect per-
formance data in the test.The VTuneAmplifier XE collects 
performance data using event-driven sampling technique.It 
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can work with very low overhead and impacts little on the 
programs being tested.Each program was run several times 
and we used the average value to improve the accuracy of the 
collected data.Table 2 lists all the Intel Core2 Duo CPU-
performance counters that are used in this paper. 

Using the performance measurements in Table 2 the fol-
lowing equations were used to calculate performance meas-
urements for branching, cache and instruction parallelism. 

L1 data cache hit rate 
𝐿𝐿1𝐷𝐷 𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒 ℎ𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 

1 −  
𝐿𝐿1𝐷𝐷_𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼_𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅.𝐴𝐴𝐴𝐴𝐴𝐴
 

L2 cache hit rate 
𝐿𝐿2 𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑒𝑒 ℎ𝑖𝑖𝑖𝑖 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

= 1 −  

𝐿𝐿2𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑆𝑆𝐼𝐼𝐼𝐼 . 𝐵𝐵𝐵𝐵𝐵𝐵𝐻𝐻
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶.𝐴𝐴𝐴𝐴𝐴𝐴

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼_𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅. 𝐴𝐴𝐴𝐴𝐴𝐴
 

Branch ratio 
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵ℎ 𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

=
𝐵𝐵𝐵𝐵_𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼_𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅. 𝐴𝐴𝑁𝑁𝑁𝑁
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼_𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅.𝐴𝐴𝐴𝐴𝐴𝐴

 

Prediction rate 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 

= 1 −

𝐵𝐵𝑅𝑅𝐼𝐼𝐼𝐼𝐼𝐼𝑇𝑇
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅.𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

𝐵𝐵𝑅𝑅𝐼𝐼𝐼𝐼𝐼𝐼𝑇𝑇
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅. 𝐴𝐴𝐴𝐴𝐴𝐴

 

Misprediction ratio 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑝𝑝𝑝𝑝𝑝𝑝 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

=
𝐵𝐵𝐵𝐵_𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼_𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅.𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼_𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅. 𝐴𝐴𝐴𝐴𝐴𝐴
 

Cycle stall ratio  
due to misprediction 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑑𝑑𝑑𝑑𝑑𝑑 𝑡𝑡𝑡𝑡 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

=

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 .
𝐵𝐵𝐵𝐵_𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀_𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

𝐶𝐶𝐶𝐶𝐶𝐶_𝐶𝐶𝐶𝐶𝐶𝐶_𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈.𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
 

Wasted work due to mis-
prediction 

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤

=
𝑅𝑅𝑅𝑅_𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈_𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷

𝑈𝑈𝑈𝑈𝑈𝑈𝑆𝑆𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 . 𝐴𝐴𝐴𝐴𝐴𝐴
+𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈_𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅. 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹

− 1 

Instruction-level  
parallelism (ILP) 

𝐼𝐼𝐼𝐼𝐼𝐼 =

𝑅𝑅𝑆𝑆𝑈𝑈𝑈𝑈𝑈𝑈𝑆𝑆
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝐶𝐶𝐶𝐶𝑈𝑈𝐶𝐶𝐶𝐶𝐾𝐾

𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈.𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

 

4. Performance Results and Analysis 
Each of the eSTREAM algorithms were examined to see 

the performance of the microarchitecture on the instructions 
executed, CPI, cache, ILP, and branching.The performance 
measurements give details on how the cipher algorithm is 
executing and can lead to optimization in performance. 

4.1. Overview of the Performance Result 

The overall performance of the cipher algorithm can be 
viewed by the clock cycles per instruction (CPI).The CPI is 
not the best or only measurement that can be used but it is the 
one single measurement that can give a complete overview 
of CPU performance.To find the CPI measurement the 
number of retired instructions are needed for each cipher 
algorithm. The retired instructions refer to those instructions 
that are executed completely and update the machine state. 
This does not include instructions that are partially executed 
and discarded due to branch misprediction (see section 4.3). 
Fig. 8 shows the number of retired instructions of the four 
stream ciphers.This value reflects the complexity of the 
stream cipher in some extend. It was observed thatSalsa20 
ran the most number of instructions of the four ciphers.This 
wasbecause that Salsa20 used a huge hash function which 
involved lots of rotation operations.HC-128 ran with the 
least number of instructions, because it used two large 

S-boxes instead of complicated operations to achieve the 
security requirement. Every instruction that is executed is 
composed of a number of micro-operations (micro-ops).The 
micro-ops allow for additional out-of-order execution. The 
total number of micro-ops that can be executed is shown in 
Fig. 9. 

 
Figure 8.  Number of retired instructions of the workloads 

 
Figure 9.  Number of retired micro-ops of the workloads 

The average CPI is one of the most important metrics that 
reflect overall software performance. Fig. 10 shows the CPI 
values of the workloads.It was observed that all the four 
ciphers havea CPI from 0.4 to 0.7, with Salsa20 yielding the 
lowest CPI value of 0.445 and HC-128 yielding the highest 
CPI value of 0.673. This disparity could be attributed to their 
cache performance, branch misprediction rate and exploited 
program parallelism. These factors will be discussed in detail 
in the following of section 4. 

 
Figure10. CPI values of the workloads 

The CPI values are the indication of how effective the 
CPU hardware is running and does not factor in the execu-
tion time. The execution time of the algorithms was as fol-
lows: HC-128 required 5.04s, Rabbit required 8.568s, Sal-
sa20 required 9.872s and Sosemanuk required 7.518s. The 
execution time is a result of the cipher algorithm not the 
microarchitecture of the CPU [2]. The results in the follow-
ing section can provide insight on to how the execution time 
could be reduced by better utilizing the microarchitecture. 
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4.2. Cache Performance 

A contributor to poor CPI performance is related to the 
cache performance. A miss in cache can result in long la-
tency operations in the pipeline. Especially when there are 
other operations depending on the results of such operations, 
significant stalls could occur. Table 3 shows the cache 
hit-rate of the four ciphers. It was observed that there wer-
every few misses in L1 instruction (L1I) cache for all 
workloads. This was because the code sizes of the four ci-
pherswere allrelatively small (less than 32k bytes) and could 
fit into the L1I cache. When calculating the hit-rate the 
compulsory misses were few resulting in not being able to 
accurately calculate any miss-rate with precession with the 
sampling done by VTune.The hit-rate was shown as 100% 
for this reason. It was also observed that both cache hit rates 
were very good for all the four ciphers. The cache hit rate for 
HC-128 wasrelatively low, but could still be considered 
good. This indicated that the four stream cipher all had a 
small working set and they all benefitedgreatly from caches. 
Hence, the cache hit rate was not the main reason that caused 
the disparity in CPI values. 

The hit rate for the L1 data cache and L2 cache were very 
similar across all four ciphers. The main reason was that each 
cipher used the same data set. Since the stream operation 
required each set of data to be access in the same order the 
only reason for additional data misses are in the internal 
variables of the algorithm.  To further reduce the data miss 
rate the programmer must examine how to better align in-
ternal variables to fit in the same blocks of cache.  

Table 3.  L1 and L2 cache hit rate 

Stream Cipher L1I hit rate L1D hit rate L2 hit rate 
HC-128 100 99.45 99.43 
Rabbit 100 99.84 99.82 
Salsa20 100 99.91 99.89 

SOSEMANUK 100 99.82 99.81 

4.3. Branch Misprediction 

Branch prediction could significantly lower the run time 
performance of software.Table 4 shows the prediction rate 
for the four ciphers.VTune Amplifier failed to detect any 
branch mispredictions for Rabbit and Salsa20, so it was 
considered a hundred percent correct prediction for them. It 
was observed that the SOSEMANUK stream cipher had the 
highest branch ratio and the highest misprediction ratio. 

Table 4.  Branch misprediction rate of the workloads 

Stream Cipher Branch ratio Prediction rate Mispred ratio 
HC-128 1.10 0.990 0.0105 
Rabbit 0.98 100.0 0 
Salsa20 1.67 100.0 0 

SOSEMANUK 7.57 89.85 0.7688 

The penalty of misprediction can be decomposed into two 
parts: cycle stalls and wasted work.The stall happens from 
the time when misprediction is detected till the branch and all 
older micro-ops are retired.Fig. 11shows the cycle stalls ratio 
due to misprediction. 

 
Figure 11.  Cycle stalls ratio due to branch misprediction 

The wasted work refers to those cycles wasted in execut-
ing a wrong branch path.Fig. 12 shows an estimate for the 
waste work.The wasted work ratio for SOSEMANUK was 
as high as 18% due to its high misprediction, while the other 
three ciphers were considered havingno wasted work. 

 
Figure 12.Wasted work due to branch misprediction 

The data indicates that even low misprediction rate can 
cause great penalty. SOSEMANUK had a cycle stall ratio of 
3% and did approximate 18% wasted work due to 0.8% 
branch misprediction. HC-128 had a cycle stall ratio of 2% 
due to 0.01% branch misprediction. 

4.4. Instruction-level parallelism (ILP) 

The software performance can be greatly improved on a 
superscalar CPU by exploiting the parallelism within it. In 
this study, the ILP is defined as the average number of mi-
cro-op being dispatched for execution per cycle. 

The processor used in this study has 6 dispatch ports [10], 
so theoretically it can reach an ILP of 6. However, in prac-
tical, the amount of exploited parallelism depends greatly on 
the structure of the software. Data dependency could sig-
nificantly limit the ILP. For the ILP we defined above, con-
trol dependency does not lower the ILP, but the work done in 
thewrong path will be counted as wasted work if the branch 
is mispredicted. Fig. 13 shows the ILP calculated for the four 
stream ciphers in this study. 

 
Figure 13.  The exploited ILP in the workloads 
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It was observed that the exploited ILP in Salsa20 and 
SOSEMANUK was higher. This indicates that less data 
dependencies were involved in those two ciphers. In fact, the 
high parallelism in Salsa20 is obvious. The Salsa20 cipher 
uses integer counter mode (see section 2.4) to generate key-
stream instead of using output feedback mode (OFB). So 
each internal stage does not depend on previous stages and 
can be computed independently. The other three ciphers all 
use OFB mode. 

4.5.Analysis of the Correlation with CPI 

By looking at each factor separately, we cannot conclude 
their correlation with the CPI. In this section, we put them 
together to find out the correlation coefficient (see Table 
5).The table shows that there is a high correlation between 
CPI and ILP.This is due to the fact that more parallelism 
should allow more instructions to be completed each cycle.In 
the eSTREAM ciphers the branch prediction rate has no 
strong correlation with the CPI.Only one algorithm SO-
SEMANUK had a large amount of wasted work due to 
branching in the wrong direction.Both the L1 and L2 cache 
has the same impact on CPI.  

Table 5.  Correlation between CPI and other metrics 

Stream Cipher 
L1D 
hit 
rate 

L2 
hit 
rate 

Mispred 
ratio ILP CPI 

HC-128 99.45 99.43 0.0105 2.05 0.673 
Rabbit 99.84 99.82 0 2.26 0.599 
Salsa20 99.91 99.89 0 2.90 0.445 

SOSEMANUK 99.82 99.81 0.7688 2.95 0.527 
CorrelationCoefficient 

against CPI -0.84 -0.84 -0.22 -0.91  

It was observed that SOSEMANUK and Salsa20 were 
similar in cache hit rate and ILP. However, they had a dif-
ference of as large as 0.082 in CPI and it was most likely 
attributed to the disparity (0.8%) in branch misprediction 
rate. This again proved the conclusion we had in section 4.3: 
even little branch misprediction can cause great penalty. So 
we can conclude thatthe misprediction rate in SOSE-
MANUK lead to the increase in CPI. 

The amount of exploited ILP also showed high negative 
correlation with CPI. It was observed that the exploited ILP 
in Salsa20 and SOSEMANUK reached as high as 2.90. This 
could be the major reason why they yielded a lower CPI of 
the four ciphers. Similarly, HC-128 and Rabbit yielded a 
higher CPI due to their low exploited parallelism. 

The cache hit rate for the four ciphers are close enough to 
not make noticeable disparity in their CPI. 

5. Conclusions 
In this paper, we analyzed a set of stream ciphers from the 

eSTREAM project on an Intel Core2 Duo CPU computer. 
All stream ciphers have a small working set so they all have a 
similar high cache hit rate. Effectively exploiting the capa-
bility of parallel execution in modern computer systemsis 

one of the key factors for low CPI. However, even a very 
small number of branch mispredictions can create a large 
amount of wasted work, and hence significantly undermine 
the overall performance of stream ciphers. This suggests 
stream cipher designers need to reduce the number of 
branches in cipher algorithm and utilize the new features of 
parallel execution of the computer architecture to achieve 
better performance. 
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