
Advances in Computing 2012, 2(1): 17-28
DOI: 10.5923/j.ac.20120201.04

A Distributed Algorithm for Un-balanced Partitioning of
a Swarm of Autonomous Mobile Robots and Its

Performance Analysis

Deepanwita Das

Department of Information Technology, National Institute of Technology, Durgapur, Burdwan, West Bengal , 713209, India

Abstract This piece of work studies the partitioning problem on independently operating swarm of autonomous mobile
robots and devises algorithms for unbalanced partitioning in a distributed computing environment. The robots considered
here are all identical and are very simple and weak. There is no central control over the robots and the robots do not com-
municate among themselves. Each robot executes the same algorithm based on their local information. This paper frames the
algorithms for unbalanced partitioning by sorting the robots based on their ranking and then allocating them in different
groups based on their ranks, such that N robots are divided into K unbalanced groups of unequal robots in each group. This
paper also presents the performance based analysis of the un-balanced algorithm U_PART over the balanced algorithm and
examines their effects via different examples through 50 separate test cases. It also tries to bring out the shortcomings of the
proposed U_PART algorithm and proposes another alternative approach towards un-balanced partitioning to overcome the
limitation of the U_PART algorithm.

Keywords Swarm Robots, Un-balanced Partitioning, Distributed Algorithm

1. Introduction
Swarm robotics is a new approach to the coordination of

multi robots which consist of a large number of simple,
identical, autonomous and mobile robots over a distributed
computing environment[1,2,4]. Such systems mainly con-
sider identical point robots that are oblivious and autono-
mous, with strong fault tolerance capabilities as a group[5].
These concepts of swarm robotics have various applications
such as task allocation[6], military operations, search and
rescue victims, lawn mowing and sweeping, space mission,
operations like enclosing an invader[8], area exploration
and coverage[7] etc. Existing task allocation techniques[6,9,
10] partition the swarm into several groups and dynamically
allocate each group of robots to multiple tasks. They may
use balanced partitioning techniques[1-3] that partitions n
number of robots in k-size balanced groups. But such ap-
proach may take large amount of time to complete a job,
when groups are allocated multiple tasks with different
workloads, as discussed in an example.

Consider the problem, where swarm of robots is assigned
to paint 50 doors and 50 windows of a building. The area of
each window is (3*2)6 square feet and area of each door is

* Corresponding author:
deepanwitadaptary@gmail.com (Deepanwita Das)
Published online at http://journal.sapub.org/ac
Copyright © 2012 Scientific & Academic Publishing. All Rights Reserved

(6*3)18 square feet respectively and the swarm contain a
total of 10 robots.

Say, the whole swarm is partitioned into two groups.
Group 1 and group 2 are assigned to colour the windows and
doors respectively. As per balanced partitioning each group
contains 5 robots. The time required to colour the doors will
be greater than to colour the windows by five robots as the
total area of the windows is much lesser than the total area of
the doors. In this situation, some robots in group 1 will
complete its job and remain idle while others in group 2 are
still with a larger work load. If the swarm is partitioned in an
unbalanced manner of unequal members in each group, then
the groups may be allocated task according to the work load,
that is, smaller group may be assigned for smaller part of the
job (colouring the windows) and the larger group can be
assigned for the larger part (colouring the doors). Then no
robots will be idle and time required in completing the job
will be lesser than that of balanced Partitioning.

An algorithm U_Part[4] has been proposed, to partition N
number of mobile robots into K number of groups with
unequal members in each group. This technique enhances
the overall performance of the swarm; as less number of
robots will be idle and time required in completing the job
will be lesser than that of balanced partitioning. An al-
ternative approach is also presented in the paper as
algorithm U_PartII. This paper also studies the per-
formance analysis of the un-balanced algorithm over the
existing balanced partitioning techniques presented in[1-3].

18 Deepanwita Das: A Distributed Algorithm for Un-balanced Partitioning of a Swarm
 of Autonomous Mobile Robots and Its Performance Analysis

2. Related Work
Large amount of research work has been reported on par-

titioning problem[1-3]. In most of them the robot follows the
basic model Wait-Observe-Compute-Move model. Depend-
ing on the type of the problem the basic model is modified
and used to devise solutions. The algorithms consist of a
sequence of computational cycles, which is defined by a
sequence of “Look”, “Compute”, and “Move” steps:

Look: Whenever a robot becomes active, it observes and
marks the positions of all other robots, asynchronously and
independently from the other robots, based upon its local
coordinate system.

Compute: Depending on the observations made in the
previous step, the robot calculates its destination point based
on its own position and the current locations of the other
robots, etc.

Move: The robot moves towards the destination point
which has been calculated in the compute step.

The paper[3] by Asaf Afrima and David Peleg, studies the
problem PARTITION(n,k), which partitions n robots in k
size balanced groups, and examines the solvability of this
problem on various computation model. The algorithm dis-
cussed in this paper is PART, Part2, Part_Disperse,
Part_Expand, Part_Asym, Part_Sig and Part_Sig2.

The paper[1,2] reviews and explores various modification
in the basic model developed in[3] and discusses their effects
on the solvability of the partitioning problem.

David Peleg et. al.[1,2] has considered only balanced
partitioning techniques and has stated the basic conditions
for partitioning. They are as follows:

1. In the FSYNC and SSYNC model, having common
axes direction is a necessary and sufficient condition. In
ASYNC model, having common axes direction is necessary,
and one common axis orientation is sufficient condition for
Partition (n, k) to be deterministically solvable for all values
of n and k .

2. In the half-compass model, the partitioning problem is
solvable in the SSYNC model.

4. In the no-compass model, for any timing model, Parti-
tion (n, k) is unsolvable for k>1.

5. In the axes-only model, for any timing model, Partition
(n, k) is unsolvable for some values of n and k .

6. In the direction-only model and for the SSYNC timing
model, Partition (n, k) is solvable for all values of n and k.

So far, the research works on partitioning problem has
considered only the balanced approach for partitioning the
swarm. In various task allocation techniques, the task load
may vary in different groups. In such an environment the
balanced partitioning technique will allocate task to groups
having equal number of robots in each group. In such a set-
ting, the task load will be more in some groups, whereas in
other groups some robots remain unused. As a solution, this
paper introduces the unbalanced partitioning techniques.

Here, two different algorithms for unbalanced partitioning
are presented where a swarm of n robots are partitioned into
k unbalanced groups. The first algorithm U_PART presents

and unbalanced partitioning technique which creates groups
of unequal members of robots. A simulator is being devel-
oped to check the time difference in completing distributed
workloads, while using balanced and unbalanced group
partitioning techniques. Next a comparative performance
analysis between balanced and unbalanced techniques[11]
has been carried out through the simulator. An algorithm
U_Part limits the number of members in each group (except
the last group) for all values of N. this limitation has been
overcome in the second algorithm U_PartII.

3. Models, Assumptions and Problem
Definition

Before going to describe the algorithm, let us discuss the
assumptions and models used, and introduce the terminol-
ogies used in this paper. Our problem is to partition n number
of robots into k no of size unbalanced groups. These robots
are initially deployed within the priori known region. Robots
may occupy any position within the region. We assume that
no two robots occupy the same position. The robots are
assumed to have the following characteristics[7,12].

1. Identical and Homogeneous - All the robots are iden-
tical in all respect, especially, they have the same computa-
tional capability. All the robots are assumed to be point
robots with unlimited visibility. However, we assume that
each of them is having a sensing zone of radius T (T is small).
By this we mean that if a robot is required to carry out some
job for a particular position (collection of information about
that position, or painting that position etc.), instead of actu-
ally reaching the position, that can be carried out from a
distance of T also as shown in “figure 1”

Figure 1. Sensing zone of radius T

2. Autonomous - There is neither any central authority
nor any external control over the robots. They do not even
communicate among themselves.

3. Mobile - All robots are allowed to move on a plane.
4. Computation Model - Here we follow the basic Ob-

serve-Compute-Move model. A computational cycle is de-
fined to be a sequence of “observe”, “compute” and “move”
steps. Each of the robots executes same instructions in all the
computational cycles. Once a robot completes one compu-
tational cycle, it starts executing the next one. The actions
taken by a robot in compute and move steps, entirely depend
on the observations made in observe step. In some situations,
an observation might lead a robot not to change its position

 Advances in Computing 2012, 2(1): 17-28 19

in move step. In such cases the robot seems to be idle, though
it is actually executing all the three steps.

5. Oblivious or Memoryless - Robots do not retain any
information gathered in the previous computational cycle. In
every computational cycle, a robot starts computing from
very beginning depending only on the positions of the other
robots observed at that computational cycle.

The robots can have two states: active and sleep. In Active
state, the robots are alive and executing continuously the
computational cycles. In Sleep state, robot is not active and
doing nothing. This state is like “power off” state. It is as-
sumed that a robot cannot sleep infinitely and it would be-
come active within a finite amount of time. We also assume
that change of state of a robot takes place independent of the
other robots.

The operation considered here is assumed to be an Atomic
operation. During the computation process, a robot cannot
switch over to the “sleep” state also. The models considered
here are as follows:

Asynchronous model: Robots operate on independent
cycles of variable lengths. They do not share any common
clock[7,12].

Direction only: Directions of both axes are common to all
the robots, but the positive orientation of the axes may be
different[7,12]. Here, we assume that x-axes of the robots are
parallel to the known common reference line. Therefore, the
direction of x-axis is common to all the robots but the robots
may have different views of the positive orientation of the
axis. However, it is assumed that the direction of the positive
y-axis is 90° counter clockwise to the positive direction of
the x-axis. Thus, direction of y-axis is also common to all the
robots, except possibly the positive orientation. Each robot
has its local co-ordinate system. All the robots would assume
that they occupy the position (0, 0) with respect to their local
co-ordinate system. Further, we assume that these various
co-ordinate systems might not share a common scale. “Fig-
ure 2” shows the local co-ordinate systems of four robots R1,
R2, R3, and R4, and the common reference line XX'.

Figure 2. Local coordinate system of 4 robots

Lemma 1: The diagonals of a square intersects each other
at the center of the square and makes an angle of 90° with
each other.

Lemma 2: The angle traced by a complete circle is equal
to 360°.

4. Partitioning Algorithm
The first part of this section describes the proposed algo-

rithm for un-balanced partitioning. The correctness proves of
the algorithm are given in the second part.

4.1. Algorithm for Unbalanced Partitioning
This research work proposed an algorithm to partition N

number of robots into K number of unbalanced groups.
Further, we assume that all N robots are enclosed within a
known obstacle free square region The robots need to be
partitioned into K (Gr1, Gr2, Gr3 ,…., Grk)number of
size-unbalanced groups. As the groups will not be balanced
in size, so the total number of robots in each group always
differs with the number of members in all other groups.

To create such unbalanced groups, each group will contain
number of members equal to the group number except the
last group which may or may not contain same number of
robots equal to the group number depending on the value of
N. As the group number and the number of members in a
group are same, so now onwards value of group number is
considered as the number of members in that group. Each
robot contains a flag (FLAG) which is set with the value of
the particular group number to which the robot is assigned.

As soon as a robot R becomes alive it performs the fol-
lowing computational cycle “observe-compute-move”. As
long as a robot is in alive state, after completing one such
computational cycle, it would again start another cycle and
continue in this way until it completes its assigned job.
Each robot in the swarm executes same algorithm U_PART
when active.

In the look state a robot gathers information of its
neighbour. Then it computes its rank, group number and goal
point. The rank is calculated with the help of the observed
information. Using the rank of the robot its group number is
calculated. The robot needs to move towards the respective
goal points to form the partition. The number of goal points
is same as the number of groups formed. So the goal point of
robot R is calculated in the compute step. It moves to the goal
point in the move step.
Algorithm U_PART (Executed by Robot R)

Look:
According to the local co-ordinate system, a robot R first

observes the position of all other robots. Let the co-ordinates
be (a1, b1), (a2, b2), …. (an-1, bn-1), whereas, its own
co-ordinate would be (0,0). It is to be noted here that some of
these ai, bi values might be negative also.

Compute:
Step 1: According to the values of y-co-ordinates, the

robot R will order all the robots (including itself) so that the
robot having the largest value of y coordinate will have the
highest rank, that is, N. Without loss of generality, we as-
sume that the co-ordinates of N robots, after sorting are (x1,
y1), (x2, y2), (xN, yN), so that (y1<=y2<=y3<=... yN). The robot
having the co-ordinate (xi, yi) would have the rank i and the
robot will be mentioned as Ri, 1<=i<=N. In case of a tie, the
values of x-coordinate of the robots are considered. The

20 Deepanwita Das: A Distributed Algorithm for Un-balanced Partitioning of a Swarm
 of Autonomous Mobile Robots and Its Performance Analysis

robot having lower x-coordinate would have the lower rank.
In case of tie in the value of y-coordinate, means two ro-

bots are in a same location which is not possible practically.
In this way, the robot R would determine its own rank. Let
the rank of R be p. From now onwards R and Rp will be used
interchangeably.

Step 2: The value of “K” that is; the total number of
groups formed should be K<=ceiling (N/2) and must be
selected in such a manner that no two groups contain equal
number of robots.

Step 3: Once a robot gets its rank it checks whether it is
having the lowest or highest rank among all other robots. The
lowest ranked robot always belongs to the first group and the
highest ranked robots belong to the last group.

Step 4: If the robot is having rank “p” which is neither
lowest nor highest, it checks whether p<=1+Gr1, if true it
then sets the FLAG=2. If false it again checks
p<=1+Gr2+Gr3, if true it sets FLAG=3. For each false out-
come the rank is checked against the previous cumulative
sum added to the next group number. This checking con-
tinues till p<= (K(K-1))/2. If true, then FLAG=(K-1). If false
then robot will be assigned to the Kth group.

Step 5: The robot R computes the group number to which
it is allocated. It then needs to compute the goal point to-
wards which it must move to form the partition. The robot R
calculates the center of the square field which is the inter-
section of the diagonals. Now the robot R first checks its
group number. If it belongs to group 1 then, it computes its
goal point by calculating an angle Θ (theta) where Θ=45°,
from the center point in anti-clockwise direction along the
line XX' and marks its goal point at a fixed distance “d” from
the center, considering d<=a/4 where “a” is the dimension of
the side of the square. If the robot R belongs to group 2, it
then computes its goal point at an angle 2Θ at a distance “d”
from the center. In this way the value of Θ increases with the
group number till Θ reaches 360° or 8 Θ.

If the group number exceeds 8(GrK>8) then the robot R
computes the goal point at an angle Θ=45° at a distance 2d
from the center. The angle Θ increases in the same order as
before and continues till it completes 360° or 8 Θ for group
number 16 in the second round. In this manner the goal point
is calculated over the square field based on the group num-
bers to which a robot belongs. After completing each round
of 360° the distance increases by “d”' and the angle begins
from Θ every time.

To maintain the relative ranking throughout the process,
the robot R may need to take a halt before reaching its final
destination. In this compute step, the robot R should verify
this situation and if required, it would recalculate the position
of the halt. We call this as the secondary destination.

The “compute” step terminates as soon as the robot
computes its destination, final or secondary. The “Figure 3”
below shows the different goal points of the groups.

Move:
After identifying the goal point, the Robot R starts moving

towards the goal point. On the way towards their destination,
robots would maintain their relative ranking. It means, while

moving, robots should not cross vertically any other robot
even if their routes do not intersect each other. In other words,
to reach the destination, if a robot is going to gain a vertical
height higher (lower) than a robot of higher (lower) rank
(that is, it is crossing another robot which would affect the
relative ranking), it would stop at an € (pre-defined small
quantity) distance from that height and would wait for that
other robot to move on. In this situation, the robot R may
need to take a halt before reaching its final destination and if
required it will recalculate the position of next halt. This
halts are known as secondary destination.

Figure 3. Different goal points for different robots

A robot would always move in vertical direction first, after
acquiring the vertical height of the final destination, the robot
would then move into horizontal direction to reach the final
destination. Thus, to reach the secondary destination, a robot
moves only in vertical direction. Depending on whether a
robot reaches its final or secondary destination, the following
two courses of actions would be taken by the robot:

(i) As soon as, a robot reaches the secondary destination,
this “move” state terminates. That is, the computational
cycle will be terminated and the robot will again start a new
computational cycle with “observe” state.

(ii) Once the robot reaches its final destination that means
the job is completed successfully, without any interruption.
At the end, it would generate a signal that its job is done. At
any point of time, if the robot R finds another robot R’ at the
same vertical height (which might occur at the starting time,

if initially they are at the same height), then depending on
the rank of R’ and that of itself, R decides its next course of
action as follows:

Case A: The rank of R is greater than that of R’ and the
destination of R is in the positive direction, w.r.t. its local
co-ordinate system.

Case B: The rank of R is less than that of R’ and the des-
tination of R is in the negative direction, w.r.t. its local
co-ordinate system.

For both the cases, R would break the tie and would move
first towards its destination point.

Case C: The rank of R is greater than that of R’ and the
destination of R is in the negative direction, w.r.t. its local
co-ordinate system.

 Advances in Computing 2012, 2(1): 17-28 21

Case D: The rank of R is less than that of R’ and the des-
tination of R is in the positive direction, w.r.t. its local
co-ordinate system.

For both the cases R will wait for R’ to move first towards
its destination point.

4.2. Correctness Proofs

4.2.1. Observation 1: The Overall Process Starts at a Finite
Amount of Time

Proof: As mentioned before, the robots can have two
states: active and sleep. In Active state, the robots are alive
and executing continuously the computational cycles. In
Sleep state, robot is not active and doing nothing. This state
is like power off state. It is assumed that a robot cannot sleep
infinitely and it would become active within a finite amount
of time. We also assume that change of state of a robot takes
place independent of the other robots. Thus whenever a robot
becomes active it executes the algorithm and it is also as-
sumed that the other robots will also become active after a
finite time and will execute the same algorithm independ-
ently. Hence it is guaranteed that overall process starts at a
finite time.

Only in case of a tie, if initially the robots are at the same
height, there will be inter-dependency among these robots. If
a particular robot do not move first all other have to wait for
it and so on. The robot having the highest rank and the lowest
rank usually does not have any restriction on their movement
and thus as soon as they become live, the process starts. An
extreme situation is considered when all the robots are at the
same height.

The situation can be sub-divided into following two cases:
Case 1: All the robots are at the same height and they are

along a boundary of the region. In this case, if a robot iden-
tify itself (according to its local co-ordinate system) (1) at the
lower boundary of the region and having the highest rank, or
(2) at the upper boundary of the region and having the lowest
rank.

In both of the cases the robots will not have any restriction
on its movement and it would break the initial barrier. These
robots are called tie-breaking robots. If the robots are on the
upper boundary, the left-most one and if they are on the
lower boundary, the right-most one will be the tie-breaking
robot.

(i) (ii)

Figure 4. R1 and R4 are the tie-breaking robots in two cases

Case 2: All the robots are at a same height from the
common reference line but they are not along any boundary
of the region. In this case both the robots having lowest rank

and highest rank will not have any restriction on their
movement and they would break the initial barrier. “Figure
4”, below shows both the cases where the tie-breaking robots
either having highest or lowest rank. Once a robot break the
initial barrier, all other robots start moving in turn. Thus
within finite time the process would start.

4.2.2. Observation 2

Throughout the process, relative ranking of the robots
computed by several robots are same up to a reversal of order.
In other words, if the robots R1 and R2 compute the rank of a
robot R as i and j respectively, then either i=j or i= N-j and
this would remain same throughout the algorithm.

Proof: If the orientations of the local axes of R1 and R2 are
identical then the ranking of the robots would be same.
Otherwise, if the orientations are reverse, then the relative
ranking would be same but in reverse order. Thus i=N-j.
“Figure 5” shows the positions of five robots and their ranks
with respect to robots A and E. Robots A and E are having
opposite orientations. The ranks of the robots w.r.t A are just
the reverse of the ranks w.r.t E.

Figure 5. Relative ranks w.r.t robot A and E are same up to a reversal of
order

A robot computes the ranks of all other robots w.r.t. their
vertical distances from its local x-axis. So the relative rank-
ing of the robots would remain same throughout the algo-
rithm as the vertical movement of the robots is so restricted
that none of the robots would vertically cross any other ro-
bot.

If two robots are starting from the same vertical height,
their relative ranking will be determined by their x- coordi-
nates.

In case of such a tie, the robots start moving towards their
destination following the rule given in “move” step, which
retains their relative ranking.

Once a robot starts moving, this tie will be broken and this
situation will never occur again.

4.2.3. Observation 3: The Group Number Allocated to the
Robots Remains Same Throughout the Process

Proof: Robot R is allotted its group number according to
its rank. Thus group 1 contains 1 robot, group 2 contains 2

 R1 R2 R3 R4

 R1 R2 R3 R4

R1 R2 R3 R4

22 Deepanwita Das: A Distributed Algorithm for Un-balanced Partitioning of a Swarm
 of Autonomous Mobile Robots and Its Performance Analysis

robots of rank 2 and 3, and in this way (K-1) group contains
“K-1” number of robots. Thus remaining robots
(N-(1+2+3+….+K-1))=N-(K(K-1))/2 is contained in the Kth
group and flag assigned is GrK. As the relative ranking is
preserved and does not change throughout the algorithm
henceforth the group number is preserved.

Example: Let us consider 6 robots, with relative ranking 1,
2, and 3, 4, 5, 6. Now the group numbers allocated will be as
follows: Robot with rank 1 is assigned group 1, robots with
ranks 2, 3 is assigned group 2 and robots with ranks 4, 5, 6
are assigned group3. Thus if the relative ranking remains
unchanged throughout the process then the group numbers
allocated will certainly remain fixed throughout the process.

4.2.4. Observation 4: Θ is Always Equal to 45° and 8Θ
Completes a Circle Around the Center Point

Proof: The robot R calculates the center of the square field
which is the intersection of the diagonals. Now the robot R
first checks its group number. If it belongs to group 1 then, it
computes its goal point by calculating an angle Θ (Θ=45°)
from the center point in anti-clockwise direction and marks
its goal point at a fixed distance d from the center, consid-
ering d<=a/4 where “a”' is the dimension of the side of the
square.

Since the field is square in shape, by Lemma 1 above the
angle made at the center by the diagonals are 90°. The center
line parallel to x-axis passing through the center of the square
field makes an angle of 45° with the diagonals. Thus Θ is
taken as 45°. Now the goal point is calculated at an angle Θ at
a distance d from the center if robot R belongs to group 1,
considering d<=a/4 where “a” is the dimension of the side of
the square. If robot R belongs to group 2 the goal point is
calculated at an angle 2Θ from the center at a distance d from
the center. In this way the angle increases linearly as the
group number increases till 8Θ. If the group number crosses
8, then the next angle again starts from Θ and the goal point is
calculated at a distance 2d from the center and continues till
it reaches 8Θ. After every round of 8Θ the next goal point is
calculated at an angle Θ and the distance from the center is
incremented by d. By Lemma 2 8x45°=360° completes one
circle around the center point. Therefore the group numbers
belonging to 8, 16, 32, 64 which consist of a GP series make
an angle of 8Θ every time on completing 360° and the next
group numbers belonging to 9, 17, 33, 65 starts calculating
the goal point from the center of the field along the line
passing through the center at an angle of Θ.

4.2.5. Observation 5: The Partitioning Algorithm Results an
Unbalanced Groups of Robots

Proof: In the algorithm U_PART above the robots are
grouped according to their ranks. Thus group 1 contains 1
robot, group 2 contains 2 robots of ranks 2 and 3, and in this
way (K-1) group contains K-1 number of robots. Thus re-
maining robots (N-(1+2+3+….+K-1))=N-(K(K-1))/2 is
contained in the Kth group and flag assigned is GrK. Let us
consider two cases as follows:

Case 1: Let 10 robots be present in the field. Then by the
algorithm U_PART, the 10 robots ranked from 1 to 10, by
unbalanced partitioning robot R1 is assigned group Gr1, R2
and R3 are assigned Gr2, R4, R5, R6 is assigned Gr3 and robots
R7, R8, R9 and R10 is assigned Gr4.

The algorithm works correctly if the formula
(N-(1+2+3+...K-1))=N-(K(K-1))/2 gives the same outcome.
Verifying the formula: (n-(1+2+3+...k-1))=n-(k(k-1)). For
N=10 and selecting K=4, since K<=ceiling (N/2)=(10/2)=5,
therefore N-(K(K-1))/2=10-(4(4-1))/2=10-(4x3)/2=10-6=4.
Therefore there must be 4 robots present in the Kth group. As
the outcome matches with the result obtained from the for-
mula, the algorithm U_PART works correctly.

Case 2: Now, considering for N=11 robots, K=4, since
K<=ceiling (N/2). Now, N-(K(K-1))/2=11-(4x3)/2=11-6=5.
Therefore there are 5 robots present in the last group or group
4 in this case. Thus each group will contain number of
members equal to the group number except the last group
which may or may not contain same number of robots equal
to the group number depending on the value of N, therefore
Gr1 will contain 1 robot, Gr2 will contain 2 robots, ….,GrK
will contain [(2N-K(K-1))/2] ,where unbalanced partition is
guaranteed.

Henceforth it must also be kept in mind that the group
number is so selected that no two groups have equal number
of robots. Therefore unbalance partitioning is guaranteed.

4.2.6. Observation 6: The Movement of the Robots is
Collision Free

Proof: Throughout the algorithm, two robots can never be
at the same vertical height at the same time, except during the
starting time, when two robots can be at the same vertical
height. If initially the robots are at the same height, the tie is
broken by the rules given in Move step. Once the tie is bro-
ken, they will never be at the same height again, during their
vertical movement.

After computing the destination, each robot would first
move vertically to reach the height of the final destination.
Once they reach that height, they start moving horizontally.
Thus, if the destinations of the two robots are at different
heights, the question of collision during their horizontal
movements does not arise at all.

4.2.7. Observation 7: The Four Rules Stated in the Move
Step are Valid

Proof: If at the initial stage, two robots are at the same
height(but in two different positions), the robot having the
higher rank would start moving first, if their destinations are
in the negative direction, then the robot having the lower
rank would start moving first. If their destinations are in
opposite direction, then there wouldn't be any restriction in
the vertical movement. Consider “figure 6” below where
both R1 and R2 have the same orientations. The destinations
of robots R1 and R2 are d1 and d2 respectively. According to
both the robots the rank of R1 is less than the rank of robot R2.
In the “figure 6(a)” both of their destinations are in the

 Advances in Computing 2012, 2(1): 17-28 23

positive direction, then as per the rule, the higher ranked
robot R2 will move first. In “figure 6(b)” both of their des-
tinations are in the negative direction. As per rule, the lower
ranked robot R1 will move first.

Figure 6. R1 and R2 are having same orientation

Consider “figure 7” where both R1 and R2 having opposite
orientation. According to the local coordinate system of R1
and R2, both will rank itself as lower. Due to opposite ori-
entations, if the destinations are in positive direction ac-
cording to R1 then it is in negative direction according to R2
and vice versa.

Figure 7. R1 and R2 are having opposite orientation

In “figure 7(a)” both the destinations are in the positive
direction w.r.t R1. So, according to R1, the higher ranked
robot R2 will move first. But according to R2 the destinations
are in negative direction, so as per rule the lower ranked
robot R2 will move first. This shows that the same decision
will be taken by R1 and R2. Similarly, in “figure 7(b)”, both
the destinations are in negative direction w.r.t R1. So, ac-
cording to R1, the lower ranked robot R1 will move first. But
according to R2 the destinations are in positive direction, so
as per rule higher ranked robot will move first which is R1
according to the local coordinate system of R2. So, in both
the cases same robot will move, and the tie will be broken
without any conflict.

4.2.8. Result: The Partitioning Algorithm U_PART Will Be
Completed Within a Finite Amount of Time

Proof:
Combining all the above observations, and the fact that a

robot cannot sleep for infinite amount of time and consid-
ering the operation to be atomic, we conclude that the overall
process completes successfully within finite amount of time.

5. Simulation and Performance Analysis
of Algorithm U_PART

5.1. Simulation

In this section, the two partitioning techniques has been
compared and analysed. An example of an academic build-
ing has been considered. The building is assumed to have a
number of lecture rooms. Different number of chairs is
placed in each room. A swarm of robots have been allocated
to colour all the chairs placed in different rooms of the
building. Colouring all the chairs in one room is considered
as one task. Both the algorithms suggest partitioning the
robot swarm into number of groups so that each group can
complete at most one task. Assuming that numbers of groups
are equal to the number of task to be done.

A simulator has been developed to evaluate and compare
the overall performance of un-balanced algorithm over the
balanced algorithm. 50 test cases have been analysed using
the simulator to study the performance of the un-balanced
algorithm over balanced algorithm. The simulator calculates
the total time required to complete the whole job (painting all
the chairs in all the rooms of the building) by the swarm by
applying the balanced algorithm as well as the un-balanced
algorithm. Based on the comparison of time required to
complete the job the simulator suggests the technique to be
used for a particular task to be done in minimum time.

5.2. System Requirements of the Simulator

5.2.1. Software:

Turbo C++ version 4.5 compiler, Matlab 7, Windows XP
Professional (SP2)

5.2.2. Hardware

Processor: Pentium IV 1.4 GHz minimum, Disk Space: 2
GB, RAM: 1024 MB, DVD ROM drive, High resolution
monitor (XGA recommended), Keyboard and Mouse.

5.3. Performance Analysis

The simulator studied 50 test cases to evaluate the per-
formance of the unbalanced algorithm over the balanced
algorithm. A swarm is allocated to colour all the chairs
situated in different rooms inside the building. Colouring all
the chairs in one room is considered as one task. It is as-
sumed that one robot can paint a single chair within 5 min-
utes. The task is carried out concurrently by individual robot.

N = Number of robots in the swarm.
K = Number of groups formed.

24 Deepanwita Das: A Distributed Algorithm for Un-balanced Partitioning of a Swarm
 of Autonomous Mobile Robots and Its Performance Analysis

Ci = Number of chairs present in the ith room.
Tib = Time taken to colour all the chairs in the ith room, in

minutes by balanced partitioning.
Tiub = Time taken to colour all the chairs in the ith room, in

minutes by un-balanced partitioning.
TOB = Maximum time taken to complete colouring all the

chairs present inside the building via balanced partitioning.
TOUB = Maximum time taken to complete colouring all

the chairs present inside the building via un-balanced parti-
tioning.

The tables in Appendix A (table no A.1& A.2) shows the
results obtained from 50 test cases. Out of 50 test cases
mentioned above, 3 random cases have been plotted to bring
out the comparison between balanced and un-balanced
techniques.

Problem 1: The building has two rooms, having 10 and
160 chairs respectively. The swarm is partitioned into two
groups (one group per task) using balanced as well as un-
balanced partitioning. Then the total time required to com-
plete the task is compared and analysed for both partitioning
techniques.

Problem 2: The building has three rooms, having 2, 50 and
300 chairs respectively. The swarm is partitioned into three
groups using balanced as well as unbalanced partitioning.
Then the total time required to complete the task is compared
and analysed for both partitioning techniques.

Figure 8. Represents problem 1

Problem 3: The building has four rooms, having 4, 40, 80
and 200 chairs respectively. The swarm is partitioned into
four groups using balanced as well as unbalanced partition-
ing. Then the total time required to complete the task is
compared and analysed for both partitioning techniques.
“Figure 8”, “figure 9” and “figure 10” plots the number of
chairs to be collared along the x-axis and the time in minutes
along the y-axis.

Figure 9. Represents problem 2

Figure 10. Represents problem 3

Figure 11. Statistical representation

Result: Out of the 50 test cases analysed, 70 percent of the
cases prefer un-balanced partitioning and 30 percent of the
cases support balanced partitioning with respect to time.
“Figure 11”, shows the statistical representation of cases for
both balanced and un-balanced partitioning techniques re-
spectively.

The following conclusions can be made from the experi-
ments carried out:

(i) Un-balanced partitioning is advantageous for uneven
task distribution where the task difference between the
groups is huge. In such situations, the time taken to complete
the total task is more in comparison to un-balanced parti-
tioning.

(ii) Algorithm U_PART is useful when the task distribu-
tion between the groups increases in ascending order with
huge difference between each group.

(iii) With respect to time, un-balanced partitioning gains
advantage over balanced partitioning, as the value of K in-
creases and when the last group contains huge task load
compared to other groups.

(iv) Balanced partitioning is not possible for any prime
value of N and also for all N, K pairs where K does not di-
vides N. As there are no such restrictions for un-balanced
partitioning, hence U_PART algorithm partitions N for a
wide range of values K.

Thus it can be concluded that for certain applications,
where un-even task distribution is required; un-balanced
partitioning is more advantageous compared to balanced
partitioning.

 Advances in Computing 2012, 2(1): 17-28 25

6. An Alternative Approach to
Unbalanced Partitioning

6.1. Limitation of U_PART Algorithm

Although, algorithm U_PART works well for a large
value of N, K pairs but it limits the members in each group to
its group number except the last group, for all values of N.

This limitation has been overcome in the next section,
where an alternative approach has been taken into consid-
eration towards un-balanced partitioning and an un-balanced
algorithm U_PART II has been proposed.

6.2. Algorithm: Unbalanced Partitioning II

This section proposes another algorithm to partition N
number of robots into K number of unbalanced groups. All
assumptions are same as the first algorithm. On being active
each robot uses an array m[50] which stores the number of
members present in each group and a variable s which stores
the sum of the members in each group, except the last group.
Algorithm U_PARTII (Executed by Robot R)

Look: The Look step remains same as in algorithm
U_PART.

Compute:
Step 1: This step remains same as in algorithm U_PART.
Step 2: Next, robot R checks whether (K==2), if true then

there are only two groups. Member in Gr1 is m1=(N/2) and
Gr2 is m2=(N-m1), where m1 and m2 (which stores only in-
teger values and the fractional part if any is truncated),
represents the number of members in Gr1 and Gr2 respec-
tively. Next, it is checked if(m1==m2); if true then set
m1=m1-1 and set (m2=m2+1). Otherwise go to step 3.

Step 3: If (K!=2) then robot R initializes i=0; and for each
value of i, it sets m[i]=(N/K-i) (m[i] stores only integer
values and the fractional part s are truncated) and increments
the value (i=i+1) till (i<K-1). m[i] gives the number of
members for (i+1)th group, Gri+1.

Step 4: R initializes s=0; and stores the sum of all m[i]
values in variable s for all values of i; it updates s=s+m[i] for
every value of i and checks whether s exceeds N; i.e.; (s<N)
till (i<K-1). If true, then ml=N-s where ml stores the number
of members in the Kth group, GrK. Otherwise go to step 5.

Step 5: If (s>=N) is true then R decides that only (K-1)
groups are possible and updates s=s-m[i] and assigns ml=N-s;
where ml represents the number of members in the (K-1)th

group, GrK-1.
Step 6: After robot R calculates the number of members in

each group it then decides its own group number. R first
initializes i=0; If the robot is having rank “p”, it checks
whether p<=m[i], if true it then sets the FLAG=i+1. If false it
increments the value of I by 1 and checks if p<=m[i]+m[i+1].
If true it sets FLAG=i+2; for each false outcome the value of
i is incremented by 1 and the rank p is checked against the
previous cumulative sum added to the next group members.
The checking continues till i<(K-1), where K groups are
possible (otherwise it continues till i<(K-2)). If false R is
allocated to Kth group and sets its FLAG=K. Otherwise it

belongs to GrK-1; FLAG=K-1 for (K-1) groups.
Step 7: This step remains same as in algorithm U_PART

step 5.
Move: The move step remains same as in algorithm

U_PART.

6.3. Correctness Proofs for U_Part II

6.3.1. Observations

All the observations mentioned in algorithm U_PART
remains same and are all valid for algorithm U_PARTII. The
algorithm U_PARTII guarantees un-balanced partitioning.
Let us consider the flowing cases below:

Case 1: Let N=10, i.e.; robots present in the field and K=2.
Then by the algorithm U_PARTII, the 10 robots ranked from
1 to 10. As K=2, by U_PARTII; m1=(N/2)=10/2=5;
m2=N-5=5; now since(m1==m2) we set m1=m1-1 and
m2=m2+1; hence m1=5-1=4; m2=5+1=6. Robot R1, R2, R3, R4
is assigned group Gr1 as rank p<=m1 and R5, R6, R7, R8, R9,
R10 belongs to Gr2 by algorithm U_PARTII.

Case 2: Let N=25 and K=3. Then by algorithm U_PARTII,
the 25 robots are ranked from 1 to 25. As here K>2, by
U_PARTII; i=0, s=0; as m[i]=(N/K-i); m[1]=25/(3-0)=8
(taking only the truncated value); m[2]=25/(3-1)=25/2=12
and s=s+m[0]+m[1]=20; as (20<N) henceforth ml=N-s=
25-20=5; therefore Gri+1= Gr1 contains 8 members; simi-
larly Gr2 contains 12 members and Gr3 contains 5 members.
Robot R1, R2, R3, …., R8 is assigned group Gr1 as rank
p<=m[0] and R9, R10, R11,…., R20 belongs to Gr2 since
p<=m[0]+m[1]=12+8=20 and finally R21, R22, R23,…., R25
belongs to Gr3.

6.3.2. Result: The partitioning algorithm U_PARTII will be
completed within a finite amount of time

6.4. Limitation of Algorithm U_PARTII

The U_PARTII algorithm overcomes the shortcomings of
U_PART algorithm by allocating members to groups which
are not fixed for all values of N. But it does not guarantee
partitions for a wide range of values of K. Let us take up two
examples to bring out the limitation:

Case 1: For N=10 and K=2; Gr1 and Gr2 contains m1=4
and m2=6 members each.

Case 2: For N=25 and K=5; Members in group 1 = 5;
Members in group 2 = 6; Members in group 3 = 8; Members
in group 4 = 6. For this value of n=25, only 4 groups are
possible.

Thus U_PARTII algorithm guarantees un-balanced parti-
tioning but does not guarantees partitioning for all values of
K. We may try to overcome this limitation in our future
work.

7. Conclusions
The development in the field of swarm robotics is reach-

ing a point where various new applications are emerging.
Here we have dealt with the partitioning problem where

26 Deepanwita Das: A Distributed Algorithm for Un-balanced Partitioning of a Swarm
 of Autonomous Mobile Robots and Its Performance Analysis

swarm of autonomous robots are balanced partitioned into
equal groups of robots and have proposed our own parti-
tioning techniques for un-balanced partitioning.

In case of un-balanced task allocation the balanced parti-
tioning becomes disadvantageous from the time consuming
point of view, thus in such an environment unbalanced par-
titioning has been introduced, where a swarm of robots are
partitioned into K unbalanced groups.

The algorithm U_PART partitions a swarm of robots in an
unbalanced way over a square field. If the area considered is
rectangle or polygonal in shape, then the partitioning can be
done in similar manner. To bring out the benefits of the
algorithm U_PART, a simulator has been created, where 50
experiments have been carried out. Based on the results
obtained from the 50 test cases, it can be concluded that
U_PART algorithm performs better than the balanced algo-
rithm for certain applications which uses uneven task dis-
tribution techniques.

As U_PART algorithm allocates fixed number of robots
for each group except the last group; for all values of N,
we have proposed another alternative approach towards
un-balanced partitioning to overcome this limitation via
algorithm U_PARTII. Although the algorithm U_PARTII
overcomes the limitation of algorithm U_PART but does not
guarantees partitioning for all values of K.

Henceforth, it may be concluded that the two alternative
approaches for unbalanced partitioning certainly have their
own limitations, but at the same time are useful for particular
purposes and can be used alternatively as the situation de-
mands.

8. Future Work
This piece of research work proposes two un-balanced

partitioning approach on a swarm of autonomous mobile
robots. Here two algorithms U_PART and U_PARTII have
been proposed which overcomes the shortcomings of the
balanced algorithm, where N robots have been partitioned
into K unbalanced groups. .Here a square field has been
considered over which the robots are placed for partitioning;
the algorithm can also be performed over a rectangle or
polygonal field of known or unknown dimension, in similar
manner.

Both the algorithms have certain limitations which may be
taken up as future scopes of study: (i) Overcoming the
limitation on fixed number of members in a group in the
algorithm U_PART. (ii) Overcoming the limitation on par-
titioning for wide range of K values in the algorithm
U_PARTII. (iii) Moreover, an obstacle-less field has been
considered for both the techniques. In practical cases there
may be situations where the robots are placed in a field
where obstacles are present. It may be aimed at devising an
algorithm in future for unbalanced partitioning which will
work in such environment also. (iv) The robots considered
here has unlimited visibility capabilities. In future research
work, the algorithm may be extended to support limited

visibility of the robots as well.

ACKNOWLEDGEMENTS
We would like to acknowledge the generous support of the

Department of Information Technology of National Institute
of Technology, Durgapur.

APPENDIX A
Table A.1. Result of Simulation: 35 test cases supporting unbalanced
partitioning

Test Cases

Ci
=Task
in each
group

Tib Tiub TOB TOUB

Case 1: N=10, K=2 10
110

10
110

50
65 110 65

Case 2: N=10, K=2 23
322

25
325

115
180 325 180

Case 3: N=12, K=3
2

20
100

5
25

125

10
50
60

125 60

Case 4: N=12, K=4

2
20
50
100

5
35
85

170

10
50
85
85

170 85

Case 5: N=15, K=3
3

30
90

5
30
90

15
75
40

90 75

Case 6: N=16, K=4

4
40
80
200

5
50

100
250

20
100
135
100

250 135

Case 7: N=20, K=5

14
35
55
75
105

20
45
70
95

135

70
90
95
95
55

135 95

Case 8: N=21, K=3
2

50
300

5
40

215

10
125
85

215 125

Case 9: N=25, K=5

1
5

15
25
55

5
5

15
25
55

5
15
25
35
20

55 35

Case 10: N=30, K=5

20
40
60
100
200

20
35
50
85

170

100
100
100
125
50

170 125

Case 11: N=20, K=2 10
160

5
80

50
45 80 50

Case 12: N=12, K=3
2

28
300

5
35

375

10
70
170

375 170

Case 13: N=18, K=3
3

10
200

5
10

170

15
25
70

170 70

Case 14: N=27, K=3
2
8

100

5
5

60

10
20
25

60 25

 Advances in Computing 2012, 2(1): 17-28 27

Case 15: N=27, K=3
5

10
95

5
10
55

25
25
20

55 25

Case 16: N=27, K=3
5

25
300

5
15

170

25
65
65

170 65

Case 17: N=50, K=5

2
5

10
11
90

5
5
5

10
45

10
15
20
15
15

45 20

Case 18: N=111, K=3
1
2

50

5
5

10

5
5
5

10 5

Case 19: N=9, K=3
2
3
9

5
5

15

10
10
10

15 10

Case 20: N=6, K=3
3
5
7

10
15
20

15
15
15

20 15

Case 21: N=10, K=2 2
170

5
170

10
95 170 95

Case 22: N=15, K=5

2
5

10
30
50

5
10
20
50
85

10
15
20
40
50

85 50

Case 23: N=90, K=10

9
10
22
33
44
55
66
77
88
99

5
10
15
20
25
35
40
45
50
55

45
25
40
45
45
50
50
50
50
15

55 50

Case 24: N=80, K=10

8
10
20
30
40
50
60
70
80
90

5
10
15
20
25
35
40
45
50
60

40
25
35
40
40
45
45
45
45
15

60 45

Case 25: N=70, K=10

7
20
30
40
50
60
70
80
90
100

5
15
25
30
40
45
50
60
65
75

35
50
50
50
50
50
50
50
50
20

75 50

Case 26: N=21, K=3
2

23
333

5
20

240

10
60
95

240 95

Case 27: N=15, K=5

2
3
5

55
66

5
5

10
95

110

10
10
10
70
70

110 70

Case 28: N=60, K=10 2
3

5
5

10
10 15 10

4
6
8

10
11
14
15
17

5
5

10
10
10
15
15
15

10
10
10
10
10
10
10
10

Case 29: N=70, K=10

1
2
3
4
5
6
7
8
9

10

5
5
5
5
5
5
5

10
10
10

5
5
5
5
5
5
5
5
5
5

10 5

Case 30: N=80, K=10

1
2
3
4
5
6
7
8
9

10

5
5
5
5
5
5
5
5

10
10

5
5
5
5
5
5
5
5
5
5

10 5

Case 31: N=90, K=10

1
2
3
4
5
6
7
8
9

10

5
5
5
5
5
5
5
5
5

10

5
5
5
5
5
5
5
5
5
5

10 5

Case 32: N=40, K=4

1
3
5

50

5
5
5

25

5
10
10
10

25 10

Case 33: N=40, K=5

1
2
3
4

40

5
5
5
5

25

5
5
5
5

10

25 10

Case 34: N=100, K=5

1
3
5
7

70

5
5
5
5

20

5
10
10
10
5

20 10

Case 35: N=16, K=4

1
2

20
40

5
5

25
50

5
5

35
20

50 35

Table A.2. Result of Simulation: 15 test cases supporting balanced parti-
tioning

Test Cases

Ci
=Task

in
each
group

Tib Tiub TOB TOUB

Case 1: N=12, K=3 2
5

5
10

10
15 10 15

28 Deepanwita Das: A Distributed Algorithm for Un-balanced Partitioning of a Swarm
 of Autonomous Mobile Robots and Its Performance Analysis

7 10 5

Case 2: N=21, K=3
5

15
35

5
5

25

25
40
10

25 40

Case 3: N=12, K=3
7

50
100

5
40
75

35
125
30

75 125

Case 4: N=28, K=4

4
7
8

10

5
5

10
10

20
20
15
5

10 20

Case 5: N=30, K=3
20
30
40

10
15
20

100
75
10

20 100

Case 6: N=40, K=4

10
30
50
70

5
15
25
35

50
75
85
15

35 85

Case 7: N=40, K=5

10
40
70
100
140

10
25
45
65
90

50
100
120
125
25

90 125

Case 8: N=100, K=5

100
200
300
400
500

25
50
75

100
125

500
500
500
500
30

125 500

Case 9: N=200, K=10

5
25
625
725
825
925

1000
1005
1010
1020

5
10

160
185
210
235
250
255
255
255

25
65

1045
910
825
775
715
630
565
35

255 1045

Case 10: N=300, K=3
2
4

70

55
5

10
10
5

5 10

Case 11: N=300, K=3

5
50
55
67
87
97
107
207
407
900

5
10
10
15
15
20
2

35
70

150

25
125
95
85
90
85
80

130
230
20

150 230

Case 12: N=300, K=10

2
20
50
80
100
150
200
500
600
900

5
5

10
15
20
25
35
85

100
150

10
50
85

100
100
125
145
315
335
20

150 335

Case 13: N=27, K=3
5

25
105

5
15
60

25
65
25

60 65

Case 14: N=120, K=3
2

40
160

5
5

20

10
100
10

20 100

Case 15: N=48, K=4

5
50
60
120

5
25
25
50

25
125
100
15

50 125

REFERENCES
[1] A. Efrima and D. Peleg, Distributed algorithms for parti-

tioning a swarm of autonomous mobile robots, Journal,
Theoretical Computer Science, The Weizmann Institute of
Science, 2009, vol.410 issue 14.

[2] A. Efrima and D. Peleg, Distributed Models and Algorithms
for Mobile Robot Systems, in 33rd Conference on Current
Trends in Theory and Practice of Computer Science,
Heidel- berg, 2007.

[3] A. Efrima and D. Peleg, Algorithms for partitioning swarms
of autonomous mobile r obot, The Weizmann Institute of
Science, Technical Report MCS06-08, October 2006.

[4] A. Maity and D. Das, An algorithm for un-balanced parti-
tioning of a swarm of a utonomous mobile robots, in 3rd
International Conference on Intelligent Science and
Technology, March 2011.

[5] N.Agmon and D. Peleg, Fault-Tolerant gathering algorithms
for autonomous mobile r obots, The Weizmann Institute of
Science, Israel, July 2003.

[6] S. Berman, A. Halasz, M.A. Hsieh and V. Kumar, Optimized
stochastic policies for task allocation in swarms of robots,
IEEE Transactions on Robotics, vol.25, no.4, August 2009.

[7] D. Das and S. Mukhopadhyaya, An algorithm for painting
an area by swarm of mobile r obots, in Annual International
Conference on Control, Automation and Robotics, Sin-
gapore, pp. C1-C6, February 2011.

[8] H.J. Lee and K.B. Sim. Distributed moving algorithm of
swarm robots to enclose an invader. International Confe-
rence on Control, Automation and Systems, pp. 14-17,
COEX, Seoul, Korea, Oct. 2008.

[9] F. Ducatelle, A. Forster, G.A. Di Caro and L.M. Gambar-
della.:New task allocation methods for robotic swarms.

[10] M. Frison1, N.L. Tran, N. Baiboun, A. Brutschy, G. Pin, A.
Roli1, M. Dorigoand M. Birattari:Self-organized Task Par-
titioning in a Swarm of Robots. ANTS 2010, LNCS 6234,
pp. 287298, 2010.

[11] A. Maity and D. Das, A distributed algorithm for
un-balanced partitioning of a swarm of autonomous mobile
robots and its performance analysis. ICRTIT 2011, MIT
Chennai, July 2011.

[12] P. Flochinni, G. Prencipe, N. Santoro and P. Widmayer,
Distributed coordination of a set of autonomous mobile ro-
bots, Proc. IEEE Intelligent Vehicles Symp, pp. 480-485,
2000.

	1. Introduction
	2. Related Work
	3. Models, Assumptions and Problem Definition
	4. Partitioning Algorithm
	4.1. Algorithm for Unbalanced Partitioning
	4.2. Correctness Proofs

	5. Simulation and Performance Analysis of Algorithm U_PART
	5.1. Simulation
	5.2. System Requirements of the Simulator
	5.3. Performance Analysis

	6. An Alternative Approach to Unbalanced Partitioning
	6.1. Limitation of U_PART Algorithm
	6.2. Algorithm: Unbalanced Partitioning II
	6.3. Correctness Proofs for U_Part II
	6.4. Limitation of Algorithm U_PARTII

	7. Conclusions
	8. Future Work

