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Abstract  This piece of work studies the partitioning problem on independently operating swarm of autonomous mobile 
robots and devises algorithms for unbalanced partitioning in a distributed computing environment. The robots considered 
here are all identical and are very simple and weak. There is no central control over the robots and the robots do not com-
municate among themselves. Each robot executes the same algorithm based on their local information. This paper frames the 
algorithms for unbalanced partitioning by sorting the robots based on their ranking and then allocating them in different 
groups based on their ranks, such that N robots are divided into K unbalanced groups of unequal robots in each group. This 
paper also presents the performance based analysis of the un-balanced algorithm U_PART over the balanced algorithm and 
examines their effects via different examples through 50 separate test cases. It also tries to bring out the shortcomings of the 
proposed U_PART algorithm and proposes another alternative approach towards un-balanced partitioning to overcome the 
limitation of the U_PART algorithm. 
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1. Introduction 
Swarm robotics is a new approach to the coordination of 

multi robots which consist of a large number of simple, 
identical, autonomous and mobile robots over a distributed 
computing environment[1,2,4]. Such systems mainly con-
sider identical point robots that are oblivious and autono-
mous, with strong fault tolerance capabilities as a group[5]. 
These concepts of swarm robotics have various applications 
such as task allocation[6], military operations, search and 
rescue victims, lawn mowing and sweeping, space mission, 
operations like enclosing an invader[8], area exploration 
and coverage[7] etc. Existing task allocation techniques[6,9, 
10] partition the swarm into several groups and dynamically 
allocate each group of robots to multiple tasks. They may 
use balanced partitioning techniques[1-3] that partitions n 
number of robots in k-size balanced groups. But such ap-
proach may take large amount of time to complete a job, 
when groups are allocated multiple tasks with different 
workloads, as discussed in an example. 

Consider the problem, where swarm of robots is assigned 
to paint 50 doors and 50 windows of a building. The area of 
each window is (3*2)6 square feet and area of each door is  
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(6*3)18 square feet respectively and the swarm contain a 
total of 10 robots.  

Say, the whole swarm is partitioned into two groups. 
Group 1 and group 2 are assigned to colour the windows and 
doors respectively. As per balanced partitioning each group 
contains 5 robots. The time required to colour the doors will 
be greater than to colour the windows by five robots as the 
total area of the windows is much lesser than the total area of 
the doors. In this situation, some robots in group 1 will 
complete its job and remain idle while others in group 2 are 
still with a larger work load. If the swarm is partitioned in an 
unbalanced manner of unequal members in each group, then 
the groups may be allocated task according to the work load, 
that is, smaller group may be assigned for smaller part of the 
job (colouring the windows) and the larger group can be 
assigned for the larger part (colouring the doors). Then no 
robots will be idle and time required in completing the job 
will be lesser than that of balanced Partitioning. 

An algorithm U_Part[4] has been proposed, to partition N 
number of mobile robots into K number of groups with 
unequal members in each group. This technique enhances 
the overall performance of the swarm; as less number of 
robots will be idle and time required in completing the job 
will be lesser than that of balanced partitioning. An al-
ternative approach is also presented in the paper as 
algorithm U_PartII. This paper also studies the per-
formance analysis of the un-balanced algorithm over the 
existing balanced partitioning techniques presented in[1-3]. 
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2. Related Work 
Large amount of research work has been reported on par-

titioning problem[1-3]. In most of them the robot follows the 
basic model Wait-Observe-Compute-Move model. Depend-
ing on the type of the problem the basic model is modified 
and used to devise solutions. The algorithms consist of a 
sequence of computational cycles, which is defined by a 
sequence of “Look”, “Compute”, and “Move” steps:  

Look: Whenever a robot becomes active, it observes and 
marks the positions of all other robots, asynchronously and 
independently from the other robots, based upon its local 
coordinate system.  

Compute: Depending on the observations made in the 
previous step, the robot calculates its destination point based 
on its own position and the current locations of the other 
robots, etc. 

Move: The robot moves towards the destination point 
which has been calculated in the compute step. 

The paper[3] by Asaf Afrima and David Peleg, studies the 
problem PARTITION(n,k), which partitions n robots in k 
size balanced groups, and examines the solvability of this 
problem on various computation model. The algorithm dis-
cussed in this paper is PART, Part2, Part_Disperse, 
Part_Expand, Part_Asym, Part_Sig and Part_Sig2.  

The paper[1,2] reviews and explores various modification 
in the basic model developed in[3] and discusses their effects 
on the solvability of the partitioning problem. 

David Peleg et. al.[1,2] has considered only balanced 
partitioning techniques and has stated the basic conditions 
for partitioning. They are as follows: 

1. In the FSYNC and SSYNC model, having common 
axes direction is a necessary and sufficient condition.  In 
ASYNC model, having common axes direction is necessary, 
and one common axis orientation is sufficient condition for 
Partition (n, k) to be deterministically solvable for all values 
of n and k .  

2. In the half-compass model, the partitioning problem is 
solvable in the SSYNC model. 

4. In the no-compass model, for any timing model, Parti-
tion (n, k) is unsolvable for k>1.  

5. In the axes-only model, for any timing model, Partition 
(n, k) is unsolvable for some values of n and k .  

6. In the direction-only model and for the SSYNC timing 
model, Partition (n, k) is solvable for all values of n and k.  

So far, the research works on partitioning problem has 
considered only the balanced approach for partitioning the 
swarm. In various task allocation techniques, the task load 
may vary in different groups. In such an environment the 
balanced partitioning technique will allocate task to groups 
having equal number of robots in each group. In such a set-
ting, the task load will be more in some groups, whereas in 
other groups some robots remain unused. As a solution, this 
paper introduces the unbalanced partitioning techniques. 

Here, two different algorithms for unbalanced partitioning 
are presented where a swarm of n robots are partitioned into 
k unbalanced groups. The first algorithm U_PART presents 

and unbalanced partitioning technique which creates groups 
of unequal members of robots. A simulator is being devel-
oped to check the time difference in completing distributed 
workloads, while using balanced and unbalanced group 
partitioning techniques. Next a comparative performance 
analysis between balanced and unbalanced techniques[11] 
has been carried out through the simulator. An algorithm 
U_Part limits the number of members in each group (except 
the last group) for all values of N. this limitation has been 
overcome in the second algorithm U_PartII. 

3. Models, Assumptions and Problem 
Definition 

Before going to describe the algorithm, let us discuss the 
assumptions and models used, and introduce the terminol-
ogies used in this paper. Our problem is to partition n number 
of robots into k no of size unbalanced groups. These robots 
are initially deployed within the priori known region. Robots 
may occupy any position within the region. We assume that 
no two robots occupy the same position. The robots are 
assumed to have the following characteristics[7,12].  

1. Identical and Homogeneous - All the robots are iden-
tical in all respect, especially, they have the same computa-
tional capability. All the robots are assumed to be point 
robots with unlimited visibility. However, we assume that 
each of them is having a sensing zone of radius T (T is small). 
By this we mean that if a robot is required to carry out some 
job for a particular position (collection of information about 
that position, or painting that position etc.), instead of actu-
ally reaching the position, that can be carried out from a 
distance of T also as shown in “figure 1” 

 
Figure 1.  Sensing zone of radius T 

2. Autonomous - There is neither any central authority 
nor any external control over the robots. They do not even 
communicate among themselves. 

3. Mobile - All robots are allowed to move on a plane. 
4. Computation Model - Here we follow the basic Ob-

serve-Compute-Move model. A computational cycle is de-
fined to be a sequence of “observe”, “compute” and “move” 
steps. Each of the robots executes same instructions in all the 
computational cycles. Once a robot completes one compu-
tational cycle, it starts executing the next one. The actions 
taken by a robot in compute and move steps, entirely depend 
on the observations made in observe step. In some situations, 
an observation might lead a robot not to change its position 
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in move step. In such cases the robot seems to be idle, though 
it is actually executing all the three steps. 

5. Oblivious or Memoryless - Robots do not retain any 
information gathered in the previous computational cycle. In 
every computational cycle, a robot starts computing from 
very beginning depending only on the positions of the other 
robots observed at that computational cycle.  

The robots can have two states: active and sleep. In Active 
state, the robots are alive and executing continuously the 
computational cycles. In Sleep state, robot is not active and 
doing nothing. This state is like “power off” state. It is as-
sumed that a robot cannot sleep infinitely and it would be-
come active within a finite amount of time. We also assume 
that change of state of a robot takes place independent of the 
other robots.  

The operation considered here is assumed to be an Atomic 
operation. During the computation process, a robot cannot 
switch over to the “sleep” state also. The models considered 
here are as follows: 

Asynchronous model: Robots operate on independent 
cycles of variable lengths. They do not share any common 
clock[7,12]. 

Direction only: Directions of both axes are common to all 
the robots, but the positive orientation of the axes may be 
different[7,12]. Here, we assume that x-axes of the robots are 
parallel to the known common reference line. Therefore, the 
direction of x-axis is common to all the robots but the robots 
may have different views of the positive orientation of the 
axis. However, it is assumed that the direction of the positive 
y-axis is 90° counter clockwise to the positive direction of 
the x-axis. Thus, direction of y-axis is also common to all the 
robots, except possibly the positive orientation. Each robot 
has its local co-ordinate system. All the robots would assume 
that they occupy the position (0, 0) with respect to their local 
co-ordinate system. Further, we assume that these various 
co-ordinate systems might not share a common scale. “Fig-
ure 2” shows the local co-ordinate systems of four robots R1, 
R2, R3, and R4, and the common reference line XX'.  

 
Figure 2.  Local coordinate system of 4 robots 

Lemma 1: The diagonals of a square intersects each other 
at the center of the square and makes an angle of 90° with 
each other. 

Lemma 2: The angle traced by a complete circle is equal 
to 360°. 

4. Partitioning Algorithm 
The first part of this section describes the proposed algo-

rithm for un-balanced partitioning. The correctness proves of 
the algorithm are given in the second part. 

4.1. Algorithm for Unbalanced Partitioning 
This research work proposed an algorithm to partition N 

number of robots into K number of unbalanced groups. 
Further, we assume that all N robots are enclosed within a 
known obstacle free square region The robots need to be 
partitioned into K (Gr1, Gr2, Gr3 ,…., Grk )number of 
size-unbalanced groups. As the groups will not be balanced 
in size, so the total number of robots in each group always 
differs with the number of members in all other groups. 

To create such unbalanced groups, each group will contain 
number of members equal to the group number except the 
last group which may or may not contain same number of 
robots equal to the group number depending on the value of 
N. As the group number and the number of members in a 
group are same, so now onwards value of group number is 
considered as the number of members in that group. Each 
robot contains a flag (FLAG) which is set with the value of 
the particular group number to which the robot is assigned.  

As soon as a robot R becomes alive it performs the fol-
lowing computational cycle “observe-compute-move”. As 
long as a robot is in alive state, after completing one such 
computational cycle, it would again start another cycle and 
continue in this way until it completes its assigned job.    
Each robot in the swarm executes same algorithm U_PART 
when active. 

In the look state a robot gathers information of its 
neighbour. Then it computes its rank, group number and goal 
point. The rank is calculated with the help of the observed 
information. Using the rank of the robot its group number is 
calculated. The robot needs to move towards the respective 
goal points to form the partition. The number of goal points 
is same as the number of groups formed. So the goal point of 
robot R is calculated in the compute step. It moves to the goal 
point in the move step. 
Algorithm U_PART (Executed by Robot R) 

Look: 
According to the local co-ordinate system, a robot R first 

observes the position of all other robots. Let the co-ordinates 
be (a1, b1), (a2, b2), …. (an-1, bn-1), whereas, its own 
co-ordinate would be (0,0). It is to be noted here that some of 
these ai, bi values might be negative also. 

Compute: 
Step 1: According to the values of y-co-ordinates, the 

robot R will order all the robots (including itself) so that the 
robot having the largest value of y coordinate will have the 
highest rank, that is, N. Without loss of generality, we as-
sume that the co-ordinates of N robots, after sorting are (x1, 
y1), (x2, y2), (xN, yN), so that (y1<=y2<=y3<=... yN). The robot 
having the co-ordinate (xi, yi) would have the rank i and the 
robot will be mentioned as Ri, 1<=i<=N. In case of a tie, the 
values of x-coordinate of the robots are considered. The 
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robot having lower x-coordinate would have the lower rank. 
In case of tie in the value of y-coordinate, means two ro-

bots are in a same location which is not possible practically. 
In this way, the robot R would determine its own rank. Let 
the rank of R be p. From now onwards R and Rp will be used 
interchangeably.  

Step 2: The value of “K” that is; the total number of 
groups formed should be K<=ceiling (N/2) and must be 
selected in such a manner that no two groups contain equal 
number of robots.  

Step 3: Once a robot gets its rank it checks whether it is 
having the lowest or highest rank among all other robots. The 
lowest ranked robot always belongs to the first group and the 
highest ranked robots belong to the last group. 

Step 4: If the robot is having rank “p” which is neither 
lowest nor highest, it checks whether p<=1+Gr1, if true it 
then sets the FLAG=2. If false it again checks 
p<=1+Gr2+Gr3, if true it sets FLAG=3. For each false out-
come the rank is checked against the previous cumulative 
sum added to the next group number. This checking con-
tinues till p<= (K(K-1))/2. If true, then FLAG=(K-1). If false 
then robot will be assigned to the Kth group. 

Step 5: The robot R computes the group number to which 
it is allocated. It then needs to compute the goal point to-
wards which it must move to form the partition. The robot R 
calculates the center of the square field which is the inter-
section of the diagonals. Now the robot R first checks its 
group number. If it belongs to group 1 then, it computes its 
goal point by calculating an angle Θ (theta) where Θ=45°, 
from the center point in anti-clockwise direction along the 
line XX' and marks its goal point at a fixed distance “d” from 
the center, considering d<=a/4 where “a” is the dimension of 
the side of the square. If the robot R belongs to group 2, it 
then computes its goal point at an angle 2Θ at a distance “d” 
from the center. In this way the value of Θ increases with the 
group number till Θ reaches 360° or 8 Θ. 

If the group number exceeds 8(GrK>8) then the robot R 
computes the goal point at an angle Θ=45° at a distance 2d 
from the center. The angle Θ increases in the same order as 
before and continues till it completes 360° or 8 Θ for group 
number 16 in the second round. In this manner the goal point 
is calculated over the square field based on the group num-
bers to which a robot belongs. After completing each round 
of 360° the distance increases by “d”' and the angle begins 
from Θ every time. 

To maintain the relative ranking throughout the process, 
the robot R may need to take a halt before reaching its final 
destination. In this compute step, the robot R should verify 
this situation and if required, it would recalculate the position 
of the halt. We call this as the secondary destination. 

The “compute” step terminates as soon as the robot 
computes its destination, final or secondary. The “Figure 3” 
below shows the different goal points of the groups. 

Move: 
After identifying the goal point, the Robot R starts moving 

towards the goal point. On the way towards their destination, 
robots would maintain their relative ranking. It means, while 

moving, robots should not cross vertically any other robot 
even if their routes do not intersect each other. In other words, 
to reach the destination, if a robot is going to gain a vertical 
height higher (lower) than a robot of higher (lower) rank 
(that is, it is crossing another robot which would affect the 
relative ranking), it would stop at an € (pre-defined small 
quantity) distance from that height and would wait for that 
other robot to move on. In this situation, the robot R may 
need to take a halt before reaching its final destination and if 
required it will recalculate the position of next halt. This 
halts are known as secondary destination.  

 
Figure 3.  Different goal points for different robots 

A robot would always move in vertical direction first, after 
acquiring the vertical height of the final destination, the robot 
would then move into horizontal direction to reach the final 
destination. Thus, to reach the secondary destination, a robot 
moves only in vertical direction. Depending on whether a 
robot reaches its final or secondary destination, the following 
two courses of actions would be taken by the robot: 

(i) As soon as, a robot reaches the secondary destination, 
this “move” state terminates. That is, the computational 
cycle will be terminated and the robot will again start a new 
computational cycle with “observe” state. 

(ii) Once the robot reaches its final destination that means 
the job is completed successfully, without any interruption. 
At the end, it would generate a signal that its job is done. At 
any point of time, if the robot R finds another robot R’ at the 
same vertical height (which might occur at the starting time,  

if initially they are at the same height), then depending on 
the rank of R’ and that of itself, R decides its next course of 
action as follows: 

Case A: The rank of R is greater than that of R’ and the 
destination of R is in the positive direction, w.r.t. its local 
co-ordinate system. 

Case B: The rank of R is less than that of R’ and the des-
tination of R is in the negative direction, w.r.t. its local 
co-ordinate system. 

For both the cases, R would break the tie and would move 
first towards its destination point. 

Case C: The rank of R is greater than that of R’ and the 
destination of R is in the negative direction, w.r.t. its local 
co-ordinate system. 



  Advances in Computing 2012, 2(1): 17-28 21 
 

 

Case D: The rank of R is less than that of R’ and the des-
tination of R is in the positive direction, w.r.t. its local 
co-ordinate system. 

For both the cases R will wait for R’ to move first towards 
its destination point. 

4.2. Correctness Proofs 

4.2.1. Observation 1: The Overall Process Starts at a Finite 
Amount of Time 

Proof: As mentioned before, the robots can have two 
states: active and sleep. In Active state, the robots are alive 
and executing continuously the computational cycles. In 
Sleep state, robot is not active and doing nothing. This state 
is like power off state. It is assumed that a robot cannot sleep 
infinitely and it would become active within a finite amount 
of time. We also assume that change of state of a robot takes 
place independent of the other robots. Thus whenever a robot 
becomes active it executes the algorithm and it is also as-
sumed that the other robots will also become active after a 
finite time and will execute the same algorithm independ-
ently. Hence it is guaranteed that overall process starts at a 
finite time. 

Only in case of a tie, if initially the robots are at the same 
height, there will be inter-dependency among these robots. If 
a particular robot do not move first all other have to wait for 
it and so on. The robot having the highest rank and the lowest 
rank usually does not have any restriction on their movement 
and thus as soon as they become live, the process starts. An 
extreme situation is considered when all the robots are at the 
same height. 

The situation can be sub-divided into following two cases: 
Case 1: All the robots are at the same height and they are 

along a boundary of the region. In this case, if a robot iden-
tify itself (according to its local co-ordinate system) (1) at the 
lower boundary of the region and having the highest rank, or 
(2) at the upper boundary of the region and having the lowest 
rank. 

In both of the cases the robots will not have any restriction 
on its movement and it would break the initial barrier. These 
robots are called tie-breaking robots. If the robots are on the 
upper boundary, the left-most one and if they are on the 
lower boundary, the right-most one will be the tie-breaking 
robot. 

 
(i)           (ii) 

Figure 4.  R1 and R4 are the tie-breaking robots in two cases 

Case 2: All the robots are at a same height from the 
common reference line but they are not along any boundary 
of the region. In this case both the robots having lowest rank 

and highest rank will not have any restriction on their 
movement and they would break the initial barrier. “Figure 
4”, below shows both the cases where the tie-breaking robots 
either having highest or lowest rank. Once a robot break the 
initial barrier, all other robots start moving in turn. Thus 
within finite time the process would start. 

4.2.2. Observation 2 

Throughout the process, relative ranking of the robots 
computed by several robots are same up to a reversal of order. 
In other words, if the robots R1 and R2 compute the rank of a 
robot R as i and j respectively, then either i=j or i= N-j and 
this would remain same throughout the algorithm. 

Proof: If the orientations of the local axes of R1 and R2 are 
identical then the ranking of the robots would be same. 
Otherwise, if the orientations are reverse, then the relative 
ranking would be same but in reverse order. Thus i=N-j. 
“Figure 5” shows the positions of five robots and their ranks 
with respect to robots A and E. Robots A and E are having 
opposite orientations. The ranks of the robots w.r.t A are just 
the reverse of the ranks w.r.t E. 

 
Figure 5.  Relative ranks w.r.t robot A and E are same up to a reversal of 
order 

A robot computes the ranks of all other robots w.r.t. their 
vertical distances from its local x-axis. So the relative rank-
ing of the robots would remain same throughout the algo-
rithm as the vertical movement of the robots is so restricted 
that none of the robots would vertically cross any other ro-
bot. 

If two robots are starting from the same vertical height, 
their relative ranking will be determined by their x- coordi-
nates. 

In case of such a tie, the robots start moving towards their 
destination following the rule given in “move” step, which 
retains their relative ranking. 

Once a robot starts moving, this tie will be broken and this 
situation will never occur again. 

4.2.3. Observation 3: The Group Number Allocated to the 
Robots Remains Same Throughout the Process 

Proof: Robot R is allotted its group number according to 
its rank. Thus group 1 contains 1 robot, group 2 contains 2 

  R1   R2    R3    R4 

 

 

  R1   R2    R3    R4 

 
R1   R2    R3    R4 
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robots of rank 2 and 3, and in this way (K-1) group contains 
“K-1” number of robots. Thus remaining robots 
(N-(1+2+3+….+K-1))=N-(K(K-1))/2 is contained in the Kth 
group and flag assigned is GrK. As the relative ranking is 
preserved and does not change throughout the algorithm 
henceforth the group number is preserved. 

Example: Let us consider 6 robots, with relative ranking 1, 
2, and 3, 4, 5, 6. Now the group numbers allocated will be as 
follows: Robot with rank 1 is assigned group 1, robots with 
ranks 2, 3 is assigned group 2 and robots with ranks 4, 5, 6 
are assigned group3. Thus if the relative ranking remains 
unchanged throughout the process then the group numbers 
allocated will certainly remain fixed throughout the process. 

4.2.4. Observation 4: Θ is Always Equal to 45° and 8Θ 
Completes a Circle Around the Center Point 

Proof: The robot R calculates the center of the square field 
which is the intersection of the diagonals. Now the robot R 
first checks its group number. If it belongs to group 1 then, it 
computes its goal point by calculating an angle Θ (Θ=45°) 
from the center point in anti-clockwise direction and marks 
its goal point at a fixed distance d from the center, consid-
ering d<=a/4 where “a”' is the dimension of the side of the 
square. 

Since the field is square in shape, by Lemma 1 above the 
angle made at the center by the diagonals are 90°. The center 
line parallel to x-axis passing through the center of the square 
field makes an angle of 45° with the diagonals. Thus Θ is 
taken as 45°. Now the goal point is calculated at an angle Θ at 
a distance d from the center if robot R belongs to group 1, 
considering d<=a/4 where “a” is the dimension of the side of 
the square. If robot R belongs to group 2 the goal point is 
calculated at an angle 2Θ from the center at a distance d from 
the center. In this way the angle increases linearly as the 
group number increases till 8Θ. If the group number crosses 
8, then the next angle again starts from Θ and the goal point is 
calculated at a distance 2d from the center and continues till 
it reaches 8Θ. After every round of 8Θ the next goal point is 
calculated at an angle Θ and the distance from the center is 
incremented by d. By Lemma 2 8x45°=360° completes one 
circle around the center point. Therefore the group numbers 
belonging to 8, 16, 32, 64 which consist of a GP series make 
an angle of 8Θ every time on completing 360° and the next 
group numbers belonging to 9, 17, 33, 65 starts calculating 
the goal point from the center of the field along the line 
passing through the center at an angle of Θ. 

4.2.5. Observation 5: The Partitioning Algorithm Results an 
Unbalanced Groups of Robots 

Proof: In the algorithm U_PART above the robots are 
grouped according to their ranks. Thus group 1 contains 1 
robot, group 2 contains 2 robots of ranks 2 and 3, and in this 
way (K-1) group contains K-1 number of robots. Thus re-
maining robots (N-(1+2+3+….+K-1))=N-(K(K-1))/2 is 
contained in the Kth group and flag assigned is GrK. Let us 
consider two cases as follows: 

Case 1: Let 10 robots be present in the field. Then by the 
algorithm U_PART, the 10 robots ranked from 1 to 10, by 
unbalanced partitioning robot R1 is assigned group Gr1, R2 
and R3 are assigned Gr2, R4, R5, R6 is assigned Gr3 and robots 
R7, R8, R9 and R10 is assigned Gr4.  

The algorithm works correctly if the formula 
(N-(1+2+3+...K-1))=N-(K(K-1))/2 gives the same outcome. 
Verifying the formula: (n-(1+2+3+...k-1))=n-(k(k-1)). For 
N=10 and selecting K=4, since K<=ceiling (N/2)=(10/2)=5, 
therefore N-(K(K-1))/2=10-(4(4-1))/2=10-(4x3)/2=10-6=4. 
Therefore there must be 4 robots present in the Kth group. As 
the outcome matches with the result obtained from the for-
mula, the algorithm U_PART works correctly. 

Case 2: Now, considering for N=11 robots, K=4, since 
K<=ceiling (N/2). Now, N-(K(K-1))/2=11-(4x3)/2=11-6=5. 
Therefore there are 5 robots present in the last group or group 
4 in this case. Thus each group will contain number of 
members equal to the group number except the last group 
which may or may not contain same number of robots equal 
to the group number depending on the value of N, therefore 
Gr1 will contain 1 robot, Gr2 will contain 2 robots, ….,GrK 
will contain [(2N-K(K-1))/2] ,where unbalanced partition is 
guaranteed. 

Henceforth it must also be kept in mind that the group 
number is so selected that no two groups have equal number 
of robots. Therefore unbalance partitioning is guaranteed.  

4.2.6. Observation 6: The Movement of the Robots is   
Collision Free 

Proof: Throughout the algorithm, two robots can never be 
at the same vertical height at the same time, except during the 
starting time, when two robots can be at the same vertical 
height. If initially the robots are at the same height, the tie is 
broken by the rules given in Move step. Once the tie is bro-
ken, they will never be at the same height again, during their 
vertical movement. 

After computing the destination, each robot would first 
move vertically to reach the height of the final destination. 
Once they reach that height, they start moving horizontally. 
Thus, if the destinations of the two robots are at different 
heights, the question of collision during their horizontal 
movements does not arise at all. 

4.2.7. Observation 7: The Four Rules Stated in the Move 
Step are Valid 

Proof: If at the initial stage, two robots are at the same 
height(but in two different positions), the robot having the 
higher rank would start moving first, if their destinations are 
in the negative direction, then the robot having the lower 
rank would start moving first. If their destinations are in 
opposite direction, then there wouldn't be any restriction in 
the vertical movement. Consider “figure 6” below where 
both R1 and R2 have the same orientations. The destinations 
of robots R1 and R2 are d1 and d2 respectively. According to 
both the robots the rank of R1 is less than the rank of robot R2. 
In the “figure 6(a)” both of their destinations are in the 
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positive direction, then as per the rule, the higher ranked 
robot R2 will move first. In “figure 6(b)” both of their des-
tinations are in the negative direction. As per rule, the lower 
ranked robot R1 will move first.  

 
Figure 6.  R1 and R2 are having same orientation 

Consider “figure 7” where both R1 and R2 having opposite 
orientation. According to the local coordinate system of R1 
and R2, both will rank itself as lower. Due to opposite ori-
entations, if the destinations are in positive direction ac-
cording to R1 then it is in negative direction according to R2 
and vice versa.  

 
Figure 7.  R1 and R2 are having opposite orientation 

In “figure 7(a)” both the destinations are in the positive 
direction w.r.t R1. So, according to R1, the higher ranked 
robot R2 will move first. But according to R2 the destinations 
are in negative direction, so as per rule the lower ranked 
robot R2 will move first. This shows that the same decision 
will be taken by R1 and R2. Similarly, in “figure 7(b)”, both 
the destinations are in negative direction w.r.t R1. So, ac-
cording to R1, the lower ranked robot R1 will move first. But 
according to R2 the destinations are in positive direction, so 
as per rule higher ranked robot will move first which is R1 
according to the local coordinate system of R2. So, in both 
the cases same robot will move, and the tie will be broken 
without any conflict. 

4.2.8. Result: The Partitioning Algorithm U_PART Will Be 
Completed Within a Finite Amount of Time 

Proof:  
Combining all the above observations, and the fact that a 

robot cannot sleep for infinite amount of time and consid-
ering the operation to be atomic, we conclude that the overall 
process completes successfully within finite amount of time.  

5. Simulation and Performance Analysis 
of Algorithm U_PART 

5.1. Simulation 

In this section, the two partitioning techniques has been 
compared and analysed. An example of an academic build-
ing has been considered. The building is assumed to have a 
number of lecture rooms. Different number of chairs is 
placed in each room. A swarm of robots have been allocated 
to colour all the chairs placed in different rooms of the 
building. Colouring all the chairs in one room is considered 
as one task. Both the algorithms suggest partitioning the 
robot swarm into number of groups so that each group can 
complete at most one task. Assuming that numbers of groups 
are equal to the number of task to be done.  

A simulator has been developed to evaluate and compare 
the overall performance of un-balanced algorithm over the 
balanced algorithm. 50 test cases have been analysed using 
the simulator to study the performance of the un-balanced 
algorithm over balanced algorithm. The simulator calculates 
the total time required to complete the whole job (painting all 
the chairs in all the rooms of the building) by the swarm by 
applying the balanced algorithm as well as the un-balanced 
algorithm. Based on the comparison of time required to 
complete the job the simulator suggests the technique to be 
used for a particular task to be done in minimum time. 

5.2. System Requirements of the Simulator 

5.2.1. Software: 

Turbo C++ version 4.5 compiler, Matlab 7, Windows XP 
Professional (SP2) 

5.2.2. Hardware 

Processor: Pentium IV 1.4 GHz minimum, Disk Space: 2 
GB, RAM: 1024 MB, DVD ROM drive, High resolution 
monitor (XGA recommended), Keyboard and Mouse.  

5.3. Performance Analysis 

The simulator studied 50 test cases to evaluate the per-
formance of the unbalanced algorithm over the balanced 
algorithm. A swarm is allocated to colour all the chairs 
situated in different rooms inside the building. Colouring all 
the chairs in one room is considered as one task. It is as-
sumed that one robot can paint a single chair within 5 min-
utes. The task is carried out concurrently by individual robot. 

N = Number of robots in the swarm. 
K = Number of groups formed. 
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Ci = Number of chairs present in the ith room. 
Tib = Time taken to colour all the chairs in the ith room, in 

minutes by balanced partitioning. 
Tiub = Time taken to colour all the chairs in the ith room, in 

minutes by un-balanced partitioning. 
TOB = Maximum time taken to complete colouring all the 

chairs present inside the building via balanced partitioning. 
TOUB = Maximum time taken to complete colouring all 

the chairs present inside the building via un-balanced parti-
tioning. 

The tables in Appendix A (table no A.1& A.2) shows the 
results obtained from 50 test cases. Out of 50 test cases 
mentioned above, 3 random cases have been plotted to bring 
out the comparison between balanced and un-balanced 
techniques. 

Problem 1: The building has two rooms, having 10 and 
160 chairs respectively. The swarm is partitioned into two 
groups (one group per task) using balanced as well as un-
balanced partitioning. Then the total time required to com-
plete the task is compared and analysed for both partitioning 
techniques. 

Problem 2: The building has three rooms, having 2, 50 and 
300 chairs respectively. The swarm is partitioned into three 
groups using balanced as well as unbalanced partitioning. 
Then the total time required to complete the task is compared 
and analysed for both partitioning techniques. 

 
Figure 8.  Represents problem 1 

Problem 3: The building has four rooms, having 4, 40, 80 
and 200 chairs respectively. The swarm is partitioned into 
four groups using balanced as well as unbalanced partition-
ing. Then the total time required to complete the task is 
compared and analysed for both partitioning techniques. 
“Figure 8”, “figure 9” and “figure 10” plots the number of 
chairs to be collared along the x-axis and the time in minutes 
along the y-axis. 

 
Figure 9.  Represents problem 2 

 
Figure 10.  Represents problem 3 

 
Figure 11.  Statistical representation 

Result: Out of the 50 test cases analysed, 70 percent of the 
cases prefer un-balanced partitioning and 30 percent of the 
cases support balanced partitioning with respect to time. 
“Figure 11”, shows the statistical representation of cases for 
both balanced and un-balanced partitioning techniques re-
spectively. 

The following conclusions can be made from the experi-
ments carried out: 

(i) Un-balanced partitioning is advantageous for uneven 
task distribution where the task difference between the 
groups is huge. In such situations, the time taken to complete 
the total task is more in comparison to un-balanced parti-
tioning. 

(ii) Algorithm U_PART is useful when the task distribu-
tion between the groups increases in ascending order with 
huge difference between each group. 

(iii) With respect to time, un-balanced partitioning gains 
advantage over balanced partitioning, as the value of K in-
creases and when the last group contains huge task load 
compared to other groups. 

(iv) Balanced partitioning is not possible for any prime 
value of N and also for all N, K pairs where K does not di-
vides N. As there are no such restrictions for un-balanced 
partitioning, hence U_PART algorithm partitions N for a 
wide range of values K. 

Thus it can be concluded that for certain applications, 
where un-even task distribution is required; un-balanced 
partitioning is more advantageous compared to balanced 
partitioning. 
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6. An Alternative Approach to     
Unbalanced Partitioning 

6.1. Limitation of U_PART Algorithm 

Although, algorithm U_PART works well for a large 
value of N, K pairs but it limits the members in each group to 
its group number except the last group, for all values of N. 

This limitation has been overcome in the next section, 
where an alternative approach has been taken into consid-
eration towards un-balanced partitioning and an un-balanced 
algorithm U_PART II has been proposed. 

6.2. Algorithm: Unbalanced Partitioning II 

This section proposes another algorithm to partition N 
number of robots into K number of unbalanced groups. All 
assumptions are same as the first algorithm. On being active 
each robot uses an array m[50] which stores the number of 
members present in each group and a variable s which stores 
the sum of the members in each group, except the last group.  
Algorithm U_PARTII (Executed by Robot R) 

Look: The Look step remains same as in algorithm 
U_PART. 

Compute: 
Step 1: This step remains same as in algorithm U_PART. 
Step 2: Next, robot R checks whether (K==2), if true then 

there are only two groups. Member in Gr1 is m1=(N/2) and 
Gr2 is m2=(N-m1), where m1 and m2 (which stores only in-
teger values and the fractional part if any is truncated), 
represents the number of members in Gr1 and Gr2 respec-
tively. Next, it is checked if(m1==m2); if true then set 
m1=m1-1 and set (m2=m2+1). Otherwise go to step 3. 

Step 3: If (K!=2) then robot R initializes i=0; and for each 
value of i, it sets m[i]=(N/K-i) (m[i] stores only integer 
values and the fractional part s are truncated) and increments 
the value (i=i+1) till (i<K-1). m[i] gives the number of 
members for (i+1)th group, Gri+1. 

Step 4: R initializes s=0; and stores the sum of all m[i] 
values in variable s for all values of i; it updates s=s+m[i] for 
every value of i and checks whether s exceeds N; i.e.; (s<N) 
till (i<K-1). If true, then ml=N-s where ml stores the number 
of members in the Kth group, GrK. Otherwise go to step 5. 

Step 5: If (s>=N) is true then R decides that only (K-1) 
groups are possible and updates s=s-m[i] and assigns ml=N-s; 
where ml represents the number of members in the (K-1)th 

group, GrK-1. 
Step 6: After robot R calculates the number of members in 

each group it then decides its own group number. R first 
initializes i=0; If the robot is having rank “p”, it checks 
whether p<=m[i], if true it then sets the FLAG=i+1. If false it 
increments the value of I by 1 and checks if p<=m[i]+m[i+1]. 
If true it sets FLAG=i+2; for each false outcome the value of 
i is incremented by 1 and the rank p is checked against the 
previous cumulative sum added to the next group members. 
The checking continues till i<(K-1), where K groups are 
possible (otherwise it continues till i<(K-2)). If false R is 
allocated to Kth group and sets its FLAG=K. Otherwise it 

belongs to GrK-1; FLAG=K-1 for (K-1) groups. 
Step 7: This step remains same as in algorithm U_PART 

step 5. 
Move: The move step remains same as in algorithm 

U_PART. 

6.3. Correctness Proofs for U_Part II 

6.3.1. Observations 

All the observations mentioned in algorithm U_PART 
remains same and are all valid for algorithm U_PARTII. The 
algorithm U_PARTII guarantees un-balanced partitioning. 
Let us consider the flowing cases below: 

Case 1: Let N=10, i.e.; robots present in the field and K=2. 
Then by the algorithm U_PARTII, the 10 robots ranked from 
1 to 10. As K=2, by U_PARTII; m1=(N/2)=10/2=5; 
m2=N-5=5; now since(m1==m2) we set m1=m1-1 and 
m2=m2+1; hence m1=5-1=4; m2=5+1=6. Robot R1, R2, R3, R4 
is assigned group Gr1 as rank p<=m1 and R5, R6, R7, R8, R9, 
R10 belongs to Gr2 by algorithm U_PARTII. 

Case 2: Let N=25 and K=3. Then by algorithm U_PARTII, 
the 25 robots are ranked from 1 to 25. As here K>2, by 
U_PARTII; i=0, s=0; as m[i]=(N/K-i); m[1]=25/(3-0)=8 
(taking only the truncated value); m[2]=25/(3-1)=25/2=12 
and s=s+m[0]+m[1]=20; as (20<N) henceforth ml=N-s= 
25-20=5; therefore Gri+1= Gr1 contains 8 members; simi-
larly Gr2 contains 12 members and Gr3 contains 5 members. 
Robot R1, R2, R3, …., R8 is assigned group Gr1 as rank 
p<=m[0] and R9, R10, R11,…., R20 belongs to Gr2 since 
p<=m[0]+m[1]=12+8=20 and finally R21, R22, R23,…., R25 
belongs to Gr3. 

6.3.2. Result: The partitioning algorithm U_PARTII will be 
completed within a finite amount of time 

6.4. Limitation of Algorithm U_PARTII 

The U_PARTII algorithm overcomes the shortcomings of 
U_PART algorithm by allocating members to groups which 
are not fixed for all values of N. But it does not guarantee 
partitions for a wide range of values of K. Let us take up two 
examples to bring out the limitation: 

Case 1: For N=10 and K=2; Gr1 and Gr2 contains m1=4 
and m2=6 members each. 

Case 2: For N=25 and K=5; Members in group 1 = 5; 
Members in group 2 = 6; Members in group 3 = 8; Members 
in group 4 = 6. For this value of n=25, only 4 groups are 
possible. 

Thus U_PARTII algorithm guarantees un-balanced parti-
tioning but does not guarantees partitioning for all values of 
K. We may try to overcome this limitation in our future 
work. 

7. Conclusions 
The development in the field of swarm robotics is reach-

ing a point where various new applications are emerging. 
Here we have dealt with the partitioning problem where 
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swarm of autonomous robots are balanced partitioned into 
equal groups of robots and have proposed our own parti-
tioning techniques for un-balanced partitioning. 

In case of un-balanced task allocation the balanced parti-
tioning becomes disadvantageous from the time consuming 
point of view, thus in such an environment unbalanced par-
titioning has been introduced, where a swarm of robots are 
partitioned into K unbalanced groups. 

The algorithm U_PART partitions a swarm of robots in an 
unbalanced way over a square field. If the area considered is 
rectangle or polygonal in shape, then the partitioning can be 
done in similar manner. To bring out the benefits of the 
algorithm U_PART, a simulator has been created, where 50 
experiments have been carried out. Based on the results 
obtained from the 50 test cases, it can be concluded that 
U_PART algorithm performs better than the balanced algo-
rithm for certain applications which uses uneven task dis-
tribution techniques. 

As U_PART algorithm allocates fixed number of robots 
for each group except the last group; for all values of $N$, 
we have proposed another alternative approach towards 
un-balanced partitioning to overcome this limitation via 
algorithm U_PARTII. Although the algorithm U_PARTII 
overcomes the limitation of algorithm U_PART but does not 
guarantees partitioning for all values of K. 

Henceforth, it may be concluded that the two alternative 
approaches for unbalanced partitioning certainly have their 
own limitations, but at the same time are useful for particular 
purposes and can be used alternatively as the situation de-
mands. 

8. Future Work 
This piece of research work proposes two un-balanced 

partitioning approach on a swarm of autonomous mobile 
robots. Here two algorithms U_PART and U_PARTII have 
been proposed which overcomes the shortcomings of the 
balanced algorithm, where N robots have been partitioned 
into K unbalanced groups. .Here a square field has been 
considered over which the robots are placed for partitioning; 
the algorithm can also be performed over a rectangle or 
polygonal field of known or unknown dimension, in similar 
manner.  

Both the algorithms have certain limitations which may be 
taken up as future scopes of study: (i) Overcoming the 
limitation on fixed number of members in a group in the 
algorithm U_PART. (ii) Overcoming the limitation on par-
titioning for wide range of K values in the algorithm 
U_PARTII. (iii) Moreover, an obstacle-less field has been 
considered for both the techniques. In practical cases there 
may be situations where the robots are placed in a field 
where obstacles are present. It may be aimed at devising an 
algorithm in future for unbalanced partitioning which will 
work in such environment also. (iv) The robots considered 
here has unlimited visibility capabilities. In future research 
work, the algorithm may be extended to support limited 

visibility of the robots as well. 
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APPENDIX A 
Table A.1.  Result of Simulation: 35 test cases supporting unbalanced 
partitioning 

Test Cases 

Ci 
=Task 
in each 
group 

Tib Tiub TOB TOUB 

Case 1: N=10, K=2 10 
110 

10 
110 

50 
65 110 65 

Case 2: N=10, K=2 23 
322 

25 
325 

115 
180 325 180 

Case 3: N=12, K=3 
2 

20 
100 

5 
25 

125 

10 
50 
60 

125 60 

Case 4: N=12, K=4 

2 
20 
50 
100 

5 
35 
85 

170 

10 
50 
85 
85 

170 85 

Case 5: N=15, K=3 
3 

30 
90 

5 
30 
90 

15 
75 
40 

90 75 

Case 6: N=16, K=4 

4 
40 
80 
200 

5 
50 

100 
250 

20 
100 
135 
100 

250 135 

Case 7: N=20, K=5 

14 
35 
55 
75 
105 

20 
45 
70 
95 

135 

70 
90 
95 
95 
55 

135 95 

Case 8: N=21, K=3 
2 

50 
300 

5 
40 

215 

10 
125 
85 

215 125 

Case 9: N=25, K=5 

1 
5 

15 
25 
55 

5 
5 

15 
25 
55 

5 
15 
25 
35 
20 

55 35 

Case 10: N=30, K=5 

20 
40 
60 
100 
200 

20 
35 
50 
85 

170 

100 
100 
100 
125 
50 

170 125 

Case 11: N=20, K=2 10 
160 

5 
80 

50 
45 80 50 

Case 12: N=12, K=3 
2 

28 
300 

5 
35 

375 

10 
70 
170 

375 170 

Case 13: N=18, K=3 
3 

10 
200 

5 
10 

170 

15 
25 
70 

170 70 

Case 14: N=27, K=3 
2 
8 

100 

5 
5 

60 

10 
20 
25 

60 25 
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Case 15: N=27, K=3 
5 

10 
95 

5 
10 
55 

25 
25 
20 

55 25 

Case 16: N=27, K=3 
5 

25 
300 

5 
15 

170 

25 
65 
65 

170 65 

Case 17: N=50, K=5 

2 
5 

10 
11 
90 

5 
5 
5 

10 
45 

10 
15 
20 
15 
15 

45 20 

Case 18: N=111, K=3 
1 
2 

50 

5 
5 

10 

5 
5 
5 

10 5 

Case 19: N=9, K=3 
2 
3 
9 

5 
5 

15 

10 
10 
10 

15 10 

Case 20: N=6, K=3 
3 
5 
7 

10 
15 
20 

15 
15 
15 

20 15 

Case 21: N=10, K=2 2 
170 

5 
170 

10 
95 170 95 

Case 22: N=15, K=5 

2 
5 

10 
30 
50 

5 
10 
20 
50 
85 

10 
15 
20 
40 
50 

85 50 

Case 23: N=90, K=10 

9 
10 
22 
33 
44 
55 
66 
77 
88 
99 

5 
10 
15 
20 
25 
35 
40 
45 
50 
55 

45 
25 
40 
45 
45 
50 
50 
50 
50 
15 

55 50 

Case 24: N=80, K=10 

8 
10 
20 
30 
40 
50 
60 
70 
80 
90 

5 
10 
15 
20 
25 
35 
40 
45 
50 
60 

40 
25 
35 
40 
40 
45 
45 
45 
45 
15 

60 45 

Case 25: N=70, K=10 

7 
20 
30 
40 
50 
60 
70 
80 
90 
100 

5 
15 
25 
30 
40 
45 
50 
60 
65 
75 

35 
50 
50 
50 
50 
50 
50 
50 
50 
20 

75 50 

Case 26: N=21, K=3 
2 

23 
333 

5 
20 

240 

10 
60 
95 

240 95 

Case 27: N=15, K=5 

2 
3 
5 

55 
66 

5 
5 

10 
95 

110 

10 
10 
10 
70 
70 

110 70 

Case 28: N=60, K=10 2 
3 

5 
5 

10 
10 15 10 

4 
6 
8 

10 
11 
14 
15 
17 

5 
5 

10 
10 
10 
15 
15 
15 

10 
10 
10 
10 
10 
10 
10 
10 

Case 29: N=70, K=10 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

5 
5 
5 
5 
5 
5 
5 

10 
10 
10 

5 
5 
5 
5 
5 
5 
5 
5 
5 
5 

10 5 

Case 30: N=80, K=10 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

5 
5 
5 
5 
5 
5 
5 
5 

10 
10 
 

5 
5 
5 
5 
5 
5 
5 
5 
5 
5 

10 5 

Case 31: N=90, K=10 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

5 
5 
5 
5 
5 
5 
5 
5 
5 

10 

5 
5 
5 
5 
5 
5 
5 
5 
5 
5 

10 5 

Case 32: N=40, K=4 

1 
3 
5 

50 

5 
5 
5 

25 

5 
10 
10 
10 

25 10 

Case 33: N=40, K=5 

1 
2 
3 
4 

40 

5 
5 
5 
5 

25 

5 
5 
5 
5 

10 

25 10 

Case 34: N=100, K=5 

1 
3 
5 
7 

70 

5 
5 
5 
5 

20 

5 
10 
10 
10 
5 

20 10 

Case 35: N=16, K=4 

1 
2 

20 
40 

5 
5 

25 
50 

5 
5 

35 
20 

50 35 

Table A.2.  Result of Simulation: 15 test cases supporting balanced parti-
tioning 

Test Cases 

Ci 
=Task 

in 
each 
group 

Tib Tiub TOB TOUB 

Case 1: N=12, K=3 2 
5 

5 
10 

10 
15 10 15 



28  Deepanwita Das:  A Distributed Algorithm for Un-balanced Partitioning of a Swarm  
 of Autonomous Mobile Robots and Its Performance Analysis 

 

7 10 5 

Case 2: N=21, K=3 
5 

15 
35 

5 
5 

25 

25 
40 
10 

25 40 

Case 3: N=12, K=3 
7 

50 
100 

5 
40 
75 

35 
125 
30 

75 125 

Case 4: N=28, K=4 

4 
7 
8 

10 

5 
5 

10 
10 

20 
20 
15 
5 

10 20 

Case 5: N=30, K=3 
20 
30 
40 

10 
15 
20 

100 
75 
10 

20 100 

Case 6: N=40, K=4 

10 
30 
50 
70 

5 
15 
25 
35 

50 
75 
85 
15 

35 85 

Case 7: N=40, K=5 

10 
40 
70 
100 
140 

10 
25 
45 
65 
90 

50 
100 
120 
125 
25 

90 125 

Case 8: N=100, K=5 

100 
200 
300 
400 
500 

25 
50 
75 

100 
125 

500 
500 
500 
500 
30 

125 500 

Case 9: N=200, K=10 

5 
25 
625 
725 
825 
925 

1000 
1005 
1010 
1020 

5 
10 

160 
185 
210 
235 
250 
255 
255 
255 

25 
65 

1045 
910 
825 
775 
715 
630 
565 
35 

255 1045 

Case 10: N=300, K=3 
2 
4 

70 

55 
5 

10 
10 
5 

5 10 

Case 11: N=300, K=3 

5 
50 
55 
67 
87 
97 
107 
207 
407 
900 

5 
10 
10 
15 
15 
20 
2 

35 
70 

150 

25 
125 
95 
85 
90 
85 
80 

130 
230 
20 

150 230 

Case 12: N=300, K=10 

2 
20 
50 
80 
100 
150 
200 
500 
600 
900 

5 
5 

10 
15 
20 
25 
35 
85 

100 
150 

10 
50 
85 

100 
100 
125 
145 
315 
335 
20 

150 335 

Case 13: N=27, K=3 
5 

25 
105 

5 
15 
60 

25 
65 
25 

60 65 

Case 14: N=120, K=3 
2 

40 
160 

5 
5 

20 

10 
100 
10 

20 100 

Case 15: N=48, K=4 

5 
50 
60 
120 

5 
25 
25 
50 

25 
125 
100 
15 

50 125 
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