
Journal of Wireless Networking and Communications 2015, 5(2A): 6-12
DOI: 10.5923/c.jwnc.201501.02

Recognizing API Features for Malware
Detection Using Static Analysis

Saidah Mastura A. Ghani*, Mohd Faizal Abdollah, Robiah Yusof, Mohd Zaki Mas’ud

Faculty of Information and Communication Technology, Universiti Teknikal Malaysia Melaka, UTeM, Malaysia

Abstract Android is one of the mobile operating system. Rapidly increasing of devices which used android as platform,
make the Android is the best target to cybercriminal. Besides, Android offers many applications and these applications can
get from other than Google Play. This make the cybercriminal easier develop malware and easily spread the malware to user.
Malware can be made by injecting the malicious code into benign applications. Therefore, this research will use static
analysis technique. Static analysis technique will extracted the benign and malware application to get their source code. The
source code in benign and malware will be compared and categorized into API and manager classes. Then the most frequent
API and manager class used in malware will be detected.

Keywords Android, Static analysis, API, Manager classes, Malware

1. Introduction
Mobile devices such as smartphone and tablet computer

gained popularity among users nowadays. Users use their
mobile device for many of the same purpose as desktop
which to browse the Internet, make the online banking,
update status in social networks, search location and others.

Android is one of the mobile operating system. Android is
an open source mobile operating system developed by Open
Handset Alliance (OHA) which led by Google. Android is
based on a modified Linux 2.6 kernel [1]. Android is
designed primarily for touch screen mobile devices.

Figure 1. Distribution of Mobile Malware in 2013 by Platform [11]

In figure 1, it shows the distribution graph of mobile

* Corresponding author:
saidah0812@gmail.com (Saidah Mastura A. Ghani)
Published online at http://journal.sapub.org/jwnc
Copyright © 2015 Scientific & Academic Publishing. All Rights Reserved

malware detected in 2013 by platform. The graph shows that
the most infected platform is Android.

There are three factors needed before an increase of
mobile malware will occur, which are, an open platform, a
ubiquitous platform and the cybercriminal motivations [13].

Android is an open source mobile platform. Besides,
Android allows users to develop Android application and the
application can be published without review by third party
[5]. Therefore, the cybercriminal take this opportunity to
develop malware in Android platform.

Other than that, Android capability to run on different
devices with different version exposes to varied security
issues since the customization of Android security is done by
device manufacturer [5]. Therefore, Android become target
for cybercriminal because of Android is widely use by many
products and make the Android is a ubiquitous platform.

Google Play, Android official market share, offers
thousands of applications to users either the applications is
free or paid. These applications including games, social
networking, multimedia and etc. However, Android follows
a laissez-faire philosophy, which means users can get
Android applications from variety of source beyond the
Google Play [2]. Because of this, cybercriminal can develop
malware and distribute it to users easily.

Cybercriminal can easily develop a malware by injecting
the malicious code in benign Android application. For this
reason, this research will be conducted using static analysis
technique.

Static analysis technique is using the reverse engineering
method where the source code of application is extracted.
This technique involves the automatic application code
lookup which means, the required content is detect without
running or testing the applications [3]. This makes the

 Journal of Wireless Networking and Communications 2015, 5(2A): 6-12 7

technique faster in detection of malware. Other than that,
static analysis technique can get high detection rate and
consume fewer resources [3].

This research will focus on Android Package Index (API)
and manager classes. Android contains of 238 of APIs [4].
Under all these 238 APIs, there are many classes which rich
of framework to help developers develop their application.
But this research will focus on manager classes of APIs. The
managers are provided in application framework layer [10].
Figure 2 shows the Android application framework layer and
its blocks which contain managers.

Application framework layer is the most vulnerable layer
in Android architecture as stated in figure 3. The
vulnerability of application framework layer makes the layer
is easier for cybercriminal to inject malicious code on it.

Besides application framework layer of Android contains
most of users’ sensitive information. Therefore,
cybercriminal will used malware on this layer in order to get
the user’s information.

As example, Android.Tapsnake which pretending to be
just a game of snake while at the background, the application
is uploading the GPS (Global Positioning System)
coordinates of the device every 15 minutes [13]. The
coordinate is send back to criminal to locate the user’s
location.

Android device is allowed to determine current location
via GPS, cell tower or wifi network [18]. The
android.location is API used to determine current location
[18]. In the Android.Tapsnake, the android.location API is
used to activate the GPS.

Android.FakePlayer is another example of malware. This
malware sends multiple messages to two short-codes,
premium rate number [13]. This malware sends two
messages at premium rate to two numbers which, the first
number rate is approximately $3.50 and the second number
rate is at $6 and makes it $13 each time the application is
executed [13]. Once the messages are sent, user is billed but
not realize about the sent messages since the messages are
sent in the background without prompting the user [13].

In this scenario, the android.telephony API is called in the
source code of the malware. In the android.telephony, there
are SmsManager class which manage SMS (Short Message
Service) operation such as sending data, text and pdu SMS
messages [17]. In this malware, the SmsManager is used to
send the messages to the two short-codes, premium rate
number.

This paper is aim to perform static analysis in both
malware and benign Android application. Then, from the
extracted file, the source code of malware and benign will be
compared and categorized. There are two categories, which
are API and manager classes. The most API and manager
class used in malware and benign will determine at the end of
this research.

This paper is organized as follows: in section 2, the related
works is discussed; in section 3, the methodology of this
research is presented; in section 4 the result for this research
is discussed; and finally in section 5, the conclusion of this
research and the future work is presented.

2. Related Works
Android applications malware detection can be analyze by

using two techniques which are static analysis technique and
dynamic analysis technique. There are many researches
about malware detection in Android applications using either
dynamic analysis or static analysis technique or both.

In [6], [7] and [8], the dynamic analysis technique is used.
Meanwhile in [3], [14] and [15] the static analysis technique
is used.

In [6], permissions in manifest file are used. These
permissions are then categorized into two groups, standard
built-in permissions and non-standard built-in permissions.
The Control Flow Graph (CFG) is then used to detect the
malware.

In [7], some Android applications which suspected to be in
Command and Control (C&C) Server are downloaded. Then
a relationship graph using Gephi is constructed. Sensitive
API invoking and declares Intent-filter are searched within
the graph. A* algorithm is used to find a least-cost path in
benign and malware from graph.

In [8], the flow of system calls of applications is
monitored. The flow of applications system calls is
monitored across the layer of Android architecture. The
malicious flow is monitored to compare with the normal
flow of Android applications.

In [3], Intents in Android applications are used to
categorize the application either benign or malware. These
Intents are got by extracting the Android application .apk file
using APKTool to get the byte code. The custom C++ is then
used to tag the feature. After that, another custom C++ is
used to categorize. The tagged feature and categorization
used to point out the features of malicious applications.

Figure 2. Android Application Framework Layer [1]

8 Saidah Mastura A. Ghani et al.: Recognizing API Features for Malware Detection Using Static Analysis

Figure 3. Vulnerabilities of Android Architecture Layer [5]

[14] is a research where to compare the 10-Fold Cross
Validation Scheme, which often use in malware detection,
with reality. The dataset used in this research were
applications from Android Market, collecting known
malware from Genome project and malware labelling from
VirusTotal. The applications from dataset are extracted using
static analysis. After that, the model is classified into known
malware and testing set. Then, the classification validation
scenario is done and grouped into 2 (two) scenarios which
are: 10-Fold Cross validation and Validation in Wild.

In [15], machine learning is used to classify the malware
applications. The .apk file of Android application is
extracted to get the real permission required by application,
and adopted the features for malware detection. A few
sample features are used as train dataset by using K-Means
clustering algorithm. After the train data is developed, the
decision tree is used to each cluster to classify the malware
applications.

Both dynamic and static analysis techniques are used in
[16]. The static analysis is used by extracting the manifest
file to get the permission source code used on applications.
The manifest file was extracted and decrypted by using
Android Asset Packaging Tool (aapt). Dynamic analysis is
used in [16] to monitor the topology of input space of
application. Self-Organization Map (SAM) is used in order
to monitor the application input space. The input space then
calculated using the Euclidean distance criterion. The results
in [16] are based on Permission Protection Level: Normal,
Dangerous, Signature and SignatureOrSystem.

DroidAPIMiner [12], used static analysis technique by
analyze benign and malware using Androguard.
DroidAPIMiner mining the API level features to detect the
critical API calls, their package level information and their
parameter. DroidAPIMiner used large of dataset of malware
and benign. DroidAPIMiner identified the most frequently
used APIs in malware.

The most frequently APIs used in benign and malware
from dataset will identified. After that, the API calls that are
exclusively invoked by third-party packages like
advertisement is removed. If the API is frequently in both
malware and benign, the data flow analysis is conducted.
This data flow is used to recover the API parameter value
and selected only the APIs that invoke dangerous values.
Then, the most frequently APIs in malware is detected.

This research focused on APIs and manager classes.
DroidAPIMiner went through every class and parameter of
the APIs, but this research only focus on manager classes.

Rather than collected random malware and benign
applications, this research compared the APIs used in the
identical malware and benign applications. This comparison
will gathered the most frequently used APIs in malware and
benign applications. Then the APIs with manager classes
will be further compared in both malware and benign
applications.

3. Methodology

Figure 4 shows the methodology used in this research.
This research compare the malware and benign applications
which identically to each others. This means, both malware
and benign applications in this research are identical but the
malware applications were already injected by malicious
code.

This methodology has two (2) phases which are feature
extraction phase and feature comparison phase.
-Feature Extraction

In this phase, both malware and benign applications will
be extracted by using Androguard, a reserve engineering tool.
The antivirus will be injected to the benign applications
before they are extracted. This is done to make sure the
benign applications are really clean from the malware. The
AVG antivirus is used since it is the most popular antivirus
detector in [9].
-Feature Comparison

After the malware and benign applications are extracted,
the source code between malware and benign applications
will be compared. Then the differentiation of source code
between malware and benign applications will be detected.

Then, the parameter is categorized into two categories.
The categories are APIs and manager classes. There are 238
APIs in Android from level 1 API to level 22 API. The first
categorization will detect all of the APIs involved in both
malware and benign applications.

After that, the APIs classes which involved with manager
classes will detect. The examples of API with manager
classes are Telephony Manager, SmsManager, Power
Manager, Connectivity Manager, and Notification Manager.

The results of malware and benign applications from both
categories will be drawn using graphs. The frequency of
APIs and manager classes categories will be compare from

 Journal of Wireless Networking and Communications 2015, 5(2A): 6-12 9

benign and malware applications to detect the most frequently used API and manager classes by malware.

Figure 4. Research Methodology

Figure 5. Result of APIs Used in Benign Applications

0

5

10

15

20

25

an
dr

oi
d.

ap
p

an
dr

oi
d.

co
nt

en
t

an
dr

oi
d.

co
nt

en
t.p

m
an

dr
oi

d.
gr

ap
hi

cs
an

dr
oi

d.
ha

rd
w

ar
e

an
dr

oi
d.

lo
ca

tio
n

an
dr

oi
d.

m
ed

ia
an

dr
oi

d.
ne

t
an

dr
oi

d.
ne

t.w
ifi

an
dr

oi
d.

os
an

dr
oi

d.
pr

ov
id

er
an

dr
oi

d.
su

pp
or

t.v
4.

ap
p

an
dr

oi
d.

su
pp

or
t.v

4.
co

nt
en

t
an

dr
oi

d.
su

pp
or

t.v
4.

ne
t

an
dr

oi
d.

te
le

ph
on

y
an

dr
oi

d.
w

eb
ki

t
an

dr
oi

d.
w

id
ge

t
ja

va
.io

ja
va

.la
ng

ja
va

.n
et

ja
va

.u
til

or
g.

ap
ac

he
.h

ttp
or

g.
ap

ac
he

.h
ttp

.c
lie

nt
or

g.
ap

ac
he

.h
ttp

.im
pl

.c
lie

nt
or

g.
ap

ac
he

.h
ttp

.p
ar

am
s

or
g.

ap
ac

he
.h

ttp
.u

til

10 Saidah Mastura A. Ghani et al.: Recognizing API Features for Malware Detection Using Static Analysis

Figure 6. Result of APIs Used in Malware Applications

Figure 7. Result of Manager Classes Used in Benign Applications

0

5

10

15

20

25

30

an
dr

oi
d.

ap
p

an
dr

oi
d.

co
nt

en
t

an
dr

oi
d.

co
nt

en
t.p

m
an

dr
oi

d.
gr

ap
hi

cs
an

dr
oi

d.
ha

rd
w

ar
e

an
dr

oi
d.

lo
ca

tio
n

an
dr

oi
d.

m
ed

ia
an

dr
oi

d.
ne

t
an

dr
oi

d.
ne

t.w
ifi

an
dr

oi
d.

os
an

dr
oi

d.
pr

ov
id

er
an

dr
oi

d.
su

pp
or

t.v
4.

ap
p

an
dr

oi
d.

su
pp

or
t.v

4.
co

nt
en

t
an

dr
oi

d.
su

pp
or

t.v
4.

ne
t

an
dr

oi
d.

te
le

ph
on

y
an

dr
oi

d.
w

eb
ki

t
an

dr
oi

d.
w

id
ge

t
ja

va
.io

ja
va

.la
ng

ja
va

.n
et

ja
va

.u
til

or
g.

ap
ac

he
.h

ttp
or

g.
ap

ac
he

.h
ttp

.c
lie

nt
or

g.
ap

ac
he

.h
ttp

.im
pl

.c
lie

nt
or

g.
ap

ac
he

.h
ttp

.p
ar

am
s

or
g.

ap
ac

he
.h

ttp
.u

til

0

5

10

15

20

25

30

35

40

45

 Journal of Wireless Networking and Communications 2015, 5(2A): 6-12 11

Figure 8. Result of Manager Classes Used in Malware Applications

4. Results
As the preliminary test, 7 benign and 7 malware

applications are tested. The benign and malware used in this
test are identical.

Table 1. Top 3 APIs Obtained From Result

API Category

No. Benign (%) Malware (%)

1st java.lang 20.28 java.lang 28.5

2nd
android.content 12.39 android.content 14.25

java.net 12.39 android.telephony 14.25

Table 1 shows the top 3 APIs used by benign and malware
applications from result. The java.lang API is the most
frequently used API in both benign and malware applications.
The android.content is also the second most API used for
both benign and malware applications. However, the android.
telephony is the second most used API in malware while in
benign the second most API used is java.net (second place
share the same percentage).

Table 2. Top 3 Manager Classes Obtained from Result

Manager Classes Category

No. Benign (%) Malware (%)

1st PowerManager 39.34 SmsManager 32.97

2nd ConnectivityManager 29.51 TelephonyManager 26.37

3rd
LocationManager

9.84 ConnectivityManager 15.38
PackageManager

Table 2 shows the top 3 manager classes used by benign
and malware applications from result. Power Manager is the
most used manager class in benign applications while
SmsManager is the most manager class used in malware
applications.

From the result, the SmsManager and the Telephony
Manager is the first and second top manager class used in
malware. Both of these manager classes are the manager
class of the android.telephony API. Although the
android.telephony is the second most used API in malware,
but its manager classes is the first and second manager class
used by malware. Therefore, the android.telephony can be
said as the API which often used by malware.

5. Conclusions and Future Work
From the results, it shown that, the SmsManager and

Telephony Manager are the top two most manager classes
used by malware. Both of these manager classes are the
manager class in android.telephony API [17].

As conclusion, android.telephony with manager classes of
SmsManager and Telephony Manager are the most used
APIs and manager classes in malware applications.

Therefore, when used identical benign and malware
applications, the difference of frequency of APIs and
manager classes for both benign and malware can be
detected. Besides, the most frequently used API and manager
class too will be detected. The result in this research shows
the relationship between the most used API and manager
classes in malware.

0

5

10

15

20

25

30

35

12 Saidah Mastura A. Ghani et al.: Recognizing API Features for Malware Detection Using Static Analysis

As implication, the result from this research is very useful
especially for Android applications developers to take some
awareness when using the Android APIs and manager
classes. Besides, the vulnerable of some APIs and manager
classes can be determine since those APIs and manager
classes are easily exploit by cybercriminal. Therefore, some
security features can be enhanced in those APIs and manager
classes.

As the future work, there will be more identical malware
and benign applications will be used in this research. The
machine learning tool will be used in this research to classify
the APIs and manager classes of benign and malware.

ACKNOWLEDGEMENTS
Thank you to Universiti Teknikal Malaysia Melaka

(UTeM) because gives me the opportunity to do this research
and also provide the research facilities to me.

REFERENCES
[1] Dominique A. Heger, “Mobile Devices - An Introduction to

the Android Operating Environment Design, Architecture,
and Performance Implication”, in DHTechnologies, Texas,
USA, Tech.Report, 2012.

[2] Kindsight, “The Mobile Malware Problem”, in A Kindsight
White Paper, Ottawa, Canada, Tech.Report, 2012.

[3] Muhammad Zuhair Qadir, Atif Nisar Jilani and Hassan Ullah
Sheikh, “Automatic Feature Extraction, Categorization and
Detection of Malicious Code in Android Application”, in
Proceeding International Journal of Information and Network
Security, vol.3, no.1, pp.12-17, 2014.

[4] Online Available: http://developer.android.com/reference/an
droid/content/package-summary.html.

[5] Himanshu Shewale, Sameer Patil, Vaibhav Deshmukh and
Pragya Singh, “Analysis of Android Vulnerabilities and
Modern Exploitation Techniques”, in ICTACT Journal on
Communication Technology, vol.5, no.1, 2014.

[6] Justin Sahs and Latifur Khan, “A Machine Learning
Approach to Android Malware Detection”, in Intelligence
and Security Informatics Conference, Odense, European,
2012.

[7] Luoshi Zhang, Yan Niu, Xiao Wu, Zhaoguo Wang and Yibo
Xue, “A3: Automatic Analysis of Android Malware”, in
International Workshop on Cloud Computing and
Information Security, 2013.

[8] Alessandro Armando, Alessio Merlo and Luca Verderama,
“Security Issues in the Android cross-layer architecture”,
2012.

[9] Heqing Huang, Kai Chen, Peng Liu, Sencun Zhu and
Dinghao Wu, “Uncovering the Dilemmas on Antivirus
Software Design in Modern Mobile Platforms”, in
Proceedings of the International Workshop on System Level
Security Of Smartphones (SLSS 2014), Beijing, China,
September 23, 2014.

[10] Stefan Brahler, “Analysis of the Android Architecture”,
Karlsruhe Institute of Technology, Tech. Rep, 2010.

[11] Victor Chebyshev and Roman Unuchek, “Mobile Malware
Evolution: 2013”, in Kapersky Report Mobile Malware
Evolution, 2013.

[12] Yousra Aafer, Wenliang Du and Heng Yin, “DroidAPIMiner:
Mining API-Level Features for Robust Malware Detection in
Android”, in Security and Privacy in Communication
Networks, pp. 86-103, 2013.

[13] Eric Chin, “Motivations of Recent Android Malware”,
Symantec Security Response, Tech. Rep, 2011.

[14] Kevin Allix, Tegawende Bissyande, Quentin Jerome, Jacques
Klein and Radu State, “Large-Scale Machine Learning-based
Malware Detection: Confronting the “10-Fold Cross
Validation” Scheme with Reality”, in Conference on Data and
Application Security and Privacy, San Antonio, Texas, USA,
2014.

[15] Zami Aung and Win Zaw, “Permission-Based Android
Malware Detection”, in International Journal of Scientific &
Technology Research, vol.2, no.3, 2013.

[16] Chit La Pyae Myo Hein, “Permission Based Malware
Protection Model for Android Application”, in International
Conference on Advances in Engineering and technology,
Singapore, 2014.

[17] Online Available: http://developer.android.com/reference/an
droid/telephony/package-summary.html.

[18] Online Available: http://www.vogella.com/tutorials/Android
LocationAPI/article.html#locationapi_overview.

	1. Introduction
	2. Related Works
	3. Methodology
	4. Results
	5. Conclusions and Future Work
	ACKNOWLEDGEMENTS

