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Abstract  In this paper the second law analysis for heat and mass transfer over a plate embedded in a porous medium is 

conducted numerically. The governing continuity, momentum, energy and concentration equations are reduced to ordinary 

differential equations using similarity transformations. These equations are subsequently solved using an implicit finite 

difference scheme known as Keller-box method. The numerical data for velocity, temperature and concentration fields are 

used to compute local entropy generation, total entropy generation and Bejan number. The effects of Reynolds number, 

Schmidt number, Prandtl number, mass diffusion parameter, and concentration difference parameter on local entropy 

generation, total entropy generation, and Bejan number are reported.  
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1. Introduction 

Convective heat transfer over a plate embedded in a 

porous medium has many applications such as in petroleum 

production, separation processes in chemical engineering, 

thermal insulation systems, buildings, and nuclear reactors. 

In a pioneering paper, Cheng and Minkowycz [1] studied 

natural convection over a vertical plate with variable 

surface temperature with the plate embedded in a porous 

medium. Bejan and Poulikakos [2] investigated free 

convective boundary layer in a porous medium for 

non-Darcian regime. The mixed convective flow boundary 

layer over a vertical plate in porous medium was analysed 

by Merkin [3]. Kim and Vafai [4] studied the natural 

convective flow over a vertical plate embedded in porous 

medium. Chamkha [5] investigated the free convective flow 

in porous medium with uniform porosity ratio due to solar 

radiation flux. The MHD mixed convective flow over a 

vertical porous plate in porous saturated medium and 

assuming non-Darcian model was studied by Takhar and 

Beg [6]. Ranganathan and Viskanta [7] investigated the 

fluid mixed convective boundary layer over a vertical plate 

embedded in porous medium. They claimed that the viscous 

effects are significant and cannot be neglected. Kayhani   

et al. [8] studied the natural convection boundary layer 

along impermeable inclined surfaces embedded in a porous 

medium. Chamkha et al. [9] presented a non-similarity 

solution for natural convective flow over an inclined plate  
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in porous medium due to solar radiation. Forced convection 

over a vertical plate in a porous medium was studied by 

Murthy et al. [10] with a non-Darcian model. They showed 

that the increase of solar radiation flux and also suction 

causes increase in Nusselt number and heat transfer rate. 

Kayhani et al. [11] studied local thermal non-equilibrium in 

porous media due to sudden temperature change and heat 

generation. 

The use of second law of thermodynamics to analyze heat 

and fluid flow in engineering devices and systems has 

become increasingly important. This approach is driven by 

the realization among the thermal science community that 

the systems must be designed and operated so that the 

degradation of energy or the generation of entropy is 

minimized. There are various sources for entropy generation 

in engineering systems. In thermal systems, the main 

sources of entropy generation are heat transfer, mass 

transfer, viscous dissipation, electrical conduction, chemical 

reaction and coupling between heat and mass transfer as 

discussed by Bejan and co-workers in a series of pioneering 

publications [12-15]. The study of entropy generation in a 

liquid film falling along an inclined plate was performed by 

Saouli and Aїboud -Saouli [16]. Mahmud et al. [17] studied 

the case of mixed convection in a channel considering the 

effect of a magnetic field on the entropy generation. Aziz 

[18] investigated the entropy generation in a plane Couette 

flow for different boundary conditions at the plates. The 

effects of magnetic field and viscous dissipation on entropy 

generation in a falling liquid film were studied by Aїboud 

-Saouli et al. [19, 20]. Aїboud -Saouli and Saouli [21] 

conducted entropy generation analysis for viscoelastic MHD 

flow over a stretching sheet. They showed that the magnetic 

parameter, Hartman, Reynolds and Prandtl numbers cause 
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the local entropy generation to increase. Rezaiguia et al. [22] 

investigated the effects of Prandtl and Eckert numbers on the 

local entropy generation in a forced convection boundary 

layer flow. They observed that with an increase in Eckert 

number or a decrease in Prandtl number, the local entropy 

generation increases. The general formulation for the local 

entropy generation in an incompressible flow of Newtonian 

fluid had been given by Hirschfelder et al. [23]. The entropy 

generation for combined forced convection heat and mass 

transfer in a two dimensional channel was investigated by 

San et al. [24]. 

In the present study, the second law analysis for heat and 

mass transfer over a plate embedded in a porous medium is 

investigated numerically. To the best of our knowledge, this 

problem has remained unexplored. The governing continuity, 

momentum, energy and concentration equations are reduced 

to ordinary differential equations with similarity 

transformations. The resulting equations are solved using an 

implicit finite difference scheme known as the Keller-box 

method. The local entropy generation is calculated using the 

numerical derived data for the velocity, temperature and 

concentration fields in the entropy generation expression 

derived by Bejan [12]. The total entropy generation is 

evaluated by integrating the local entropy generation data 

over the flow domain. 

 

Figure 1.  Schematic of flow model and coordinate system 

2. Problem Formulation 

Consider a stationary flat plate embedded in a porous 

medium of permeability K as illustrated in Fig.1. The 

continuity, momentum, energy and concentration equations 

for the two-dimensional boundary layer flow may be written 

as   
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subject to the following boundary conditions  
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where the coordinate x is the distance along the plate, y is the 

coordinate normal to the plate, u  and v  are velocity 

components in x and y directions, respectively. The symbols 

T  and C  denote temperature and mass concentration at a 

general location (x, y) in the flow field, respectively. The 

plate is assumed to be a constant temperature wT . The 

diffusing species at the plate have a fixed mass concentration

wC . The quantities T  and C  represent the ambient 

temperature and ambient mass concentration, respectively. 

Here, eff  is the effective dynamic viscosity of the fluid, 

  is the fluid density, eff
 

is the effective thermal 

diffusivity of the medium, and effD
 

is the effective mass 

diffusivity of the medium. The assumption that the effective 

viscosity is identical to dynamic viscosity is appropriate for 

packed beds of particles, and commonly used to describe 

boundary layer flows in a porous medium.  

The following similarity variables are introduced to 

reduce the governing equations to ordinary differential 

equations: 
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where the stream function ( , )x y  is defined as 
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With the use of similarity variables, the continuity 

equation is automatically satisfied. The momentum equation 

(2), the energy equation (3), and the concentration equation 

(4) now appear as a set of coupled ordinary differential 

equations which may be written as 
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where primes denote differentiation with respect to  . The 

boundary conditions take the following form: 
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The dimensionless parameters Sc, Re, Pr, and NK are 

Schmidt number, Reynolds number, Prandtl number, and 

permeability parameter, respectively, and defined as follows: 
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In view of the definitions of NK and Re, a true similarity 

transformation is not achieved. Equations (8-11) must be 

interpreted as locally similar. The local similarity solution 

often provides a good preliminary insight into the problem. 

3. Second Law Analysis 

Using the boundary layer approximation, the entropy 

generation can be simplified as follows 
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wherein R is the gas constant.  

 

Figure 2.  Local entropy generation for various values of dimensionless 

group parameter when 1, 0.05,Re 1,dM    10,KN 

Pr 0.7, 0.1Sc   

 

Figure 3.  Local entropy generation for various values of dimensionless 

group parameter when 1, 2,dM Sc  Re 10, 10,KN 

Pr 0.7, / 0.1Br    

Using Eqs. (6) and (13), the entropy generation number is 

given by the following relationship in terms of the quantities 

appearing in Eqs. (8-10): 
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Figure 4.  Local entropy generation for various values of Schmidt number 

0.1, 0.05,Re 1, 10,Pr 0.7, / 0.1KSc N Br      

 

 

Figure 5.  Local entropy generation for various values of Schmidt number 

when 1, 0.05,Re 1, 10,Pr 3, / 0.01d KM N Br        

Re and Br are the Reynolds number and Brinkman number, 

respectively. Also Ω,   dM  are the dimensionless 

temperature difference, the dimensionless concentration 

difference and the mass diffusion parameter, respectively. 

These three parameters are defined as follows: 
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Figure 6.  Local entropy generation for various values of Prandtl number 

when 1, 0.05,Re 1, 10, 0.1, / 0.01d KM N Sc Br        
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The total entropy generation, S, is evaluated by integrating 

of the local entropy generation over whole of the boundary 

layer domain as 


5

0

dNS s                (17) 

The choice of 5 
 

was found to cover the three 

boundary layer regions in their entirety. Also, Bejan number 

was calculated as the ratio of the entropy generation due to 

heat transfer ST to the total entropy generation S i.e. 

S

S
Be T                 (18) 

4. Numerical Procedure 

Eqs. 8-11 are solved numerically using an efficient 

implicit finite-difference scheme known as Keller-box 

method. The method is implemented in four steps. First, Eqs. 

8-10 are reduced to seven first-order differential equations. 

Second, the equations are discretized using central finite 

differences. Third, the resulting nonlinear algebraic 

equations are linearized using Newton’s method [26-28] and 

written in matrix vector form. The fourth and final step uses 

the block-tridiagonal-elimination technique to solve the 

linearized algebraic equations. A step size of Δ𝜂 = 0.005 was 

found to satisfy the convergence criterion of 0.001 in all 

cases. As noted earlier, the choice of 5   satisfactorily 

covered the three boundary layer regions in their entirety. 

5. Results and Discussion 

Numerical computations were performed to study the 

effects of various dimensionless parameters on the local 

entropy generation, the total entropy generation and Bejan 

number. Figure 2 shows the local entropy generation in 

boundary layer as function of dimensionless group /Br  

which may be viewed as a measure of viscous dissipation in 

the flow. The curves in Fig.2 show that the increase in 

viscous dissipation leads to increase in local entropy 

generation. Because of large velocity gradients in the region 

near the plate, this near-plate region generates more entropy 

compared with that generated in the region far from the plate. 

As the concentration difference parameter λ is increased, the 

local entropy generation is reduced as can be seen in Fig.3. 

Figure 4 shows as the mass diffusion parameter Md increases, 

the local entropy generation increases. Again, the region near 

the plate experiences larger entropy genera- tion compared 

with the region further into the flow field. Fig. 5 illustrates 

the sensitivity of local entropy generation to Schmidt number 

Sc. Although the effect of Schmidt number does not appear 

explicitly in the entropy generation equation (15), its 

influence on entropy generation is exerted through the 

velocity, temperature, and mass concentration characteristics 

which are governed by Eqs. (8-11) which contain Sc. 

 

Figure 7.  Local entropy generation for various values of Reynolds 

number when 1, 0.05,Pr 0.7, 10, 0.1,d KM N Sc      

/ 0.01Br    

While in the region near the plate, the local entropy 

generation increases with Sc, it has an opposite effect in the 

region far from the plate, though the opposite effect is not 

that distinctly manifested. The effect of Prandtl number on 

the local entropy generation presented in Fig. 6 is similar to 

that of Schmidt number observed in Fig. 5. In the region 

closer to the plate, as Prandtl number increases, heat transfer 

from the plate increases which in turn leads to increased 

entropy generation. Figure 7 displays the local entropy 

generation as a function of Reynolds number, Re. The 

increase in local entropy generation due to increase in Re 

may be attributed to the increase in free stream velocity u  
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which produces an increase in heat transfer and hence an 

increase in entropy generation. The effect of permeability 

parameter NK on local entropy generation is illustrated in 

Fig.8. For the combination of variables chosen for preparing 

Fig.8, the local entropy generation decreases only slightly 

with the increase in the permeability of the medium. 

 

Figure 8.  Local entropy generation for various values of permeability 

parameter NK when 1, 0.05,Pr 0.7,Re 1, 0.1,dM Sc    

/ 0.01Br    

 
Figure 9.  Total entropy generation versus Prandtl number for various 

values of dimensionless group parameter when 1, 0.05,dM  

10,Re 1, 0.1KN Sc    

Attention is now turned to the total entropy generated over 

the entire flow field. Figure 9 demonstrates that the total 

entropy generated increases significantly as Pr and Br/Ω 

increase. The increase in Pr enhances the heat transfer which 

in turn increases the entropy generation. However, the effect 

of Pr on entropy generation is subdued beyond Pr = 3. The 

increase in Br/Ω implies an increase in fluid friction 

irreversibility (increase in Br) or a decrease in dimensionless 

temperature ratio Ω. In both cases, the result is increased 

entropy generation. Figure 10 shows that the total entropy 

generation increases almost linearly with the mass diffusion 

parameter Md for all four values of Schmidt number Sc. For a 

fixed Md, the total entropy generated increases significantly 

as Schmidt number increases from 0.1 to 3.0 but further 

increase in Schmidt number appears to increase the total 

entropy generation only slightly. The functional dependence 

of total entropy generation on Reynolds number and 

dimensionless concentration difference is shown in Fig.11. 

The total entropy generation increases as Reynolds number 

(and hence the transfer) increases, but decreases slightly as 

the concentration potential driving the mass transfer i.e. - C 

(= λ C) increases. In other words, a stronger mass transfer 

process tends to attenuate the total entropy generation 

slightly. Fig.12 shows that the total entropy generation 

increases as Prandtl number (and hence heat transfer) 

increases. However, the increase in permeability of the 

medium i.e. NK tends to reduce entropy generation slightly. 

 

Figure 10.  Total entropy generation versus mass diffusion parameter for 

various values of Schmidt number when 1, 0.05,Pr 0.7,KN   

Re 1, / 0.01Br    

 

Figure 11.  Total entropy generation versus Reynolds number for various 

values of dimensionless concentration difference when 1,dM   

/ 0.01, 0.1,Pr 0.7, 10KBr Sc N     
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Figure 12.  Total entropy generation versus Prandtl number for various 

values of permeability parameter when 1, 0.1, 0.1,dM Sc    

Re 1, / 0.01Br    

 

Figure 13.  Bejan number versus Prandtl number for various values of 

dimensionless group parameter when 1, 0.1, 0.1,dM Sc  

Re 1, 10KN   

 

Figure 14.   Bejan number versus mass diffusion parameter for various 

values of Schmidt number when / 0.01, 0.1,Pr 0.7,Br    

Re 1, 10KN   

The functional dependence of Bejan number on Prandtl 

number and dimensionless grouping Br/Ω illustrated in 

Fig.13 leads to two observations. First, for a fixed Br/Ω, the 

heat transfer irreversibility increases as Prandtl number 

increases, which in view of the definition (Eq.18), is 

reflected in higher Bejan number. Second, for a fixed Prandtl 

number, the entropy generation due to heat transfer ST is 

fixed. Now, if Br/Ω is reduced, the total entropy generation S 

decreases because of a reduction in friction irreversibility. 

For fixed ST, the reduction in S increases the Bejan number as 

suggested by Eq. 18. Fig.14 depicts Bejan number as a 

function of mass diffusion parameter Md and Schmidt 

number Sc. Because the Prandtl and Reynolds numbers are 

fixed, the entropy generated due to heat transfer ST is fixed. 

Thus any increase in Md and/or Sc increases the total entropy 

generated S and consequently reduces Bejan number which 

is exactly what Fig.14 reveals. As Md increases, the curves 

spread out, indicating that the effect of Sc on Bejan number is 

more pronounced. Figure 15 highlights the effect of 

concentration parameter λ and Reynolds number Re on Bejan 

number. The increase in Bejan number due to increase in Re 

is due to the increase in heat transfer irreversibility ST. For 

fixed Re, Bejan number increases with λ because increase in 

λ reduces the total entropy generation S. 

 

Figure 15.  Bejan number versus dimensionless concentration difference 

for various values of permeability parameter when 1,dM   

/ 0.01,Br   0.1, Pr 0.7, Re 1Sc     
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